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Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of
cancer-related death in young women. Several prognostic and predictive transcription
factor (TF) markers have been reported for BC; however, they are inconsistent due
to small datasets, the heterogeneity of BC, and variation in data pre-processing
approaches. This study aimed to identify an effective predictive TF signature for the
prognosis of patients with BC. We analyzed the TF data of 868 patients with BC
in The Cancer Genome Atlas (TCGA) database to investigate TF biomarkers relevant
to recurrence-free survival (RFS). These patients were separated into training and
internal validation datasets, with GSE2034 and GSE42568 used as external validation
sets. A nine-TF signature was identified as crucially related to the RFS of patients
with BC by univariate Cox proportional hazard analysis, least absolute shrinkage and
selection operator (LASSO) Cox regression analysis, and multivariate Cox proportional
hazard analysis in the training dataset. Kaplan–Meier analysis revealed that the nine-TF
signature could significantly distinguish high- and low-risk patients in both the internal
validation dataset and the two external validation sets. Receiver operating characteristic
(ROC) analysis further verified that the nine-TF signature showed a good performance for
predicting the RFS of patients with BC. In addition, we developed a nomogram based
on risk score and lymph node status, with C-index, ROC, and calibration plot analysis,
suggesting that it displays good performance and clinical value. In summary, we used
integrated bioinformatics approaches to identify an effective predictive nine-TF signature
which may be a potential biomarker for BC prognosis.

Keywords: signature, TCGA, transcription factor, breast cancer, recurrence-free survival, nomogram

INTRODUCTION

Breast cancer (BC) is one of the most common malignancies and a leading cause of cancer death
among women worldwide (Kwon et al., 2015; Hong et al., 2017; Zhang et al., 2017). Indeed
invasive BC is the most frequently diagnosed cancer and leading cause of cancer-related death
in young women, with invasive ductal carcinoma being the most common pathological type
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(Lebeau et al., 2014; Siegel et al., 2014). However, the 5-year
survival rate of patients with metastatic BC is around 20% (Chau
and Ashcroft, 2004); therefore, the identification of sensitive and
specific biomarkers of BC prognosis is essential.

It has become increasingly apparent over the past few decades
that tumor biomarker signature is crucial for exploring effective
treatments for BC. Clinicopathological parameters, including
tumor size, grade, nodal status, and patient age, have been
combined to predict prognosis in BC patients; for instance, the
Nottingham prognostic index based on tumor size, lymph node
stage, and pathological grade serves as the standard in primary
BC (Haybittle et al., 1982). The IHC4 index has been developed as
a non-commercial algorithm that evaluates four protein markers
(ER, PR, HER2, and Ki67) to yield a disease recurrence score;
however, its clinical application has been impaired due to a lack
of validation studies and poor reproducibility (Cuzick et al.,
2011; Vieira and Schmitt, 2018). In addition, a recent study
that implemented a machine learning approach revealed that
microRNAs can serve as biomarkers in BC (Rehman et al., 2019).

Transcription factors (TFs) are DNA-binding proteins that
can act as tumor suppressors or oncogenes (Hughes, 2011) by
playing crucial roles in the regulation of gene expression and
can lead to the avoidance of apoptosis and uncontrolled growth
(Bhagwat and Vakoc, 2015). Several prognostic and predictive TF
markers have been identified for BC; for instance, the TF KLF4
has been reported to serve as an independent predictive marker
for pathological complete remission in BC following neoadjuvant
chemotherapy (Dong et al., 2014). Moreover, a previous study
revealed that TFEts-1 expression can act as an independent
prognostic marker for recurrence-free survival (RFS) in BC
(Span et al., 2002). However, there are inconsistencies between
these sets of markers due to small datasets, the heterogeneity
of the disease, and variation in data pre-processing methods.
Therefore, a comprehensive and systematic approach for the
identification of TFs as effective predictors for BC prognosis is
urgently required.

