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Introduction: Air pollutants such as Asian sand dust (ASD) and Streptococcus
pneumoniae are risk factors for otitis media (OM). In this study, we evaluate the role
of ASD in pneumococcal in vitro biofilm growth and colonization on human middle ear
epithelium cells (HMEECs) and rat middle ear using the rat OM model.

Methods: S. pneumoniae D39 in vitro biofilm growth in the presence of ASD
(50–300 µg/ml) was evaluated in metal ion-free BHI medium using CV-microplate
assay, colony-forming unit (cfu) counts, resazurin staining, scanning electron microscopy
(SEM), and confocal microscopy (CF). Biofilm gene expression analysis was performed
using real-time RT-PCR. The effects of ASD or S. pneumoniae individually or on co-
treatment on HMEECs were evaluated by detecting HMEEC viability, apoptosis, and
reactive oxygen species (ROS) production. In vivo colonization of S. pneumoniae in the
presence of ASD was evaluated using the rat OM model, and RNA-Seq was used to
evaluate the alterations in gene expression in rat middle ear mucosa.

Results: S. pneumoniae biofilm growth was significantly (P < 0.05) elevated in the
presence of ASD. SEM and CF analysis revealed thick and organized pneumococcal
biofilms in the presence of ASD (300 µg/ml). However, in the absence of ASD, bacteria
were unable to form organized biofilms, the cell size was smaller than normal, and
long chain-like structures were formed. Biofilms grown in the presence of ASD showed
elevated expression levels of genes involved in biofilm formation (luxS), competence
(comA, comB, ciaR), and toxin production (lytA and ply). Prior exposure of HMEECs
to ASD, followed by treatment for pneumococci, significantly (P < 0.05) decreased
cell viability and increased apoptosis, and ROS production. In vivo experiment results
showed significantly (P < 0.05) more than 65% increased bacteria colonization in rat
middle ear mucosa in the presence of ASD. The apoptosis, cell death, DNA repair,
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inflammation and immune response were differentially regulated in three treatments;
however, number of genes expressed in co-treatments was higher than single treatment.
In co-treatment, antimicrobial protein/peptide-related genes (S100A family, Np4, DEFB
family, and RATNP-3B) and OM-related genes (CYLD, SMAD, FBXO11, and CD14)
were down regulated, and inflammatory cytokines and interleukins, such as IL1β, and
TNF-related gene expression were elevated.

Conclusion: ASD presence increased the generation of pneumococcal biofilms
and colonization.

Keywords: Asian sand dust, Streptococcus pneumoniae, biofilms, colonization, otitis media, RNA-sequencing

INTRODUCTION

Otitis media (OM) is inflammation of the middle ear that
affects children and elders (Monasta et al., 2012; Qureishi
et al., 2014; Byeon, 2019). The recurrent OM adversely affects
speech, hearing ability, and language development in children,
finally leading to hearing loss (Bellussi et al., 2005; Roditi
et al., 2016). Worldwide, OM-related complications result in
approximately 21,000 deaths annually, and 65–300 million
individuals are affected by chronic OM (COM) (Acuin, 2004).
The incidence and prevalence of OM are particularly high in
the Asian population (8.12–14.52%), which affect the quality
of life and pose a significant social and economic burden
(Monasta et al., 2012; Coleman et al., 2018; Byeon, 2019).
OM is generally considered a multi-factorial abnormality of
the middle ear, with many associated risk factors, including
microbial exposure, environment, immunological deficiency,
gender, and age (Jensen et al., 2013; Coleman et al., 2018). Among
microbial agents, Streptococcus pneumoniae (S. pneumoniae) is
an important commensal bacterium that colonizes asymptotically
and causes infection under immune-compromised conditions
(Coleman et al., 2018). Despite the introduction of a 13-valent
vaccine in various countries to control pneumococcal infection,
pneumococci remain the leading pathogen (Milucky et al., 2019).
Moreover, S. pneumoniae forms biofilms, and its direct detection
from biopsy samples of the middle ear mucosa of children with
COM (Hall-Stoodley et al., 2006) suggests that pneumococcal
biofilms are important virulence factors of OM (Blanchette
et al., 2016; Vermee et al., 2019). In the nasopharyngeal cavity,
pneumococci initially colonize and form biofilms that serve as
a reservoir, and then, the biofilm bacteria can transit to other
sterile sites causing OM, meningitis, pneumonia, bacteremia,
and sepsis in immune-compromised individuals (children and
elderly) (Chao et al., 2015; Weiser et al., 2018).

Recent studies have reported that particulate matter (PM)
involved in air pollution is an important risk factor for OM (Park
et al., 2018). Air pollution due to sand and dust storms originating
in arid and semi-arid regions affects 151 countries worldwide
(Middleton and Kang, 2017). A seasonal episode of Asian sand
dust (ASD), which originates from arid areas of Mongolia and
the Gobi desert, and affects the Korean peninsula, Japan, and
China, is a major source of pollution in the East and Northeast
Asia (Jung, 2016). In recent years, a growing number of reports
have suggested that ASD exposure negatively affects human

health, leading to respiratory diseases (Jung et al., 2012; Yu et al.,
2012; Watanabe et al., 2016; Nakao et al., 2018) and significant
mortality annually (Chen et al., 2004; Lee et al., 2014; Al et al.,
2018). In addition, ASD contains PM of diameters < 10 µm
(PM10) along with inhalable hazardous chemical components
such as sulfate (SO4

