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Genome-wide association studies have identified more than 150 susceptibility loci for
coronary artery disease (CAD); however, there is still a large proportion of missing
heritability remaining to be investigated. This study sought to identify population-based
genetic variation associated with acute coronary syndromes (ACS) in individuals of
Chinese Han descent. We proposed a novel strategy integrating a well-developed risk
prediction model into control selection in order to lower the potential misclassification
bias and increase the statistical power. An exome-wide association analysis was
performed for 1,669 ACS patients and 1,935 healthy controls. Promising variants
were further replicated using the existing in silico dataset. Additionally, we performed
gene- and pathway-based analyses to investigate the aggregate effect of multiple
variants within the same genes or pathways. Although none of the association signals
were consistent across studies after Bonferroni correction, one promising variant,
rs10409124 at STRN4, showed potential impact on ACS in both European and
East Asian populations. Gene-based analysis explored four genes (ANXA7, ZNF655,
ZNF347, and ZNF750) that showed evidence for association with ACS after multiple
test correction, and identification of ZNF655 was successfully replicated by another
dataset. Pathway-based analysis revealed that 32 potential pathways might be involved
in the pathogenesis of ACS. Our study identified several candidate genes and pathways
associated with ACS. Future studies are needed to further validate these findings and
explore these genes and pathways as potential therapeutic targets in ACS.

Keywords: exome-wide association study, acute coronary syndrome, control selection strategy, risk prediction
tool, gene-based analysis, pathway-based analysis

Abbreviations: ACS, acute coronary syndrome; CAD, coronary artery disease; CVD, cardiovascular disease; EWAS, exome-
wide association study; GWAS, genome-wide association study; LD, linkage disequilibrium; MAF, minor allele frequency;
MI, myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; OR, odds ratio; SNP, single nucleotide
polymorphism; STEMI, ST-segment elevation myocardial infarction; UA, unstable angina.
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INTRODUCTION

Coronary artery disease (CAD) is the leading cause of death
worldwide (Naghavi et al., 2017). In China, according to the
National Health Committee’s epidemiological survey data of
2015, 136.1 per 100,000 deaths per year were estimated to be
associated with CAD in urban areas and 144.8 per 100,000
deaths in rural areas. Hypertension, diabetes, dyslipidemia,
obesity, and smoking are major risk factors for CAD (Khera and
Kathiresan, 2017). Apart from these established environmental
factors, genetic factors also play a pivotal role in determining an
individual’s predisposition to CAD. Therefore, insights into the
genetic basis of CAD might shed light on the identification of
susceptible individuals, the exploration of disease pathogenesis,
and the discovery of novel pharmaceutical targets for disease
prevention and treatment.

During the past 10 years, several large-scale genome-wide
association studies (GWAS) have successfully identified more
than 150 loci with robust links to the risk of CAD (Erdmann
et al., 2018; van der Harst and Verweij, 2018; Musunuru and
Kathiresan, 2019). However, these variants only explained ∼20%
of the observed disease variation, revealing the problem of
“missing heritability”. Furthermore, most of these susceptibility
variants are common variants with relatively small effects
and are located within the intronic or intergenic regions.
Their roles, therefore, remain difficult to interpret. Recent
studies have drawn attention to the coding variants, which
could directly provide biological and functional understanding
of the etiologic mechanism. Using exome chip and whole-
genome/exome sequencing techniques, several additional low-
frequency coding variants associated with CAD have been
detected, e.g., low density lipoprotein cholesterin-related genes
(PSCK9, LDLR, and NPC1L1) and triglyceride-related genes
(APOA5, APCO3, LPL, and ANGPTL4) (Khera and Kathiresan,
2017). These findings support the view that low frequency or rare
variants in the coding regions may fill the missing heritability
gap of CAD. Furthermore, owing to the differences in LD
structure and MAF among different races and ethnicities, it is
of great importance to conduct association analyses in non-
European populations so as to detect novel loci associated with
the risk of CAD.