In this study, we analyzed gene expression data and
corresponding clinical information for BC from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases to identify corresponding TFs and eligible patients
and to explore the utility of a TF signature for BC prognosis.
By using Kaplan–Meier and receiver operating characteristic
(ROC) analysis, we developed and confirmed a novel nine-TF
signature for the prognostic assessment of BC with favorable
sensitivity and specificity. Finally, we developed and validated
a nomogram, which indicated good prognostic value and
clinical utility.

MATERIALS AND METHODS

Data Source and Processing
Gene expression data and corresponding clinical follow-up
information for patients with BC were downloaded from TCGA
using the TCGAbiolinks package (Colaprico et al., 2016) and
from the GEO database using the GEOquery package (Davis
and Meltzer, 2007). A total of 24,991 genes and 1,097 patients

with BC from the TCGA database were included. Cases without
prognostic data or non-TF genes were excluded from the
subsequent analysis to avoid the analysis of unrelated data.
TFs were determined based on the TRRUST database (Han
et al., 2018). Raw expression matrix counts were converted
to transcripts per million. Genes with no expression in over
20% of the samples were removed. Consequently, 702 TFs
and 868 patients with BC were included in the training set
(first 70%) and the internal validation set (remaining 30%).
The raw GSE2034 and GSE42568 data were preprocessed and
normalized using the robust multichip averaging (Irizarry et al.,
2003) method in the affy packages (Gautier et al., 2004) of
R (v3.6.1). The batch effects between TCGA sequencing data
and GEO microarray data were adjusted by “ComBat” function
from the “sva” package (Chakraborty et al., 2012). A total of
286 patients in GSE2034 and 104 patients in GSE42568 were
included as the external validation sets. The LASSO method
was used to identify candidate TFs to predict the RFS of BC
patients. The LASSO COX regression model was implemented
via a publicly available R package “glmnet”(Friedman et al., 2010)
with 1,000 iterations.

Gene Set Enrichment Analysis and
Protein–Protein Interaction Analysis
The TFs identified by univariate Cox regression analysis
(P < 0.05) in the training dataset were used for Gene Ontology
(GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis which were conducted
using the R clusterProfiler package (Yu et al., 2012). Adjusted P
values < 0.05 were considered as statistically significant.

The Search Tool for the screening of Interacting Genes
website was used to establish the protein–protein interaction
(PPI) network with a cutoff criteria of ≥0.4 (Szklarczyk
et al., 2019). The genes with the highest degree of correlation
with the surrounding genes were selected as key genes
according to the PPI network using Cytoscape3.6.0 software
(Shannon et al., 2003). Key sub-modules in the PPI network
were determined based on the Molecular Complex Detection
(MCODE) plugin with recognition criteria of MCODE scores
>10 and >10 nodes.

Statistical Analysis
The relationships between TF expression levels and RFS were
investigated using a univariate Cox model to identify TFs
associated with RFS. LASSO analysis was then performed to
screen candidate key TFs associated with RFS. After further
adjustment, multivariate Cox regression was performed on the
candidate key TFs to identify TF signatures that evaluate the RFS
of patients with BC.

The 868 patients were separated into a training set (n = 608)
and an internal validation set (n = 260). The training cohort
was used to identify the prognostic TF signature that was
later confirmed in the internal validation set and two external
validation sets. A nine-TF prognostic signature was selected
by a linear combination of the regression coefficient based
on multivariate Cox regression analysis. The following TF
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TABLE 1 | Clinical characteristics of patients with breast cancer who were included in the study.