2−) and nitrate (NO3
−) and microbes

such as bacteria, viruses, and fungi (Chen et al., 2010). One
study has reported a positive association between early exposure
to PM pollution and OM (Kennedy et al., 2018). Recently,
a study reported the implication of air pollution containing
PM10, nitrogen dioxide (NO2), ozone (O3), sulfur dioxide, and
carbon monoxide in OM (Park et al., 2018). Similarly, Girguis
et al. (2018) suggested that preterm infants are most susceptible
to infant bronchiolitis and OM associated with acute PM2.5
exposure (Girguis et al., 2018). Several studies have reported
that air pollution and nasopharyngeal bacteria are two known
risk factors for OM (Chao et al., 2015; Park et al., 2018;
Weiser et al., 2018). However, the interaction between these two
factors remains unknown. Most research to date has focused
on the implication of either S. pneumoniae or air pollutants in
causing OM. Indeed, severe pneumonia and OM were reported
in cigarette smokers exposed to PM and bacteria such as
S. pneumoniae and Haemophilus influenzae (Nuorti et al., 2000;
Givon-Lavi et al., 2006). In the nasopharynx, pneumococci and
PM interact, and PM exposure increases the risk of infections and
alters the function of native immune cells, impairs mucociliary
clearance, and decreases phagocytosis by macrophages (Becker
and Soukup, 1999; Zelikoff et al., 2002; Watanabe et al., 2016). PM
including environmental tobacco smoke increases the risk of OM
in children and changed the middle ear histology and eustachian
tube mucosa (Kong et al., 2009; Jones et al., 2012; Bowatte et al.,
2018; Nakao et al., 2018; Park et al., 2018). Previously, our group
identified a potential biomarker and a signaling pathway related
to OM induced by diesel exhaust particles (Kim et al., 2016).
We also demonstrated that ASD exposure decreases the cell
viability in a model human middle ear epithelium cell (HMEEC);
affects apoptosis, cell proliferation, and oxidative stress-related
gene expressions; and induces inflammatory responses in the
rat middle ear epithelium (Go et al., 2015; Chang et al.,
2016). However, the interaction, colonization, and virulence of
S. pneumoniae in the presence of ASD are not known. Previous
reports suggested that PM alters host immune defense (Becker
and Soukup, 1999; Zelikoff et al., 2002; Watanabe et al., 2016)
and induces OM (Bowatte et al., 2018; Nakao et al., 2018;
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Park et al., 2018); therefore, we hypothesized that the presence
of a small quantity of ASD may increase pneumococcal in vitro
biofilms, colonization to epithelial cells and middle ear mucosa,
and the risk factor for pneumococcus-mediated OM. In this
study, we evaluated the effect of ASD on S. pneumoniae in vitro
biofilm growth, colonization on HMEECs, and rat middle ear
using the rat OM model.

MATERIALS AND METHODS

Ethics Statement
The animal study was approved by the Institute Review Board
(IRB) of Korea University, Seoul, South Korea, with IRB
approval number KOREA-2019-0029. The animal protocols were
approved by Institutional Animal Care and Use Committees
(IACUCs), Korea University, Seoul.

Bacteria Strain and Culture Medium
In this study, S. pneumoniae D39, Avery’s virulence serotype
2 strain (NCTC; Salisbury, United Kingdom) was used (Avery
et al., 1944). This strain is fully sequenced and well characterized
and has remained highly virulent in the animal model after
many years of its isolation. Pseudomonas aeruginosa (PA01) and
E. coli (ATCC 24213) were purchased from ATCC, United States,
and MRSA (CCARM 3903) was purchased from the culture
collection of antimicrobial resistant strain (CCARM), Seoul,
South Korea. Bacteria were grown in BHI broth, and glycerol
stocks were maintained at −80◦C. Pneumococci colonies were
grown on a blood agar plate (BAP) supplemented with 5% sheep
blood (Yang Chemical, Seoul, South Korea). The ASD particles
used in this study were collected and composition was detected
in our previous study (Chang et al., 2016). Briefly, ASD was
collected using a high volume air sampler (HV500F, Sibata,
Tokyo, Japan) at a flow rate of 500 L/minute, pre-filtered into
filter packs (Prefilter AP, 124 mm; EMD Millipore, Bedford, MA,
United States), and sieved through a filter with a 10-µm pore size
(Chang et al., 2016). The stock solution of ASD was prepared in
PBS and sonicated and sterilized using an autoclave.

Planktonic Growth and in vitro Biofilm
Growth
To study the effects of ASD on bacterial growth, S. pneumoniae
planktonic growth was evaluated with different concentrations
of ASD (50, 150, and 300 µg/ml). The pneumococcal growth
was detected by measuring optical density at 600 nm (OD600) at
different time points. S. pneumoniae planktonic growth was also
evaluated by detecting metabolically active bacteria by resazurin
staining after 48 h. Bacteria were grown in metal ion-free BHI
medium based on a previous report (BHI medium treated with
chelex-100) (Brown et al., 2017). In vitro biofilm formation ability
of the bacteria, in the presence of ASD, was evaluated using a
static microtiter plate assay (Christensen et al., 1982; Yadav et al.,
2018). Viable bacteria in the biofilms were detected by colony-
forming unit (cfu) counting, and metabolically active bacteria
were detected by resazurin staining. Briefly, S. pneumoniae

colonies grown on BAP were further grown in BHI broth up to
log phase. The cells were pelleted by centrifugation and dissolved
in metal ion-free medium. The diluted bacteria (1:100) in metal
ion-free medium were inoculated in 96-well (200 µl) or 24-
well (1 ml) plates and incubated for 48 h. After incubation,
the medium was removed, and biofilms were washed twice and
stained with 0.1% crystal violet for 15 min. The biofilms were
washed with PBS twice and dissolved in 200 µl (96-well plate) or
1 ml (24-well plate) ethanol, and the absorbance was measured at
570 nm. Alternately, after washing with PBS, the biofilms were
dissolved in sterile water followed by brief sonication (10 s).
The biofilm suspension was serially diluted and spread on BAP,
followed by colony counting after 24 h incubation at 37◦C.

The in vitro biofilms of Pseudomonas aeruginosa, MRSA, and
E. coli were grown as described above and quantified using
resazurin staining (Yadav et al., 2017). Resazurin stain is a blue
colored, non-fluorescent dye that is reduced and then emits
pink fluorescence (resorufin) in the presence of actively growing
bacteria. The biofilms grown in 24-well plates were dissolved
and transferred to 96-well plates, followed by addition of 10%
resazurin. The plates were incubated in the dark for 1 h at 37◦C.
Fluorescence was measured at 530/590 (excitation/emission)
nm using a multimode microplate reader (Thermo Scientific,
Waltham, MA, United States).

In vitro Biofilm Analysis by Scanning
Electron Microscopy (SEM)
In vitro biofilms of S. pneumoniae D39, grown in the absence
or presence of ASD (300 µg/ml), were visualized using SEM.
The biofilms were grown in 24-well plates, in the metal
ion-free medium for 48 h using the procedure described
above. After washing with PBS, the biofilms were pre-fixed in
glutaraldehyde (2%) and paraformaldehyde (2.5%) and post-
fixed with osmic acid (1%) for 2 h, followed by dehydration
in increasing concentrations of ethanol (60–95%). The biofilms
were preserved in t-butanol and freeze-dried and platinum-
coated. SEM images were captured using a field emission
scanning electron microscope (Hitachi, Tokyo, Japan).