Additionally, previous case-control GWAS usually selected a
group of participants who were absent the disease of interest
at enrollment as their control samples. However, one potential
confounding issue was that these controls might not be truly
“disease-free.” They might develop the disease of interest in the
near future. As a result, the control selection strategy may lead to
a misclassification bias and a subsequent loss in power. Such bias
would be expected to be more pronounced in common diseases
such as CAD (Mitchell et al., 2014). In order to address this issue,
we proposed a novel strategy integrating a well-developed risk
prediction model into control selection to lower the potential
misclassification bias and increase the statistical power.

Consequently, using an improved control selection procedure,
we conducted an EWAS in individuals of Chinese Han descent
and replicated the promising variants, genes, and pathways in
an existing in silico dataset. The objectives of the current study

were: (i) to examine whether the known variants identified in
Europeans are associated with CAD in the Chinese population;
(ii) to explore novel genetic loci predisposing to CAD in Chinese
subjects; and (iii) to investigate the aggregate effect of multiple
variants within same genes or related pathways.

MATERIALS AND METHODS

Study Population
Our study population comprised two cohorts taken from the
ACS genetic study (Acute Coronary Syndrome Genetic Study)
and PUUMA (Peking University-University of Michigan Study
of Atherosclerosis) study. This study was approved by the
Medical Ethics Committee of Peking University First Hospital
and conducted in accordance with the Declaration of Helsinki.
All participants were self-reported Han Chinese and provided
written informed consent before taking part in this research.

The ACS genetic study is a prospective, observational, real-
world practice cohort study comprising consecutive patients
admitted to hospital for ACS within 48 h of symptom
onset in China. Details of this study (NCT01964313) have
been described elsewhere. In brief, a total of 1,803 patients
were enrolled in the study at discharge. Baseline information,
including demographics, medical history, disease characteristics,
and treatment procedures was collected by the investigators.
Information regarding occurrence of events, prescription status,
other healthcare resource utilization, and self-reported quality of
life was collected via telephonic interviews every 3 months during
follow-up until 5 years after the ACS index event. ACS cases
were defined as meeting at least one of the following diagnosis:
STEMI, NSTEMI, and UA.

Non-CAD controls were selected from the PUUMA study.
PUUMA is a large-scale project designed to study CVD and
related traits in China (Ganesh et al., 2014; Tang et al.,
2015). A total of 5,181 unrelated individuals were enrolled
from a community-based cohort located in Beijing’s Shijingshan
district. Details of the study have been reported previously
(Cheng et al., 2016; Fan et al., 2016). Briefly, residents
aged 40-years and above were invited to participate in this
cohort by recruitment posters and telephone calls. All enrolled
participants received a comprehensive baseline assessment
of cardiovascular risk via face-to-face interviews, physical
examinations, and laboratory tests. The structured questionnaire
collected information regarding the sociodemographic status,
diet, lifestyle, health behavior, and medical history. Interview
questionnaire interview and anthropometric measurements were
taken according to a standard operating procedure by the trained
research staff. The participants’ medical, treatment, and family
history of major cardiovascular risk factors were further checked
against their medical records in community health centers.
Individuals with unknown CVD status or previously diagnosed
CVD were excluded from further involvement in the study.

Genotype and Quality Control
All subjects in the ACS genetic study were genotyped using the
Infinium HumanExome BeadChip V1.2 (Illumina, San Diego,

Frontiers in Genetics | www.frontiersin.org 2 April 2020 | Volume 11 | Article 336

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00336 April 7, 2020 Time: 17:2 # 3