Characteristics Total (n = 868) Training dataset (n = 608) Internal validation
dataset (n = 260)

GSE2034 (n = 286) GSE42568 (n = 104)

Sex

Female 857 (98.73) 600 (98.68) 257 (98.85)

Male 11 (1.27) 8 (1.32) 3 (1.15)

Age

≤55 395 (45.51) 272 (44.74) 123 (47.31) 46 (44.2)

>55 473 (54.49) 336 (55.26) 137 (52.69) 58 (55.8)

Tumor

T1 242 (27.9) 159 (26.2) 83 (31.9)

T2 528 (60.8) 379 (62.3) 149 (57.3)

T3 63 (7.2) 46 (7.6) 17 (6.5)

T4 33 (3.8) 23 (3.8) 10 (3.8)

TX 2 (0.23) 1 (0.16) 1 (0.38)

Lymph node status

N0 398 (45.9) 274 (45.1) 124 (47.7)

N1 318 (36.6) 225 (37.0) 93 (35.8)

N2 100 (11.5) 70 (11.5) 30 (11.5)

N3 40 (4.6) 31 (5.1) 9 (3.5)

NX 12 (1.38) 8 (1.32) 4 (1.54)

Metastasis

M0 753 (86.75) 522 (85.86) 231 (88.85)

M1 16 (1.84) 14 (2.3) 2 (0.77)

MX 92 (10.6) 66 (10.86) 26 (10)

TNM stage

Stage I 157 (18.1) 102 (16.8) 55 (21.2)

Stage II 514 (59.2) 361 (59.4) 153 (58.8)

Stage III 167 (19.2) 122 (20.1) 45 (17.3)

Stage IV 14 (1.61) 13 (2.14) 1 (0.38)

Indeterminate 16 (1.8) 10 (1.6) 6 (2.3)

Site

Left 462 (53.2) 321 (52.8) 141 (54.2)

Right 406 (46.8) 287 (47.2) 119 (45.8)

Estrogen receptor

Positive 600 (69.12) 432 (71.1) 168 (64.6) 209 (73.1) 67 (64.4)

Negative 223 (25.69) 147 (24.2) 76 (29.2) 77 (26.9) 34 (32.7)

Indeterminate 45 (5.2) 29 (4.8) 16 (6.2) 3 (2.9)

Progesterone receptor

Positive 515 (59.3) 369 (60.7) 146 (56.2)

Negative 305 (35.1) 207 (34.0) 98 (37.7)

Indeterminate 48 (5.5) 32 (5.3) 16 (6.2)

Her2 receptor

Positive 139 (16.0) 106 (17.4) 33 (12.7)

Negative 440 (50.7) 304 (50.0) 136 (52.3)

Indeterminate 289 (33.3) 198 (32.6) 91 (35)

Margin status

Positive 47 (5.41) 33 (5.43) 14 (5.38)

Negative 732 (84.33) 513 (84.38) 219 (84.23)

Indeterminate 89 (10.3) 62 (10.2) 27 (10.4)

Race

American Indian or Alaska Native 1 (0.12) 1 (0.16)

Asian 46 (5.3) 32 (5.26) 14 (5.38)

Black or African American 155 (17.86) 115 (18.91) 40 (15.38)

White 594 (68.43) 408 (67.11) 186 (71.54)

Not available 72 (8.29) 52 (8.55) 20 (7.69)
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risk score formula was used to determine the RFS risk for
every patient using the coefficients from the multivariate Cox
regression analysis:

Risk Score
= exp(TF1) ∗ β1 + exp(TF2) ∗ β2+ . . . . . .+ exp(TFn) ∗ βn,

where “exp” represents TF expression and “β” represents the
regression coefficient of the TF. Patients with BC were grouped
into high- and low-risk groups using the median risk score
as a cutoff. Kaplan–Meier (KM) and log-rank methods were
used to compare the survival rates of the groups using the R
“survival” package (Moreno-Betancur et al., 2017). The specificity
and the sensitivity of the nine-TF prognostic signature was
evaluated using time-dependent ROC curves, and the signature
was confirmed in the test, training, and validation sets. ROC and
KM curves were used to confirm the accuracy and feasibility of
the TF model, with a larger AUC indicating a better model for
hazard prediction. Stratified analysis was performed using clinical
parameters in the entire TCGA set. All ROC and KM curves were
plotted using R (version 3.6.1).