In vitro Biofilm Analysis by Confocal
Microscopy
Streptococcus pneumoniae D39 in vitro biofilms, grown in the
presence (300 µg/ml) and absence of ASD, were analyzed
using confocal microscopy and peptide nucleic acid (PNA)
fluorescence in situ hybridization (FISH) by a previously
reported procedure (Malic et al., 2009). The PNA probe used
for biofilm detection is a universal bacterial probe EUB338
(5′-TGCCTCCCGTAGGA-3′) (Rocha et al., 2018). It was
commercially synthesized by Panagene (Dageon, South Korea)
and labeled at the N-terminus with AlexaFluor488 via a double 8-
amino-3,6-dioxaoctanoic acid (AEEA) linker. The biofilms were
grown on µ-slides (ibidi, Germany) for 48 h in metal ion-free
medium, as described above. The biofilms were washed with
PBS and prefixed for 3 h in 4% paraformaldehyde. Hybridization
with the probe was performed at 46◦C for 3 h in hybridization
buffer (5 M NaCl, 1 M Tris-HCl, 2% SDS, and 10% formamide),
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followed by washing at 48◦C in washing buffer (5 M NaCl, 1 M
Tris–HCl, and 2% SDS). The PNA probe-labeled biofilm bacteria
were analyzed using a Nikon A1 confocal microscope (Nikon
Instruments, Inc., NY, United States) with FITC (green) channel.

In vitro S. pneumoniae Biofilm Gene
Expression
Real-time RT-PCR was used to evaluate the expression of genes
involved in competence (comA, comB, ciaR), biofilm formation
(luxS), and toxin production (ply, lytA) in a pneumococcal
biofilm. Pneumococcal biofilms were grown in metal ion-free
medium, and total RNA was extracted using an RNeasy Total
RNA Isolation System Kit (Qiagen, Valencia, CA, United States)
as per the manufacturer’s procedure. DNA contamination was
removed by on-column RNase-free DNase (Qiagen) treatment
for 10 min at 20–25◦C. The RNA was quantified using Nano-
drop, and cDNA synthesis was performed using a Bioneer
cDNA synthesis kit (Seoul, South Korea). Gene list and primer
sequences used in this study are presented in Table 1. Real-
time RT-PCR was performed in a 20-µl reaction volume with
10 µl of SYBR Green, 2-pmol primers, and 2 µl of cDNA.
The PCR was performed for 40 cycles with initial denaturation
at 56◦C for 2 min, followed by 40 cycles of denaturation at
95◦C for 30 s and annealing and extension at 60◦C for 1 min.
Relative quantification of gene expression was performed using
the 2−11CT method; a biofilm without ASD was used as the
standard and 16S RNA genes as reference.

HMEEC Viability
The toxicity of S. pneumoniae in the presence or absence of ASD
was detected by evaluating HMEEC viability upon treatment with
S. pneumoniae or ASD, or co-treatment with both. HMEECs were
kindly provided by Dr. Lim (House Ear Institutes, Los Angeles,
CA, United States) (Chun et al., 2002). HMEECs were cultured
(1 × 104) in a 96-well plate in airway epithelial cell growth
medium (PromoCell GmbH, Sickingenstr Heidelberg Germany)
supplemented with bovine pituitary extract (0.004 ml/ml),

TABLE 1 | List of primers used in real-time RT-PCR gene expression study.

Serial no. Gene name Primer sequence Amplicon

1 16s 5′-AACCAAGTAACTTTGAAAGAAGAC-3′ 126 bp

5′-AAATTTAGAATCGTGGAATTTTT-3′

2 luxS 5′-ACATCATCTCCAATTATGATATTC-3′ 257 bp

5′-GACATCTTCCCAAGTAGTAGTTTC-3′

3 comA GAGACGCGAGCCATTAAGG 156 bp

GGGATCTGGATCGGCAATATGA

4 comB 5′-GAACCCAGTCGTATCCTTGC-3′ 95 bp

5′-TCCCCCTTCTTAACCAGCTT-3′

5 ciaR GATGTTATGCAGGTATTTGATG 157 bp

TAATCAGAACTGGTGTCGTAAT

6 ply TGAGACTAAGGTTACAGCTTACAG 225 bp

CTAATTTTGACAGAGAGATTACGA

7 lytA CGTCCCAGGCACCATTATCA 95 bp

CTGGCGGAAAGACCCAGAAT

epidermal growth factor (10 ng/ml), insulin (5 µg/ml),
hydrocortisone (0.5 µg/ml), epinephrine (0.5 µg/ml), triiodo-
L-thyronine (6.7 ng/ml), transferrin (10 µg/ml), retinoic acid
(0.1 ng/ml), and 1% fetal bovine serum for 24 h at 37◦C in 5%
CO2. Then, cells were exposed to ASD (300 µg/ml) in serum-
free medium for 8 h, followed by S. pneumoniae treatment
(MOI 10) for 15 h. The viability of HMEECs was determined
by using EZ-cytox cell viability kit (Dogenbio, South Korea)
as per the manufacturer’s instruction, and absorbance was
measured at 450 nm.

Detection of Apoptosis in HMEECs
Apoptosis of HMEECs treated with ASD or S. pneumoniae
or co-treatment was detected by double staining with annexin
V-fluorescein isothiocyanate and propidium iodide (BD, San
Diego, CA, United States) and cytometric analysis as per
manufacturer’s protocol. Briefly, HMEECs (5 × 105/well) were
seeded in a 6-well plate in airway epithelium cell culture
medium supplemented with fetal bovine serum (1%) in 5% CO2
atmosphere at 37◦C for 24 h. Then, the HMEECs were exposed
to ASD (300 µg/ml) in serum-free medium for 8 h, followed by
S. pneumoniae treatment (MOI 10) for 15 h. The HMEECs were
detached with Tris–EDTA treatment, pelleted by centrifugation,
and washed twice with cold PBS. The cells were re-suspended in
1 × binding buffer [10 mM HEPES/NaOH (pH 7.4), 140 mM
NaCl, and 2.5 mM CaCl2] and stained with Annexin-V for 15 min
at 15◦C. The cells were stained with PI and evaluated using a
flow cytometer (Beckman Coulter; Fullerton, CA, United States).
The rates of early apoptosis and late apoptosis (necrosis) were
calculated using the Beckman Coulter software.

Detection of Reactive Oxygen Species
(ROS) in HMEEC
The effect of ASD and S. pneumoniae on ROS production by
HMEECs was evaluated using OciSelect ROS assay kit (Cell
Biolabs; San Diego, CA, United States). 5 × 104 HMEECs
were seeded in 96-well plate (black wall clear-bottom plate) in
airway epithelial growth medium and grown at 37◦C in 5%
CO2 for 24 h. After washing, the cells were treated with 100 µl
2′,7′-dichlorofluorescein-diacetate (DCFH-DA) in the culture
medium at 37◦C for 50 min. After washing twice with PBS,
HMEECs were exposed to ASD (300 µg/ml) for 2 h, followed
by S. pneumoniae treatment for 4 h. The ROS production was
detected by measuring fluorescence at 480 nm (excitation) and
530 nm (emission) using microplate (Thermo max 190, US).
Hydrogen peroxide was used as a positive control.