Zheng et al. Susceptibility Genes and Pathways Associated With ACS

CA, United States). The GenTrain version 2.0 in GenomeStudio
V2011.1 (Illumina) was used to perform genotype calling.
Quality control of the genotype calls in GenomeStudio was
conducted under the best practice guidelines (Guo et al.,
2014). Further quality control of the raw genotyping data was
performed to filter unqualified genetic variants and samples
(Supplementary Figure S1). A total of 134 ACS case samples
were removed because they (i) had overall genotyping call
rate < 95%; (ii) were biological relatedness, duplication, gender
mismatch, or possible sample contamination; (iii) had an extreme
heterozygosity rate more than 6 standard deviations from the
mean. A total of 179,169 variants were excluded from subsequent
analysis because they (i) had duplicate variants on the chip;
(ii) were mitochondrial variants or were located on the X or Y
chromosome; (iii) had a call rate < 95% or were monomorphic
variants. For detection of ancestry and population stratification,
a method based on principal-component analysis (PCA) was
conducted using a panel of >20,000 independent common SNPs
(MAF > 0.05). Seven outliers were removed from the analysis
(Supplementary Figure S2A). Finally, 65,101 variants in 1,669
ACS cases were retained for further association analysis.

Genotyping and data quality control procedures of PUUMA
study have been published previously (Tang et al., 2015).
In short, all individuals were genotyped using the Asian
Exomechip Infinium HumanExome BeadChip. Samples with
low call rates (<99%), gender mismatch, biological relatedness,
duplication, or possible sample contamination were removed.
Marker-level quality control was performed to exclude variants
with low cluster score, low call rate (<99.9%), monomorphic
variants, and those that deviated from the Hardy–Weinberg
equilibrium. After the previous quality control procedure, 4,458
non-CAD individuals with 129,306 variants were retained for
further analysis.

In order to further verify the quality of samples, PCA was
conducted using the independent common SNPs that survived
the quality control procedures of both studies. There were no
outliers examined from the study (Supplementary Figure S2B).
Two biologically related samples were detected in the combined
dataset, and we excluded one of the related samples in the control
group. Consequently, 1,669 ACS cases and 4,457 controls with
50,023 overlapping qualified autosomal variants were retained for
further analysis.

Selection of Control
We integrated the risk prediction model into the control selection
procedure in order to reduce the potential misclassification bias
with the following steps. First, each healthy control sample
received an assessment of future CVD risk according to the risk
prediction model. Then, individuals in the high-risk group were
excluded from subsequent association analysis. By stratifying
individuals’ disease risk, we achieved a higher probability of
selecting the truly “disease-free” controls, thereby lowering the
potential misclassification bias and increasing the statistical
power of our tests.

In this study, we employed the China-PAR equation
(Prediction for ASCVD Risk in China) to evaluate each
individual’s 10-year Atherosclerotic Cardiovascular Disease

(ASCVD) risk (Figure 1) (Yang X. et al., 2016). In comparison
to other well-known CVD risk evaluation tools derived from
western samples (D’Agostino et al., 2008; Goff et al., 2014),
the sex-specific China-PAR equation was an effective tool with
good performance for the 10-year ASCVD risk prediction
among Chinese populations. The China-PAR equation included
previously identified major risk factors including age, treated
or untreated systolic blood pressure, total cholesterol, high-
density lipoprotein-cholesterol, current smoking (yes/no), and
diabetes mellitus (yes/no) status. Furthermore, the model was
improved by the inclusion of additional variables, including
body mass index (BMI), waist circumference, geographic region
(northern/southern China), urbanization (urban/rural), family
history of ASCVD (yes/no), and interactions with age. The
baseline characteristics of 4,457 candidate controls are presented
in Supplementary Table S1. Applying the China-PAR equations
resulted in groups of 1698, 1347, and 1412 subjects, stratified
according to low (<5%), moderate (5–10%), and high (≥10%)
10-year ASCVD risk, respectively (Supplementary Figure S3)
(Yang X. L. et al., 2016). Individuals in the high-risk group or
subjects with unmatched age were excluded. Ultimately, 1,935
subjects were considered as truly “disease-free” controls and were
included into subsequent exome-wide association analysis.