Nomogram Construction
Univariate and multivariate Cox proportional hazard analyses
were conducted based on risk score and other clinicopathological
factors. Factors with P ≤ 0.05 based on multivariate Cox
proportional hazard analysis were combined with the nine-TF
risk score to build a nomogram in the “rms” R package (FEH,
2015). The prognostic capacity of the nomogram was assessed

using the C-index, ROC, and calibration plots, with its outcome
indicated by the calibration curve and a 45◦ line implying a
perfect prediction.

RESULTS

Clinical Characteristics of the Study
Population
The study was performed on 868 patients who were clinically
and pathologically diagnosed with BC, of which 11 (1.27%) were
male and 857 (98.73%) were female. The median age at diagnosis
was 57 years (range, 26–90) and the median RFS was 879 days.
The 3-year RFS rate of all patients was 41.36%. The pathological
stage was defined according to the cancer staging manual of
American Joint Committee on Cancer. The stage of the patients
with BC ranged from I to V, with 157 (18.1%) patients in stage
I, 514 (59.2%) in stage II, 167 (19.2%) in stage III, 14 (1.61%)
in stage IV, and 16 (1.8%) in stage X (X – stage not identified).
The patients were divided into two groups based on their tumor
site: left 462 (53.2%) and right 406 (46.8%). The patients were
also separated into three groups according to the margin status
of their samples: positive 47 (5.41%), negative 732 (84.33%),
and indeterminate 89 (10.3%). The patients’ race list included
American Indian or Alaskan Native, Asian, Black or African
American, White, and not available, with the majority of patients
being White (594, 68.43%). The detailed clinicopathological
characteristics of all the patients included in this study are

FIGURE 1 | Study design and flow chart.
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FIGURE 2 | Gene set enrichment analysis and protein-protein interaction (PPI) analysis. (A) The top 12 significant GO enrichments for 69 transcription factors. The
original adjusted P values were transformed by “–log (adjusted P value)” to plot the bar chart. (B) The top five GO enrichments with gene linkages. (C) The top three
significantly enriched KEGG pathways. (D) The top three KEGG pathways with gene linkages. (E) Construction of the protein–protein interaction network of the 69
transcription factors. Yellow nodes represent hub genes. (F) The top three sub-module from the PPI network.

displayed in Table 1. The overall study design and flowchart are
shown in Figure 1.

Gene Set Enrichment Analysis and
Protein–Protein Interaction Analysis
Gene ontology and KEGG enrichment analyses were performed
using the clusterProfiler package (Yu et al., 2012) to explore the

functions and mechanisms of the TFs screened by univariate
Cox regression analyses. Figures 2A,B show the top 12
enriched GO terms and top five enriched GO terms with gene
linkages. Figures 2C,D show the top three enriched KEGG
pathways and the top three enriched KEGG pathways with
gene linkages. The top three enriched GO terms were DNA
damage checkpoint, mitotic DNA damage checkpoint, and cell
cycle arrest. The top three enriched KEGG pathways were

Frontiers in Genetics | www.frontiersin.org 5 April 2020 | Volume 11 | Article 333

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00333 April 22, 2020 Time: 20:54 # 6

Chen et al. Breast Cancer: Transcription Factor Nomogram

FIGURE 3 | Candidate methylation site selection using the LASSO Cox
regression model. (A) Tenfold cross-validation for tuning parameter selection
in the LASSO model using minimum criteria (1-SE). (B) LASSO coefficient
profiles of the 69 transcription factors. A coefficient profile plot was produced
against the log(lambda) sequence. A vertical line was drawn at the value
selected using 10-fold cross-validation where the optimal lambda resulted in
16 non-zero coefficients.

signaling pathways regulating the pluripotency of stem cells,
human T-cell leukemia virus 1 infection, and viral carcinogenesis
(Supplementary Tables S1, S2).