In vivo Colonization of S. pneumoniae in
Rat Middle Ear in the Presence of ASD
Using the Rat OM Model
The in vivo colonization of S. pneumoniae in rat middle ear in
the presence of ASD was evaluated using the rat OM model
(Yadav et al., 2012, 2018). Thirty-two pathogen-free Sprague-
Dawley rats, weighing 150–200 g, were purchased from Koatech
(Pyeongtaek, South Korea). The animals were checked for any
abnormality and kept for acclimatization for 2 weeks. Rats were
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divided into four groups according to the treatment. Group 1
rats were inoculated with PBS (vehicle control, n = 6); Group
2 rats were inoculated with ASD only (n = 8); Group 3 rats
were inoculated with S. pneumoniae only (n = 9); Group 4
rats were inoculated with ASD + S. pneumoniae (n = 9). The
ASD was dissolved in PBS, and 50 µl (6 mg/ml) solution was
injected (300 µg/rat) as per our previous study (Chang et al.,
2016). S. pneumoniae cell suspensions were prepared in PBS,
and 5 × 106/rat were injected in the middle ear cavity through
the tympanic membrane of the right ear using a tuberculin
syringe and a 27-gauge spine needle. After 5 days, the animals
were scarified by CO2 euthanasia. The rat bullae were aseptically
acquired and cleaned by removing unwanted tissue surrounding
the bony structure. The tympanic membranes were removed,
and the middle ear was exposed and photographed. For gene
expression study, bullae were harvested in RNA-later solution
(Qiagen, United States). For bacterial load detection, bullae were
aseptically lysed with pestle and mortar and serially diluted
and plated on BAP. Bacterial cfu were counted after overnight
incubation at 37◦C.

For SEM analysis of rat middle mucosa, the bullae from
each group were preserved in SEM solution (glutaraldehyde
and paraformaldehyde). The rest of the protocol (pre-fixing,
post-fixing, and dehydration) was the same as that described
previously for in vitro biofilms SEM analysis.

Elucidation of Rat Middle Ear Mucosa
Global Gene Expression Using RNA
Sequencing
The mucosal membranes from bullae were recovered by scraping
and three rat mucosa were pooled as one sample. Total RNA was
isolated using a Qiagen RNeasy kit (Qiagen, Hilden, Germany) in
accordance with the manufacturer’s instructions. The RNA was
quantified using a Nanodrop, and the RNA quality was assessed
by analyzing the rRNA band integrity using the Agilent RNA 6000
Nano kit (Agilent Technologies, Palo Alto, CA, United States).
The gene expressions of rat middle ear mucosa inoculated with
ASD or bacteria or co-treatment were analyzed by QuantSeq
3′mRNA sequencing. RNA samples were processed and library
was constructed using QuantSeq 3′mRNA–Seq library prep kit
(Lexogen, Inc., Austria) as per the manufacturer’s instructions.
Total RNA (500 ng) from each sample was used with an oligo-dt
primer containing an illumine-compatible sequence at its 5′ end
and hybridized with the RNA followed by reverse transcription
reaction. The RNA templates were digested and the synthesis of
the second strand was initiated by a random primer containing
an illumine-compatible linker sequence at its 5′ end. The library
of double-stranded RNA was purified from reaction components
using magnetic beads. The prepared library was amplified and
added with the complete adapter sequences required for cluster
generation. The finally finished library was purified from PCR
components of reaction. The high-throughput sequencing was
performed as single-end 75 sequencing using Next Seq 500
(Illumina, Inc., United States).

Bowtie2 program was used to align the QuantSeq 3′ mRNA-
Seq reads (Langmead and Salzberg, 2012). Bowtie2 indices

were either generated from genome assembly sequence or
the representative transcript sequences for aligning to the
genome assembly sequence or the representative transcript
sequences for aligning to the genome and transcriptiome. Those
aligned files were utilized for transcript assembling, abundance
estimation, and differential gene expression detection. The
differentially expressed genes were determined on the basis of
unique and multiple alignments using coverage in Bedtools
(Quinlan and Hall, 2010). Read count data were processed
on the basis of quantile normalization method using EdgeR
within R using Bioconductor (Gentleman et al., 2004). DAVID1

and Medline databases2 were used for gene classifications.
The differentially expressed genes of rat middle ear mucosa
inoculated with ASD or bacteria or co-treatment compared to
untreated samples were analyzed, and fold change of ±2 was
considered significant.

Statistical Analyses
The in vitro biofilm experiments were performed in replicates
and repeated to calculate the statistical significance. Data are
represented as mean ± standard deviation. Two groups were
compared, and the statistical significance was detected by
Student’s t test. Three groups were compared by one-way
ANOVA. The P-value < 0.05 was considered significant.

RESULTS

Planktonic Growth and in vitro Biofilm
Growth
In metal ion-free medium S. pneumoniae growth was restricted.
However, bacterial growth was significantly elevated in the
presence of ASD compared to the control (Figure 1A). The
growth of bacteria was slow initially, both in the presence and
in the absence (control) of ASD. However, at 24, 36, and 48 h,
bacterial growth was significantly (P < 0.05) high in the presence
of ASD (50, 150, and 300 µg/ml) compared to the control. The
metabolically active bacteria were also significantly (P < 0.05)
increased in samples supplemented with ASD (Figure 1B).

The S. pneumoniae D39 in vitro biofilm growth in the presence
of ASD was enhanced compared to the control. Quantification
of biofilm biomass using CV-microtiter plate assay showed
significant (P < 0.05) increase in biofilm biomass in the presence
of 150 and 300 µg/ml ASD (Figure 1C), with a significantly
(P < 0.05) increased number of viable bacteria (Figure 1D).
The metabolically active bacteria within biofilms were also
significantly (P < 0.05) higher in the presence of 150 and
300 µg/ml ASD (Figure 1E). Pseudomonas aeruginosa, MRSA,
and E. coli in vitro biofilms were also significantly (P > 0.05)
elevated in the presence of ASD (150 µg/ml) (Figure 1F).

In vitro Biofilm Analysis Using SEM
SEM analysis revealed markedly different morphology of
pneumococci in vitro biofilms grown with ASD (300 µg/ml) with

1http://david.abcc.ncifcrf.gov/
2http://www.ncbi.nlm.nih.gov/
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FIGURE 1 | Streptococcus pneumoniae D39 planktonic and biofilm growth in metal ion-free BHI medium. (A) Time-dependent planktonic growth from 0 to 48 h with
different concentrations of ASD. Growth was detected by measuring optical density at 600 nm. (B) Planktonic growth detected by resazurin staining after 48 h
incubation. (C) Quantification of in vitro biofilm biomass grown for 48 h using a CV-microplate assay. (D) Colony-forming unit (cfu) counts of in vitro biofilms grown for
48 h. (E) Quantification of in vitro biofilm growth using resazurin staining grown for 48 h. (F) Quantification of in vitro biofilm growth of Pseudomonas aeruginosa,
MRSA, and E. coli grown for 48 h using resazurin staining. Error bars are the standard deviation from the mean. Statistical significance was calculated using the
Student’s t-test, and P-value < 0.05 was considered significant (∗P < 0.05).

respect to control. The biofilms grown without ASD (control)
were thin, bacteria-formed long chain-like structures, and the size
of bacteria appeared smaller than the normal (Figures 2A–C).
In contrast, in the presence of ASD, compact and thick biofilms
were formed, and the bacteria were connected to each other
and to the adjacent bacteria, imbedded in particulate matters
(Figures 2D–F). The size of the bacteria appeared normal in the
presence of ASD.