Statistical Analysis
Single Variant Analysis
Assuming an additive genetic model, we performed single-
variant tests by using logistic regression as implemented in
PLINK 1.9 (Purcell et al., 2007). At the discovery stage,
we carried out principal component analysis using samples
that passed the quality control and selection procedure
(Supplementary Figure S2C). The top two principal components
were significantly (P < 0.05) associated with the outcome, and
we therefore included them (together with age and gender)
into the logistic regression model as covariates. Additionally,
the Firth bias-corrected logistic likelihood-ratio test was also
employed to assess the association results for rare or low-
frequency variants. The attraction of this method is that it
provides bias-reduction for small sample size as well as yields
finite and consistent estimates even in case of separation (Wang,
2014). Based on the following criteria, we then selected 19
promising variants for further genotyping in the replication
stage: (1) the single-variant association P < 0.0001; (2) variants
were annotated as non-synonymous or splice sites. We defined
statistical significance using the Bonferroni correction and set the
exome-wide association significance threshold at 1 × 10−6 for
single-variant analysis (0.05/50,023 variants tested). Quantile–
quantile and Manhattan plots were generated by using R (V3.5.0,
R Development Core Team). Regional plots were generated by
using Locuszoom (Pruim et al., 2010).

To further assess the coding variants identified in the
discovery stage, replication was carried out in an in silico
meta-analysis of exome-chip studies of European descent
involving 42,335 MI patients and 78,240 controls (Webb et al.,
2017). Bonferroni correction was used to adjust for multiple
comparisons (2.6 × 10−3, 0.05/19 variants tested). Variants
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FIGURE 1 | Overview of the study design and statistical analysis pipeline.

were considered as successful replication based on the following
criteria: (1) P < 2.6 × 10−3 in the replication cohort; (2)
concordant direction of association in both discovery and
replication populations.

Gene-Based Analysis
Given the different LD pattern between East Asians and
Europeans, single markers may fail to be successfully replicated
in our study. Gene- and pathway-based analysis, which synthesize
information from multiple variants located in the same biological
unit, might overcome the problem of genetic heterogeneity
among different populations. Therefore, we performed gene-
based analysis using the ‘SKAT’ R package: an unweighted
combined multivariate collapsing burden test (CMC) (Li and
Leal, 2008), and a sequence kernel association test (SKAT) (Wu
et al., 2011). Variants were assigned to genes and functionally
annotated using ANNOVAR (Wang et al., 2010). The gene-based
analysis focused on missense or splicing variants with MAF less

than 0.05 and predicted to be damaging (n = 22,729). Deleterious
markers were defined as variants which were predicted to be
damaging by CADD score (Kircher et al., 2014) or by at least
two out of five functional prediction algorithms [SIFT (Kumar
et al., 2009), Polyphen2 (Adzhubei et al., 2010), Mutation Taster
(Schwarz et al., 2010), LRT (Chun and Fay, 2009), Mutation
Assessor (Reva et al., 2011)]. We included only those genes for
which two or more variants were present. Bonferroni correction
was employed to define the significance threshold for gene-based
analysis [P = 5.5× 10−6, 0.05/(4,528 genes× 2 tests)].

The replication of gene-based analysis was performed in the
meta-analysis dataset using MAGMA (de Leeuw et al., 2015). The
1000 Genomes Project Phase1 European reference population
was used to estimate the LD between variants. Gene boundaries
were defined as −35 kb upstream and +10 kb downstream, since
transcriptional regulatory elements are likely to be contained
within these intervals and thus, there is merit in capturing the
signal of nearby SNPs that fall in the regulatory regions.
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Pathway-Based Analysis
Pathway analysis was conducted using MAGMA (de Leeuw et al.,
2015) to assess the enrichment of sets of functionally related genes
(de Leeuw et al., 2015). Using results derived from the gene-based
analysis, we calculated competitive gene set P-values based on the
gene-wide P-values after accounting for gene size, gene density
and minor allele count. Predefined gene sets were downloaded
from the Molecular Signatures Database (Liberzon et al., 2011)
(MSigDB version 6.21), including KEGG, BioCarta, Reactome,
and GO. We selected gene sets containing 11–200 genes, resulting
in a total of 6,612 pathways. Bonferroni correction was applied for
multiple testing correction in each gene set (P = 7.6× 10−6).