The TFs identified by univariate Cox regression analyses were
used to establish the interaction relationships between proteins.
Only genes with a combined score >0.4 were used to establish
the network. After removing the unmatched genes, 689 pairs
of protein relationships were identified. Genes with interactions
>10 were considered as hub genes. A total of three hub genes
were identified: HDAC2, SMARCA4, and FOS (Figure 2E).
All 689 pairs of protein relationships were analyzed using
the MCODE plugin, and the top three key sub-modules were
used for gene functional annotation. An enrichment analysis
found that the genes in those three sub-modules were primarily
involved in the regulation of transcription from RNA polymerase
II promoter, regulation of DNA-dependent transcription, and
regulation of RNA metabolic process (Figure 2F).

Identification of Transcription Factors
Significantly Associated With
Recurrence-Free Survival and
Establishment of Prognostic Signature
The relationship between the expression level of the 702 TFs
and RFS was analyzed using a univariate Cox model. A total of

69 TFs were found to be significantly associated with the RFS
of patients with BC (P < 0.05; Supplementary Table S3) and
were subjected to LASSO analysis to screen key candidate TFs
associated with RFS, identifying a total of 16 TFs as candidate
prognostic factors for predicting the RFS of patients with BC
(Figures 3A,B). Multivariate Cox regression was performed on
the 16 candidate TFs to identify TF signatures that evaluate
the survival of patients with BC. A nine-TF signature (FUBP3,
CLOCK, TFCP2L1, RFX1, PLAGL1, TBX2, KCNIP3, OTX1, and
BACH2) was developed and used to predict the RFS of patients
with BC using the following risk score formula:

Risk score = 0.00086∗FUBP3+ 0.00245∗RFX1+ 0.00015

∗TFCP2L1+ 0.00146∗OTX1− 0.00462∗BACH2+ 6e−04∗

KCNIP3+ 9e−04∗PLAGL1+ 0.001∗TBX2+ 0.00074∗CLOCK,

where high FUBP3, RFX1, TFCP2L1, OTX1, KCNIP3,
PLAGL1, TBX2, and CLOCK levels and low BACH2 levels are
associated with a higher risk (Figure 4). Similar results were
obtained in the GSE2034 and GSE42568 sets (Figure S1-S2).

Association Between the
Nine-Transcription Factor Signature and
Patient Recurrence-Free Survival in the
Internal Validation Dataset and Two
External Validation Datasets
The patients were then separated into low-risk (< median value,
n = 434) and high-risk (> median value, n = 434) groups
stratified using the nine-TF signature risk score. KM analysis was
performed in the internal validation, GSE2034, and GSE42568
sets to assess the RFS of patients in the low-risk group versus the
high-risk group. The results showed that patients in the high-risk
group had a worse RFS based on the KM survival curve in the
internal validation dataset (P = 7e−4; Figure 5A), with similar
results observed in the GSE2034 (P = 4e−8; Figure 5C), and the
GSE42568 (P = 1e−5; Figure 5E) sets.

Evaluation of the Predictive Performance
of the Nine-Transcription Factor
Signature Based on Receiver Operating
Characteristic Analysis
Time-dependent ROC curves were produced to assess the
prognostic ability of the nine-TF signature. The AUC of the nine-
TF signature at 1, 3, and 5 years in the internal validation dataset
was 0.794, 0.822, and 0.843, respectively (Figure 5B). A high
predictive ability was also observed in the GSE2034 (0.737, 0.775,
and 0.798; Figure 5D) and the GSE42568 (0.709, 0.764, and
0.790; Figure 5F) sets, indicating that the nine-TF signature may
be a good prognostic model for predicting the survival rate of
patients with BC.

Patients in the entire TCGA dataset were ranked based on
their risk scores (Figure 6A) and a dot plot was produced
based on their survival status (Figure 6B), suggesting that
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FIGURE 4 | Box plots of the expression of the nine transcription factors against risk group in the TCGA dataset. (A–I) “High” and “low” represent the high-risk group
and the low-risk group, respectively. The median risk score was taken as a cutoff. The y-axis represents the expression level of nine TFs, respectively. The differences
between the two groups were estimated using Mann–Whitney U tests, with the adjusted P values indicated in the graphs.

the high-risk group had a higher mortality rate than the
low-risk group. The heatmap of the nine TFs grouped by
risk score (Figure 6C) was consistent with our previous
box plot in Figure 4, which has similar results observed
in the GSE2034 and the GSE42568 sets (Supplementary
Figures S3, S4). The model yielded relatively high AUC
values (greater than 0.7) in three independent datasets
above, which indicates that this model had a robust
predictive performance.