In vitro Biofilm Analysis Using Confocal
Microscopy
The structures of biofilms, grown in the absence and presence
of ASD (300 µg/ml), were analyzed by confocal microscope.
The bacteria labeled with fluorescent green PNA probe were
visualized. In control samples, bacteria were attached to the
bottom of the plate and were unable to form organized
biofilms (Figures 3A–C). In samples supplemented with ASD
(300 µg/ml), cells were connected to each other and to the
bottom of the plate and formed biofilms of significant depth
(Figures 3D,E), and the bacteria formed three-dimensional
organized biofilms (Figure 3F).

S. pneumoniae Biofilm Gene
Expressions Altered by ASD Presence
Our study showed that pneumococcal in vitro biofilm growth
was enhanced in the presence of ASD; therefore, to evaluate the

underlying molecular mechanism, we analyzed the expressions
of genes involved in competence (ciaR), competence release
(comA, comB), and biofilm formation (luxS) and toxin-related
(lytA, ply) genes using real-time RT-PCR. The gene expression
study revealed up-regulation of genes, such as ciaR, comA,
comB, luxS, lytA, and ply in biofilms grown in the presence
of 300 µg/ml ASD (Figure 4). The three genes, ciaR, comA,
and comB, involved in S. pneumoniae competence production
and trans-membrane release of competence stimulating peptides
(CSP-1) were up-regulated by 1.8, 5.6, and 5.2-fold, respectively.
The luxS gene, involved in autoinducer-2 production, a quorum-
sensing molecular system, was up-regulated in the presence
of ASD by 3.4-fold. Similarly, the pneumococcal toxin-related
genes, ply (3.5-fold) and lytA (2.3-fold), were up-regulated in the
presence of ASD.

ASD Exposure Decreased HMEECs
Viability and Increased Apoptosis
Percent decrease in cell viability is shown in Figure 5.
Viability of the untreated cells (control) was considered
100%, whereas that of treated cells was calculated. HMEECs
viability was approximately 63% upon ASD treatment or
51% on S. pneumoniae treatment; however, on co-treatment
(ASD+ S. pneumoniae), the cell viability was 39% (Figure 5A). In
co-treatment, the HMEECs viability was significantly (P < 0.05)
decreased by 60% (Figure 5A).
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FIGURE 2 | Scanning electron microscope (SEM) images of S. pneumoniae D39 in vitro biofilms grown in metal ion-free medium for 48 h. (A–C) Representative
SEM images of the S. pneumoniae biofilms grown without ASD (control). The control biofilms were thin and unorganized, bacteria formed long chains, and cell size
was smaller than normal. (D–F) SEM images of the S. pneumoniae biofilms grown in the presence of ASD particles (300 µg/ml). The bacteria formed compact
biofilms and were attached to each other, and the cell size appeared normal. Images from left to right are 20, 10, and 5 µm, respectively.

FIGURE 3 | Confocal microscopy images of S. pneumoniae D39 in vitro biofilms grown in metal ion-free medium for 48 h. (A) Is XZ and (B) is YZ plane, and (C) is
3-D confocal microscopy image of the S. pneumoniae biofilm grown without ASD (control). (D) Is XZ and (E) is YZ plane, and (F) is 3-D confocal microscopy image
of the S. pneumoniae biofilm grown with ASD (300 µg/ml).
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FIGURE 4 | Fold changes in the gene expression of S. pneumoniae D39
biofilm grown in metal ion-free medium supplied with 300 µg/ml ASD for 48 h.
The differential gene expression was detected by real-time RT-PCR. The error
bars representing standard deviation from mean, and statistical significance
were calculated by Student’s t-test and ∗P-value less than 0.05 was
considered significant.

The apoptosis of HMEECs was detected by annexin-V/PI
double staining and cytometry analysis. The cytometric analysis
showed that upon single treatment of HMEECs with ASD
(Figure 5C) or S. pneumoniae (Figure 5D), a lower number
of cells undergo apoptosis. However, large cells undergo
apoptosis on co-treatment (Figure 5F). The percentage of
cells undergoing apoptosis with co-treatment was markedly
increased compared to that with ASD or S. pneumoniae single
treatment (Figure 5F).

ASD Exposure Caused Elevated ROS
Production
Treatment of HMEECs with ASD or S. pneumoniae causes
toxicity; one of the mechanisms of toxicity is ROS production.
Here, we measured ROS production in HMEECs exposed to
either ASD or S. pneumoniae or co-treatment. ROS production
was increased in HMEECs upon single treatment with ASD or
S. pneumoniae. However, the ROS production was significantly
(P < 0.05) elevated on co-treatment (Figure 6). Thus, ROS
production on co-treatment can be attributed to both ASD
and S. pneumoniae.

ASD and S. pneumoniae Co-treatment
Increased Bacterial Colonization in Rat
Middle Ear Mucosa
In vivo study showed no visible middle ear mucosal swelling in
the control rat bulla (Figure 7A), although swelling of middle
ear mucosa was visible in ASD (Figure 7B) or S. pneumoniae
(Figure 7C) or co-treatment (Figure 7D). In co-treatment,
severe swelling of the mucosa, with glue-like deposition, was
visible. In vivo colonization of S. pneumoniae in the presence
of ASD was increased. The cfu counts of the rat middle ear
injected with ASD + S. pneumoniae showed increased bacteria
colonization. In co-treatment, significantly (P < 0.05) > 65%
more cfu counts were detected compared to the bacteria-only
treatment (Figure 7E).