Co-expression Analysis
As genes can influence each other through enhancement or
hindrance, we may fail to reveal the true contribution of
the detected signal if other functional-related genes are not
taken into account. Those genes that co-express together
tend to have similar biological functions. Identification of
the biological functions behind the co-expression network
will substantially increase our understanding of the biological
mechanisms involved in disease pathogenesis. Genome-wide
expression correlation analysis was performed to identify co-
expressed disease-related genes in 49 MI patients from the
GSE66360 gene expression microarray dataset (Muse et al.,
2017). After Bonferroni correction, KEGG enrichment analysis
of significantly co-expressed genes was conducted using the
‘clusterProfile’ R package (Yu et al., 2012).

RESULTS

Single-Variant Association Analysis
Our general approach and analytical pipeline is outlined in
Figure 1. Baseline characteristics of our study participants
are shown in Table 1. After quality control and selection of

1http://software.broadinstitute.org/gsea/msigdb

TABLE 1 | Summary of study subject characteristics.

Characteristics ACS patients
(N = 1,669)

Controls
(N = 1,935)

Age 61 (53–68) 55 (53–58)

Gender Male 1286 (77.1%) 534 (27.6%)

Female 383 (22.9%) 1401 (72.4%)

Smoking Current-smoker 669 (40.1%) 290 (15%)

Ex-smoker 272 (16.3%) 77 (4%)

Never-smoker 728 (43.6%) 1568 (81%)

BMI 24.6
(22.8–26.8)

25.4
(23.3–27.6)

Hypertension 869 (52.1%) 637 (32.9%)

Type 2 diabetes 325 (19.5%) 179 (9.3%)

Type of ACS UA 897 (53.7%)

STEMI 391 (23.4%)

NSTEMI 363 (21.7%)

control subjects, 3,604 Chinese Han subjects (1,669 cases and
1,935 age-matched controls with low or moderate risk for 10-
year ASCVD) were available for the discovery-stage analysis.
In the single-variant association analysis, the quantile–quantile
plot revealed a good match between the distributions of the
observed and expected P-values (Supplementary Figure S4).
We did not observe evidence for inflation of test statistics for
the association analysis, indicating a low possibility of false-
positive associations resulting from population stratification. We
examined the evidence for the previously reported GWAS loci
(Supplementary Table S2). Of the 66 loci previously reported
to be associated with CAD, 55 variants were tested in our
study samples (48 directly genotyped and 7 with high LD
proxies). Forty-two markers showed effects in the same direction
as the previously reported studies. Amongst these, 10 SNPs
(rs17465637, rs2023938, rs4977574, rs12413409, rs11042937,
rs964184, rs17514846, rs46522, rs663129, and rs445925) also
showed nominal significant association in our data. However, the
effect estimates of rs17465637 at MIA3, rs2023938 at HDAC9,
and rs11042937 at MRVI1 demonstrated heterogeneity between
our data and previous GWAS, which might partially arise from
phenotypic differences and ethnic variations.

Of the 50,023 polymorphic SNPs examined, 19 non-
synonymous variants were identified with P < 1.0 × 10−4 by
single-variant association analysis (Supplementary Figure S5
and Supplementary Table S3). Of these, five variants passed
the exome-wide significance threshold (rs117506953, P =
6.0 × 10−26; rs10409124, P = 6.6 × 10−24; rs73929373,
P = 5.4 × 10−10; rs4127353, P = 3.1 × 10−7; rs149822831,
P = 7.3 × 10−7). For an exome-wide study, independent
validation is an effective approach to reduce false-positive
associations. However, it is difficult to collect relatively large
samples with both detailed clinical information and blood
samples. Existing GWAS summary statistics can provide a
highly cost-effective way for external validation, although
potential association might be lost because of heterogeneity.
Therefore, we further assessed the 19 promising variants in
the meta-GWAS dataset and identified nine SNPs from the
in silico exome-chip genotype data (Supplementary Table S4).
None of the SNPs could be replicated after the Bonferroni
correction, even if rs10409124 (Striatin 4, p.V568I) showed
consistent association with the risk of ACS in both our study
population and the meta-GWAS dataset (Table 2). Then,
we conducted a stratification analysis for rs10409124 by age,
gender, BMI, smoking, hypertension, and diabetes and did
not find significant heterogeneity between different subgroups
(Supplementary Table S5). Although this missense variant did
not demonstrate being damaged according to SIFT or Polyphen2,
it was close to the suggested deleterious threshold based on
CADD algorithms (CADD score≥ 12.37), which integrated more
than 60 diverse annotations (Kumar et al., 2009; Adzhubei et al.,
2010; Kircher et al., 2014).