In addition, a subgroup analysis was conducted using several
clinicopathological factors, including age, tumor stage, estrogen
receptors, progesterone receptors, human epidermal growth
factor receptors 2, and metastasis status, indicating that the
nine-TF model displayed good performance for predicting BC

prognosis in the majority of the sub-groups (Supplementary
Figures S5–S10).

Nomogram Development and
Assessment
To explore whether the nine-TF signature was an independent
prognostic predictor for the BC patients’ RFS, we implemented
univariate and multivariate Cox models based on the TF-
associated risk score and several other clinicopathological factors.
The hazard ratios (HRs) showed that the nine-TF signature was
significantly related to the BC patients’ RFS (P < 0.001, HR
2.51, 95% CI 1.79–3.52; Table 2), suggesting that the nine-TF
signature is an independent prognostic indicator. To establish
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FIGURE 5 | Kaplan–Meier and receiver operating characteristic analysis of patients with breast cancer in the internal validation, GSE2034, and GSE42568 sets. (A),
(C), and (E) Kaplan–Meier analysis with the two-sided log-rank test was performed to estimate differences in recurrence-free survival (RFS) between the low-risk and
the high-risk patients. (B), (D), and (F) 1-, 3-, and 5-year receiver operating characteristic curves of the nine transcription factor signatures were used to
demonstrate the sensitivity and specificity for predicting the recurrence-free survival of patients with breast cancer. “High” and “low” represent the high-expression
group and the low-expression group, respectively. The median risk score was taken as a cutoff. “RFS” represents the relapse-free survival.

a clinically applicable quantitative method for predicting the
BC patients’ RFS, we developed a nomogram which included
nine-TF signature and conventional clinicopathological factors
(lymph node status) with significant adjusted P values in
the multivariate Cox model (Figure 7). The importance of
each clinical factor is displayed in Figure 8A. According to
calibration curve analysis, we found that the 1-, 3-, and 5-
year RFS values predicted by the nomogram were closely
related to the observed RFS values, which strongly confirmed
the reliability of the nomogram (C-index – 0.746; 95% CI,

0.683–0.809; AUC – 1, 3, and 5-year: 0.727, 0.783, and
0.864)(Figures 8B–E).

DISCUSSION

In this study, we analyzed the gene expression data (24,991 genes)
and the clinical data of patients with BC (1,097 patients) from
TCGA, using 702 TFs and 868 patients with BC to systematically
identify an effective predictive TF signature for the prognosis
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FIGURE 6 | Transcription factor risk score analysis of 868 patients with breast
cancer in The Cancer Genome Atlas dataset. (A) Transcription factor risk
score distribution against the rank of risk score. Median risk score is the cutoff
point. (B) Recurrence-free survival status of patients with breast cancer.
(C) Heatmap of the expression profiles of the nine transcription factors in
patients with breast cancer.

of patients with BC using bioinformatics methods. A linear
combination of nine TFs (FUBP3, CLOCK, TFCP2L1, RFX1,
PLAGL1, TBX2, KCNIP3, OTX1, and BACH2) was identified as
an independent predictor of the survival of patients with BC.
This nine-TF signature was found to have significant prognostic
roles in patients with BC, indicating that the nine TFs may

have underlying roles in the molecular pathogenesis, clinical
progression, and prognosis of BC and may have the potential to
improve the clinical prognosis of patients with BC.