To evaluate the alteration in rat middle ear mucosa
morphology upon ASD or S. pneumoniae colonization, SEM

FIGURE 5 | The viability of HMEECs and apoptosis upon ASD or S. pneumoniae treatment or co-treatment. (A) Cell viability results are represented as the
percentage of viable cells compared to the untreated cells (100%). The error bars represent the standard deviation. (B) Apoptosis of HMEECs in control, (C)
apoptosis of HMEECs upon ASD treatment, (D) apoptosis upon S. pneumoniae treatment, and (E) apoptosis of HMEECs upon co-treatment, detected by
annexin-V/PI double staining and cytometry analysis. (F) Percentage of HMEECs undergoing early and late apoptosis.
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FIGURE 6 | Reactive oxygen species (ROS) production in HMEECs treated
with S. pneumoniae or ASD or co-treatment. The error bars represent the
standard deviation from the mean, and statistical significance was calculated
by one-way ANOVA. ∗P-value less than 0.05 was considered significant.

analysis was conducted. The rat middle ear mucosa is composed
of ciliated epithelium in the hypo-tympanic area and eustachian
tube orifice area, and the remaining middle ear is covered with
non-ciliated squamous epithelium. The SEM analysis showed a
clean middle ear of the control rat (Figures 8A,B) with visible
cilia (Figure 8C). The rat middle ear injected with ASD only
was clean in the non-ciliated area (Figures 8D,E); however, the
cilia of the ciliated epithelium were conglomerated (Figure 8F).
The rat middle ear infected with S. pneumoniae showed some
biofilm-like debris deposition on the non-ciliated epithelium
(Figures 8G,H), and the cilia of the ciliated epithelium were
conglomerated (Figure 8I). Interestingly, the SEM analysis of
the rat middle ear injected with ASD+ S. pneumoniae revealed
that the non-ciliated squamous epithelium was completely

filled with biofilm-like debris that covered the whole middle
ear (Figures 8J,K). The cilia of the ciliated epithelium were
conglomerated, and debris was deposited on the tips of
cilia (Figure 8L).

Elucidation of Rat Middle Ear Mucosa
Global Gene Expression Using RNA
Sequencing
The differential gene expressions of rat middle ear mucosa
inoculated with ASD or S. pneumoniae or co-treatment were
analyzed by Quant 3′mRNA sequencing. The differentially gene
expression analysis revealed a total of 7109 genes that were
differentially regulated in ASD-only treatment with respect
to untreated. In bacteria-only treatment, 6583 genes were
differentially regulated, while the total number of genes diff-
erentially expressed in co-treatment were 10,387 (Figures 9A–D).

The gene ontology (GO) analysis revealed that the genes
involved in immune response, inflammatory response, DNA
repair, cell cycle, cell death, apoptosis process, etc. were
differentially expressed in all three treatments (Figure 10A).
However, the number of genes differentially expressed in
the above categories were higher in co-treatment compared
to single treatments. For example, immune response-related
genes differentially expressed in co-treatment were 338, while
those in ASD or S. pneumoniae treatment were 283 and 277,
respectively. Similarly, in co-treatment, 1472 genes related to
cell differentiation were differentially regulated, while in ASD
or S. pneumoniae, 1040 and 945 genes, respectively. The cell
death-related genes differentially expressed in co-treatment or
ASD or S. pneumoniae were 363, 249, and 216, respectively.
Apoptosis-related genes differentially regulated in co-treatment

FIGURE 7 | (A–D) Digital photograph of rat middle ear injected with ASD or S. pneumoniae of co-treatment. (E) Cfu counts of rat middle ear inoculated with ASD or
S. pneumoniae or co-treatment. The error bars representing standard deviation from mean, and statistical significance were calculated by one-way ANOVA and ∗P
value less than 0.05 was considered significant.
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FIGURE 8 | SEM images of rat middle ear colonized with S. pneumoniae D39 in the presence or absence of ASD. (A–C) Are SEM images of rat middle ear of vehicle
control. (D–F) Are SEM images of rat middle ear injected with ASD (300 µg/ml). (G–I) Are SEM images of rat middle ear infected with S. pneumoniae only. (J–L) Are
SEM images of rat middle ear injected with ASD + S. pneumoniae.

or ASD or S. pneumoniae treatment were 327, 222, and 198
respectively. These results indicate that the co-treatment induces
a large number of gene expressions and affects a large number of
cellular processes.

The percentages of significantly differentially regulated genes
and the functional category are shown in Figure 10. In ASD

treatment, the percentage of differentially expressed genes
involved in immune response, inflammatory response, DNA
repair, cell cycle, cell death, and apoptosis process was 44.50,
52.54, 42.13, 43.98, and 44.31%, respectively (Figure 10A).
In S. pneumoniae treatment, the percentage of differentially
expressed genes involved in immune response, inflammatory
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FIGURE 9 | Venn diagram showing differentially expressed genes of rat middle ear mucosa inoculated with ASD only or S. pneumoniae (bacteria) or co-treatment
with respect to untreated. The global gene expressions were evaluated by Quant 3′m-RNA Sequencing. (A) Differentially expressed genes by ±2-folds in all three
treatments with respect to control. (B) Venn diagram showing differential gene expressions in ASD or S. pneumoniae treatment. (C) Venn diagram showing
differential gene expressions in ASD or co-treatment. (D) Venn diagram showing differential gene expressions in S. pneumoniae or co-treatment.

response, DNA repair, cell cycle, cell death, and apoptosis process
was 43.55, 47.80, 38.72, 34.67, 38.26, and 39.21%, respectively
(Figure 10B). However, in co-treatment, the percentage of genes
that were differentially regulated in each of the above categories
was significantly higher. In co-treatment, the percentage of
differentially expressed genes involved in immune response,
inflammatory response, DNA repair, cell cycle, cell death, and
apoptosis process genes were 53.14, 51.53, 64.68, 69.66, 64.59, and
64.75%, respectively (Figure 10C). The significantly expressed
genes involved in apoptosis, cell death, immune response, and
inflammatory response and fold change in three treatments are
given in the Supplementary Table.

OM-related genes differentially regulated in three treatments
include lysine 63 deubiquitinase encoding gene (CYLD), the

heme oxygenase 1 encoding gene (HMOX1), the surfactant
protein D encoding gene (SFTPD), the SMAD family member
4 encoding gene (SMAD4), the F-Box protein 11 encoding
(FBXO11), CD14 molecule encoding gene (CD14), tumor
necrosis factor (TNF), Interleukin 1 beta encoding gene
(IL1B), and Interleukin 1 alfa encoding (IL1a). In addition,
the antibacterial peptide/protein encoding gene such as NP4
(encodes defensin NP-4 precursor), seven genes encoding
defensin (DEFB1, DEFA5, DEFA7, DEFA8, DEFA10, DEFA11,
and RATNP-3B), CTSG (encode cathepsin G), and six genes of
S100 family (encoding S100 calcium binding protein) were down-
regulated in co-treatment. Those genes were non-significantly
(<2-fold) down-regulated or down-regulated by less folds
compared to co-treatment (Table 2).
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FIGURE 10 | GO (Biological term) of genes differentially expressed in rat middle ear mucosa treated with ASD or Streptococcus pneumoniae or co-treatment with
respect to control (untreated). (A) Number of gene and functional categories. (B) Percentage of significantly differentially expressed genes involved in different
functional categories and up-regulated or down-regulated upon ASD treatment, (B) S. pneumoniae treatment, or (C) co-treatment.