Gene-Based Analysis
We performed a series of gene-based tests aggregating deleterious
missense or splicing variants with MAF < 0.05. Burden test is
more powerful when a large proportion of variants are causal
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TABLE 2 | Markers associated with ACS identified by single-variant analysis.

Variant ID Chr. Major/Minor allele Gene Variant Stage OR (95%CI) P-value

rs10409124 19q13.32 C/T STRN4 c.1702G→A NM_013403.2 Discovery 3.87 (2.97–5.03) 6.6 × 10−24

Replication 1.34 (1.03–15.8) 2.5 × 10−2

TABLE 3 | The results of gene-based analysis and validation using the in silico meta-GWAS dataset.

Gene Chr. Discovery analysis Replication analysis

SNVs Burden P-value SKAT P-value SNVs P-value

ANXA7 10 4 1.06 × 10−15 8.23 × 10−16 2 0.200

ZNF655 7 6 1.83 × 10−10 4.22 × 10−11 4 0.005

ZNF347 19 3 5.73 × 10−8 3.93 × 10−8 3 0.684

ZNF750 17 2 7.87 × 10−8 1.15 × 10−7 5 0.075

and effects are in the same direction, whereas SKAT test is
designed to detect scenarios in which the effects of the aggregated
variants have a different direction or magnitude. This testing
regime identified four genes, ANXA7, ZNF655, ZNF347, and
ZNF750, with exome-wide significant evidence for association
(Pgene < 5.5 × 10−6, Table 3). Furthermore, we confirmed the
association between ZNF655 and disease risk using the meta-
GWAS dataset (Table 3, P = 0.005). Considering that non-
synonymous or splicing variants usually exert their biological
function through influencing the expression of the host genes,
we conducted differential expression analysis using GSE66360.
As shown in Supplementary Figure S6, ZNF655 was significantly
downregulated in MI cases (P = 2.4 × 10−9). KEGG enrichment
analysis showed that co-expressed genes of ZNF655 were
significantly enriched in protein processing in the endoplasmic
reticulum, spliceosome pathway, and some disease pathways,
including Huntington’s, Parkinson’s and Alzheimer’s disease
(Supplementary Table S6). Additionally, genes significantly
associated (P < 0.05) with ACS in both the discovery and
replication datasets are provided in Figure 2.

Pathway-Based Analysis
We further performed pathway-based analysis to examine
the joint effect of genes within the same pathway. Although
no significant pathway has been identified to be associated
with ACS after Bonferroni correction, we summarized the
32 candidate disease-associated pathways, which demonstrated
nominal association with ACS in both our study samples
and the meta-GWAS dataset with a P-value less than 0.05
(Supplementary Table S7). The six top-ranking pathways
were cyclin-dependent protein serine/threonine kinase inhibitor
activity, RIG-I-like receptor signaling pathway, organophosphate
ester transport, negative regulation of muscle cell differentiation,
phospholipid efflux, and phospholipid transport (Figure 2).
Several previously reported pathways were also replicated in
our study, including low-density lipoprotein particle receptor
binding, positive regulation of triglyceride metabolic process,
reverse cholesterol transport, and lipoprotein metabolic pathways
(Makinen et al., 2014; Ghosh et al., 2015; Zhao et al., 2016).