Studies have suggested that these nine TFs may play
important roles in cancer development. For instance, SIAH-1
has been reported to positively and indirectly regulate FBP-
3 (FUBP3), which primarily supports human hepatocellular
carcinoma cell proliferation (Brauckhoff et al., 2011), suggesting
a key role in cancer development. The downregulation of
RFX1 has been shown to predict poor prognosis in patients
with small hepatocellular carcinoma (Liu et al., 2018), while
TFCP2/TFCP2L1/UBP1 has been found to act as a TF in
cancer (Kotarba et al., 2018). In addition, OTX1 and OTX2
have been identified as two possible molecular markers for
sinonasal carcinomas and olfactory neuroblastomas (Micheloni
et al., 2019), whereas BACH2 is associated with the neuronal
differentiation of N1E-115 neuroblastoma cells (Shim et al.,
2006). The disruption of repressive p130-DREAM (KCNIP3)
complexes by human papillomavirus 16 E6/E7 oncoproteins
has been found to be essential for cell cycle progression in
cervical cancer cells (Nor Rashid et al., 2011). Moreover, PLAGL1
(ZAC1/LOT1) expression has been shown to be associated with
disease progression and unfavorable prognosis in clear cell renal
cell carcinoma (Godlewski et al., 2016). Furthermore, TBX2
acts as a neuroblastoma core regulatory circuitry component
that promotes MYCN/FOXM1-mediated reactivation of DREAM
targets (Decaesteker et al., 2018), while CLOCK genes are closely
associated with cancer development, particularly in endocrine
tissues (Angelousi et al., 2019).

A GO and KEGG pathway analysis of the TFs identified by
univariate Cox regression analyses identified that the enriched
signaling pathways of cell cycle arrest, signaling pathways
regulating pluripotency of stem cells, and human T-cell leukemia
virus 1 infection were significantly associated with cancer
development. The cellular responses to DNA damage are
comprehensively known as DNA damage response (DDR) and
include DNA repair pathway activation, cell cycle arrest, and cell
death induction (Zhou and Elledge, 2000; Bassing and Alt, 2004).
The DDR plays a significant role in the field of cancer therapy
as both chemotherapy and radiotherapy are based on DNA

TABLE 2 | Univariate Cox regression analysis and multivariate Cox regression analysis outcomes based on methylation risk score and other clinical factors.

Univariate Cox regression analysis Multivariate Cox regression analysis

Characteristics HR HR.95L HR.95H p value HR HR.95L HR.95H p value

Score 2.738045421 2.048628528 3.659469066 1.01E-11 2.510661624 1.788829617 3.523768687 1.02E-07

Estrogen receptor status 0.692324993 0.342239438 1.400522099 0.306355543 0.768993041 0.260500851 2.270051305 0.634356191

Progesterone receptor status 0.592458976 0.30230991 1.161085454 0.127286775 0.981504947 0.33480194 2.877378671 0.972862011

Her2 receptor status 1.257944488 0.823912985 1.9206207 0.287844565 1.373910032 0.865382257 2.181265863 0.178008111

Tumor 1.754711187 0.617255141 4.988231197 0.291488237 1.101502581 0.3254944 3.727584669 0.87648392

Lymph node status 2.17751336 1.49200771 3.177975825 5.48E-05 1.651534043 1.069601814 2.550074858 0.023602411

Metastasis status 2.520159824 0.343448624 18.49244717 0.363359385 1.858617241 0.226521566 15.25001838 0.563807742

Margin status 0.7974526 0.396241415 1.604907073 0.525907749 0.634209273 0.307262431 1.309048428 0.218093787

Ethnicity 0.634959689 0.086536008 4.659029397 0.655117076 1.014927373 0.132510023 7.773582306 0.988619118

Age 0.97574987 0.948136617 1.004167323 0.093730595 0.979959839 0.95094581 1.009859108 0.186780098

Anatomic neoplasm subdivision 1.039911088 0.843603069 1.281900351 0.713889548 0.97189382 0.782429155 1.207237219 0.796654191
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FIGURE 7 | Transcription factor-associated nomogram for the prediction of recurrence-free survival in patients with breast cancer. The nomogram was developed
using the entire The Cancer Genome Atlas cohort, with transcription factor risk score and lymph node status.