DISCUSSION

Streptococcus pneumoniae and ASD particulate matter are among
the major risk factors causing OM worldwide; however, these
two factors have been studied separately until now (Hall-Stoodley
et al., 2006; Park et al., 2018). Attempts have not been made to
evaluate the synergistic or additive effects of these risk factors
on the outcome of OM. Furthermore, the initial interaction
of ASD and pneumococci occurs in the nasopharyngeal cavity,
and S. pneumoniae is a commensal bacterium that colonizes the
nasopharyngeal cavity asymptomatically. It is not known whether
the pneumococci revert to the pathogenic form on exposure to
particulate matter such as ASD and cause OM. In this study,
we evaluated the effect of ASD on pneumococcal biofilm growth
and colonization on HMEECs and on middle ear mucosa using
the rat OM model.

In this study, our results showed low bacterial growth in
metal ion-free medium; however, in the presence of ASD,

pneumococcal growth was significantly increased, indicating
that ASD composition plays a crucial role in pneumococcal
growth in the metal-devoid medium. For normal bacterial
growth, metals such as Fe, Na, Mg, and Mn are essential;
however, those were absent in metal ion-free medium (Weiss
and Carver, 2018). Previously, Hussey et al. (2017) using
Todd–Hewitt broth + 0.5% (w/v) yeast extract (THY),
which contains all the required essential elements detected
increased bacterial growth in the presence of black carbon.
However, no reasons for elevated bacterial growth were
suggested (Hussey et al., 2017). We previously reported
that ASD contains various metals such as Fe, Na, Mg,
and Mn (Chang et al., 2016). Since Fe, Mg, and Mn are
important for S. pneumoniae growth and virulence, bacterial
growth and virulence were disrupted in the absence of those
metals (Romero-Espejel et al., 2013; Weiser et al., 2018).
Pneumococci possess a specific efflux pump for the utilization
of Fe and other metals (Honsa et al., 2013). Therefore,
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TABLE 2 | Otitis media-related differentially expressed genes in rat mucosa treated with ASD or Streptococcus pneumoniae or co-treatment.

Gene function Gene name Fold change
in ASD

Fold change in
Streptococcus
pneumoniae

Fold change
co-treatment

Host defense
against microbial
infection

CTSG gene encodes cathepsin G transcript variant X1 0.05 0.07 0.03

S100a13 gene encodes S100 calcium binding protein A13 0.45 0.48 0.003

S100a16 gene encodes S100 calcium binding protein A16 1.5 1.5 0.002

S100a3 gene encodes S100 calcium binding protein A3, transcript variant X2 0.21 0.51 0.21

S100a8 gene encodes S100 calcium binding protein A8, transcript variant X1 0.42 0.37 0.042

S100a9 gene encodes S100 calcium binding protein A9, transcript variant X1 0.51 0.26 0.04

NP-4 gene encodes defensin NP-4 precursor 0.062 0.08 0.03

DEFB1 gene encodes defensin beta 1 1.7 8.0 0.25

DEFA5 gene encodes defensin alpha 5, transcript variant X1 0.042 0.01 0.003

DEFA7 gene encodes defensin alpha 7 0.080 0.090 0.04

DEFA10 gene encodes defensin alpha 10 0.41 0.38 0.31

DEFA11 gene encodes defensin alpha 11, transcript variant X1 0.05 0.09 0.07

RATNP-3B gene encodes defensin RatNP-3 precursor 0.12 0.2 0.07

Inflammatory
response

SMAD4 gene encodes SMAD family member 4 1.471 1.439 0.02

HMOX1 gene encodes the heme oxygenase 1 encoding gene 9.578 22.228 14.609

CYLD gene encodes deubiquitinase cylindromatosis Cyld 1.686 1.204

FBXO11 gene encodes the F-Box protein 11 encoding 2.304 1.198 0.006

CD14 gene encodes molecule encoding gene 11.958 6.473 12.230

Cytokines and
interleukins

TNF gene encodes tumor necrosis factor 117.15 60.40 0.95

IL1B gene encodes Interleukin 1 beta encoding gene 4257.707 1057.356 788.250

IL1A gene encodes Interleukin 1 alfa encoding 397.876 98.273 0.953

Apoptosis Ddit3 encodes DNA-damage inducible transcript 3, transcript variant X2 2.066 3.676 3.846

Bak1 gene encodes BCL2-antagonist/killer 1, transcript variant X1 2.592 2.314 2.503

it appears that the metal contents of ASD favor pneumococcal
planktonic growth.

We detected increased in vitro biofilm growth in the presence
of ASD. The primary reason for elevated biofilm growth
of pneumococci may be the increase in planktonic bacterial
growth. In addition, the metal contents of ASD, including Fe
(2.035%) stimulated biofilm growth. An increase in biofilm
growth and virulence of pneumococci in the presence of
Fe has been reported previously (Trappetti et al., 2011b).
The biofilms were grown in metal-free medium, and SEM
analysis revealed a significant morphological difference in the
control and ASD-treated biofilms. In the absence of metal ion,
pneumococci cell size appeared abnormal and formed long
chain-like structures. Iron is an essential metal for bacterial
growth, and its importance in pneumococcal growth is well-
known (Romero-Espejel et al., 2013). In contrast, the biofilms
supplemented with ASD were thick and compact and formed
3-D structures, and the bacteria size appeared normal (Moscoso
et al., 2006), suggesting that metal deficiency was compensated
for by the metal constituents of ASD, and the pneumococci
resumed normal biofilm growth. Similarly, in the presence of
Fe, up-regulation of biofilm formation has been reported for
Pseudomonas and E. coli (Banin et al., 2008; Wu and Outten,
2009). Probably, the ASD particles provide a favorable surface
for bacterial attachment and biofilm growth. Similar results
were observed previously in the presence of black carbon
(Hussey et al., 2017).

In S. pneumoniae, the production of biofilms was found
to be regulated by competence (Com) quorum-sensing (QS)
mediated by the competence-stimulating peptide (CSP) and
LuxS/Autoinducer-2 (AI-2) QS (Trappetti et al., 2011a; Vidal
et al., 2013; Weyder et al., 2018). In this study, up-regulation
of ciaR, comA, and comB and luxS gene indicated that
competence and QS were increased in the presence of ASD.
Trappetti et al. (2011b) reported that luxS gene is the central
regulator of competence, fratricide, and biofilm formation,
and its expression is up-regulated in the presence of Fe in
pneumococci (Trappetti et al., 2011b). In addition, the luxS
gene is important for the synthesis of the AI-2 QS molecule
that regulates pneumococcal biofilms; less biofilm formation has
been reported in the S. pneumoniae luxS mutant (Vidal et al.,
2013; Yadav et al., 2018). The ply genes encoding pneumolysin
and lytA encode protein that facilitates the release of toxin that
was up-regulated in biofilms (Allegrucci et al., 2006; Moscoso
et al., 2006). Altogether, these results indicated that ASD induced
the expression of biofilm and competence-related genes and
enhanced biofilm formation.