DISCUSSION

In this study, we used a novel control selection procedure
and performed an EWAS of ACS using 1,669 cases and
1,935 controls from the Chinese population. We identified
one promising protein-altering variation, rs10409124 at STRN4,
which showed potential “universal” impact on ACS in both the
European and East Asian populations. Additionally, gene-based
analysis also provided several candidate genes, including ANXA7,
ZNF655, ZNF347, and ZNF750, which demonstrated gene-wide
significant association with ACS, and further confirmed one
of them (ZNF655) in European samples. Moreover, gene-set
enrichment analysis also provided several crucial pathways, such
as cyclin-dependent protein, RIG-I-like receptor signaling, and
phospholipid related pathways, which showed possible functional
relevance in the pathogenesis of ACS. To our knowledge, this is
the first genetic research combining an EWAS and risk prediction
model to investigate the impact of single genetic variants and
their aggregate effect on ACS risk.

Previous studies and our data indicated that some variants
discovered in the European ancestry populations showed a weak
or no association with CAD in other ethnic groups (Wang
et al., 2011; Lu et al., 2012). Therefore, it is necessary to
conduct genetic association studies in non-European populations
to discover additional genetic risk factors. Considering that allele
frequencies and LD patterns vary with ancestry, some genetic
risk loci discovered in East Asians could not be successfully
replicated in European (Wang et al., 2011; Lu et al., 2012;
van der Harst and Verweij, 2018). For instance, Wang et al.
(2011) identified a SNP, rs6903956, in C6orf105 associated with
susceptibility to CAD in the Chinese population. However,
this SNP has not yet been confirmed as a susceptibility locus
in European populations. Therefore, the failure of our study
to replicate any promising variants in the in silico datasets
conducted in Europeans could be understandable. Although non-
significant, this exome-wide study revealed several interesting
signals that can become a useful complement to CAD genetic
susceptibility loci among the Chinese population. The most
promising marker identified in this study was rs10409124 at
STRN4. This variant reached exome-wide significant threshold
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FIGURE 2 | Circos plot integrating the results of single-variant, gene-based, and pathway-based analysis. The labeled genes are those significantly associated with
ACS in both our study and in the existing in silico meta-GWAS dataset. Circos Manhattan plots of single-variant and gene-based analysis in our study participants (A
and B); Circos Manhattan plots of single-variant and gene-based analysis in the meta-GWAS dataset (C and D). The six most significant pathways identified in our
dataset and validated by the meta-GWAS dataset: (1) GO cyclin dependent protein serine threonine kinase inhibitor activity; (2) KEGG RIG-I-like receptor signaling
pathway; (3) GO organophosphate ester transport; (4) GO negative regulation of muscle cell differentiation; (5) GO phospholipid efflux; (6) GO phospholipid transport.

in our study population and further showed nominal association
with MI in European samples. The rs10409124 is located on
the 13th exon of STRN4, resulting in a substitution of valine by
isoleucine at site 568. STRN4 maps at 19q13.2 and is involved
in protein domain-specific binding and calmodulin binding (Lin
et al., 2017). STRN4 belongs to the striatin family of scaffold
proteins that are highly expressed in the nervous system and are
also known to form complexes with protein phosphatases and
protein kinases (Wong et al., 2014).

We observed a gene-wide significant association between
ZNF655 and the risk of ACS in two gene-based tests including
six high-impact low-frequency variants (Pburden = 1.83 × 10−10;
PSKAT = 4.22 × 10−11). This association was further confirmed
by gene-based analysis in European samples. ZNF655 locates
at 7q22.1 and is overexpressed in adipocyte, heart, and
B-lymphocytes. It encodes the Vav-interacting Krüppel-like
factor 1, which is involved in DNA binding and protein-
protein interactions (Houlard et al., 2005). Vik-1 belongs to the
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Krüppel-like factors (KLFs) protein family, which regulate the
metabolic pathways across various tissues. KLFs have been shown
to interact with the components of atherosclerosis pathogenesis
and have also been linked to metabolic abnormalities, including
obesity and diabetes mellitus (Pollak et al., 2018). In line with
our findings from KEGG enrichment analysis of co-expressed
genes ofZNF655, Zhao et al. (2016) constructed a genetic network
based on gene-gene interactions and revealed that pathways
involved in Alzheimer’s disease, non-alcoholic fatty liver disease,
and Huntington’s disease were also associated with CAD risk.
Moreover, Bis et al. (2018) recently identified the importance
of ZNF655 for transcriptional regulation in Alzheimer’s disease
pathogenesis through whole genome sequencing. These findings
illustrated that CAD and neurological disorders may share
common pathogenic pathways. Further experimental studies are
needed to explore the underlying biological mechanisms behind
these statistical associations.