FIGURE 8 | Validation of the transcription factor-associated nomogram in the entire The Cancer Genome Atlas dataset. (A) Bar plot of importance of each clinical
factor. (B) The 1-, 3-, and 5-year receiver operating characteristic curves for the transcription factor-associated nomogram. (C), (D), and (E) The 1-, 3-, and 5-year
nomogram calibration curves, respectively. The closer the dotted line fit is to the ideal line, the better the predictive accuracy of the nomogram.
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damage-induced tumor cell death (Jun et al., 2016), which has
revealed the key role of cell cycle arrest in cancer therapy.
A previous study suggested that BC is significantly associated
with signaling pathways that regulate stem cell pluripotency
(Wang et al., 2018), indicating that these signaling pathways
play a key role in the pathogenesis of BC. Moreover, a
study reported that the human T-cell leukemia/lymphotropic
virus-1 is the etiological agent of adult T-cell leukemia,
an aggressive and fatal leukemia of CD4+ T lymphocytes
(Mamane et al., 2002). In combination with our findings,
these studies suggest that cell cycle arrest, signaling pathways
regulating the pluripotency of stem cells, and human T-cell
leukemia virus-1 infection may be useful therapeutic targets
for BC; however, additional studies are required to confirm
this hypothesis.

We identified three hub genes (HDAC2, SMARCA4, and
FOS) by PPI analysis that previous studies have suggested
may be crucial in cancer development. For instance,
HDAC2 overexpression has been associated with aggressive
clinicopathological features and the DDR pathway in BC
(Shan et al., 2017). Moreover, a study found that high
SMARCA4 or SMARCA2 expression is frequently associated
with opposite prognoses in BC (Guerrero-Martinez and Reyes,
2018), while high FOS expression has been associated with
better BC prognosis (Fisler et al., 2018). Due to the different
screening pipelines, there is no significant correlation between
the three hub genes and the above nine predictive TFs.
Our results also confirmed that these genes do not share
the same overlaps. The nine predictive TFs are involved in
RFS and might primarily play a vital role in predicting the
prognosis of patients with BC, while the three hub genes
are likely to play an important role in cancerogenesis or the
development of cancer.

Chen et al. used miRNA profiling followed by qRT-PCR
confirmation to identify a four-miRNA signature which may act
as a potential predictor for the metastasis and the prognosis of
patients with BC (Chen et al., 2018); however, this study did not
perform GO and KEGG analysis on the targets, unlike ours, and
the four-miRNA signature may not have a universal prognostic
applicability due to the small datasets used.

Our study has several advantages. For instance, in this study,
we performed GO and KEGG analysis to explore the functions
and mechanisms of the nine TFs in the progression of BC.
Moreover, we used a large gene expression and clinical dataset for
BC downloaded from TCGA. We also used the LASSO method
to filter variables between the univariate and multivariate Cox
analysis, avoiding multicollinearity interference and making our
results more reliable. Furthermore, until now, no studies have yet

combined a TF signature with clinical indicators to predict RFS
for BC; however, we combined TF bioinformatics analysis with
clinical indicators to offer a novel method for clinical prediction.
In addition, we built a nomogram integrating both the nine-
TF signature and the conventional clinicopathological factors to
predict 3- and 5-year RFS. We revealed that the nine-TF signature
plays significant prognostic roles in clinical patients with BC,
making our study highly valuable.

Despite the beneficial outcomes of our study, it had several
limitations. Firstly, the samples were randomly divided into
training and testing sets for the development and the assessment
of the prognostic model; therefore, more independent external
validation sets with long-term follow-ups to provide a realistic
assessment of the performance of this TF signature would be
more reliable. Secondly, the nomogram model was constructed
based only on TCGA dataset due to the incomplete clinical
information in the GEO dataset. Thirdly, the prognostic value of
the nine-TF signature must be further improved and validated in
clinical practice.
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