Exposure to ASD is toxic to epithelial cells; our previous
study showed a concentration-dependent decrease in HMEEC
viability in the presence of ASD (Chang et al., 2016). Exposure
to pneumococci also decreases the epithelial cell viability.
Here, the HMEEC viability was significantly reduced in co-
treatment with ASD+ S. pneumoniae. The significantly low
viability of HMEECs in co-treatment could be due to the
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pre-exposure to ASD-induced inflammation, which might result
in HMMEC injury, and therefore, cells become more susceptible
to pneumococci infection and cell death (Willemse et al.,
2005). These results suggest that the low viability in co-
treatment could be the result of additive toxicity of ASD
and S. pneumoniae.

Here, we detected a large number of HMEECs that underwent
apoptosis and produced elevated ROS in co-treatment compared
to the single treatments. S. pneumoniae is known to produce
a number of toxins, including pneumolysin that induces DNA
damage and cell cycle arrest (Rai et al., 2016). In addition, it
was suggested that S. pneumoniae produces hydrogen peroxide
that damages the DNA and induces apoptosis in lung epithelial
cells (Rai et al., 2015). Similarly, the toxicity of ASD is attributed
to oxidative stress and apoptosis (Go et al., 2015; Chang et al.,
2016; Pfeffer et al., 2018). Therefore, it appears that the additive
effects of ASD and S. pneumoniae enhance apoptosis. It is
known that ASD containing PM and S. pneumoniae treatment
individually are toxic to epithelium cells, and one of the
mechanisms of toxicity is mediated by ROS production (Li
et al., 2015; Rai et al., 2015). It is reported that ASD stimulates
the ROS production, and in lung infection, S. pneumoniae-
mediated hydrogen peroxide production depended on the
pneumococcal autolysin LytA (Hocke et al., 2014). In addition,
S. pneumoniae induces autophagy in A549 cells through ROS
hypergeneration (Li et al., 2015). Therefore, it appears that
the ASD-only or S. pneumoniae-only treatment was unable
to induce much toxicity, apoptosis, and ROS production
in HMEECs, which was amplified in co-treatment due to
combined effects.

In vivo study results showed elevated pneumococci in rat
middle ear and mucosa swelling in the presence of ASD. The
concentration of ASD (300 µg/ear) or the number of bacteria
injected (5 × 106) was decided on the basis of our previous
study, and the concentrations were reduced to exert minimum
effects of single treatments (Yadav et al., 2012; Go et al., 2015;
Chang et al., 2016). The cfu counts and SEM analysis indicated
that a single treatment with ASD (300 µg) or S. pneumoniae
(5 × 106) induced low toxicity; however, the presence of ASD+
S. pneumoniae amplified the toxicity and elevated colonization on
middle ear mucosa. Previously, Hussey et al. (2017) also reported
increased in vivo colonization of bacteria in the presence of black
carbon PM (Hussey et al., 2017).

The gene expression results indicate that the co-treatment
induces a large number of gene expressions and affects a
large number of cellular processes, which could be due to
elevated toxicity in co-treatment. The gene expression study
revealed a large number of genes that were significantly
differentially expressed in co-treatment are involved in apoptosis,
cell death, DNA repair, immune response, and inflammatory
response. Inflammatory cytokines such as IL1α, IL1β, and tumor
necrosis factor produced by macrophages and monocytes in
response to microbial toxin play a vital role in middle ear
inflammation and OM (Yellon et al., 1991; Willett et al.,
1998). Here, our results showed increased expressions of
cytokine- and interleukin-related genes in all three treatments;
however, the fold change varied in each treatment. The SMAD

gene, CYLD gene (encodes deubiquitinase cylindromatosis),
and FBXO11 (F-Box Protein 11) gene were down-regulated
by >2-fold in co-treatment and non-significantly in ASD or
S. pneumoniae treatment. The SMAD genes are mediators of
the TGF-β pathway and regulate cell proliferation, apoptosis,
and cell differentiation and mutation in SMAD-increased
OM susceptibility (MacArthur et al., 2014). The FBXO11 is
another important OM-related gene in mouse model mutation
in FBXO11 that caused OM (Hardisty-Hughes et al., 2006).
The deubiquitinase cylindromatosis (CYLD) gene expression
involved in the suppression of the H. influenzae induced
expression of pro-inflammatory chemokines (Wang et al., 2014).
It has been suggested that PM weakens the host innate
defense and obstructs the antibacterial peptides and proteins
such as secretory leukocyte protease inhibitor and defensins
(Chen et al., 2010, 2018). Here, our results showed down-
regulation of NP4 (encodes defensin NP-4 precursor), CTSG
(encode cathepsin G), six genes of the S100A family (S100A13,
S100A16, S100A3, S100A6, S100A8, and S100A9) and seven
genes encoding defensin (DEFB1, DEFA5, DEFA7, DEFA8,
DEFA10, DEFA11, and RATNP-3B) in co-treatment. These
genes encode peptides or proteins that are involved in host
defense against bacterial infection, and the down-regulation
in co-treatment indicates that the host defense was decreased.
Defensins are broad-spectrum antimicrobial peptides that have
been implicated in prevention of AOM (Underwood and
Bakaletz, 2011). It was reported that deficiency of S100A8/A9
in mice could promote the progression of pneumonia caused
by bacterial infection (Achouiti et al., 2015). The gene
expression results indicates that co-treatment up-regulated pro-
inflammatory cytokines and interleukins and down-regulated
inflammation suppressor genes. Altogether, these results suggest
that ASD exposure decreases host cell immune defense causing
cells susceptible to establish pneumococcal infections and
aggregate on the mucosa.

CONCLUSION

The results of this study showed that in the presence of ASD,
pneumococcal in vitro biofilm growth and in vivo colonization to
rat middle ear mucosa were elevated. The pre-exposure to ASD
increased pneumococcal colonization to HMEECs, elevated ROS
production and apoptosis, and increased bacteria susceptibility
results in reduced HMEEC viability. The co-treatment affects a
large number of genes involved in apoptosis, cell death, immune
response, inflammatory response, and down-regulated defense-
related genes. Altogether, these results indicate that ASD presence
decreases host immune defense and increases cell susceptibility to
pneumococcal infection.
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