In the pathway-based analysis, 32 candidate pathways
demonstrated potential relevance in the pathogenesis of ACS,
although none of them passed the Bonferroni correction. The
identified pathways reflected several different biological processes
(such as cellular response and cell cycling), biological systems
(such as the immune and endocrine systems), and signaling
pathways perturbed by key genes (such as TLR3, NFKB1, and
PYK2). In addition, the results also confirmed the association
of some previously known processes, e.g., lipid metabolism.
Ghosh et al. (2015) carried out a pathway enrichment analysis
integrating several CAD-GWAS datasets. In accordance with
our findings, they reported the associated pathways relevant to
cellular integrity and CAD. Our findings are also consistent with
the study conducted by Nair et al. (2014), which identified the
importance of the regulation of nuclear factor kappa B1 in the
development of CAD. Moreover, previous experimental studies
(Nair et al., 2014) have already established the crucial role of
the NFκB family in regulating many processes of significance
to the disease state of the cardiovascular system including
inflammation, cell proliferation, ischemia, etc.

The selection of controls is always a challenge in any
genetic study. Absence of the disease of interest at enrollment
is a common definition of control samples in many GWAS.
However, one potential pitfall is that these controls might be
latent cases, developing the disease of interest later in life.
This confounding situation is worse when studying common
diseases and results in loss of statistical power in studies
and biased results (Manchia et al., 2013; Smith et al., 2013).
There is always a trade-off between phenotypic refinement and
study sample size. Manchia et al. (2013) expressed the view
that accuracy of phenotypes is more important than a large
sample size in detecting genetic associations. To overcome this
limitation, previous studies have used the strategy of choosing
disease-free participants at an older age as their control samples
when studying aging-related diseases (Mitchell et al., 2014).
Nevertheless, making comparisons between young cases and aged
controls may introduce bias stemming from gaps in longevity
and mismatching for potential covariates (Luo et al., 2007). In
contrast, we proposed to employ a well-developed risk prediction
tool to evaluate every subject’s disease risk and then selecting

lower risk samples as controls. This strategy should be an efficient
method to minimize misclassification rates in the era of electronic
health records (EHR). This is also a cost-effective way to select
“truly disease-free” controls instead of using large-scale invasive
screening when utilizing the existing large number of publicly
available controls.

This EWAS included 1,669 well-defined hospital-based ACS
cases and 1,935 controls with low or moderate risk of 10-year
ASCVD predicted using the China-PAR equation. Additionally,
the genotype data from in silico dataset was used to provide
supporting evidence, which further confirmed the reliability
and reproducibility of our results. However, several limitations
of this study are apparent and need to be addressed. Firstly,
coverage of rare variants on the exome-array was suboptimal
among the Chinese study population and this might limit the
effective statistical power. Exome/whole-genome sequencing is
needed to warrant the coverage of population-specific rare
variants. Secondly, the sample size of the discovery cohort was
relatively small resulting in a lack of sufficient statistical power
to detect low frequency or rare variants with modest effect
size. Further studies with larger-scale samples will be needed
to replicate these promising findings. Thirdly, CAD is not a
single disease but a collective term for a set of heterogeneous
diseases with different but frequently overlapping pathogeneses.
Clinically, the presentation of atherosclerotic CAD ranges from
completely asymptomatic (subclinical atherosclerosis), angina
pectoris (typical or atypical, stable or unstable), and silent
MI to acute myocardial infarction (AMI) or sudden cardiac
death. Potential phenotypic heterogeneity may exist between
ACS and CAD; hence, the results need to be interpreted with
caution. However, Nelson et al. (2017) found that there was
strong concordance between corresponding genetic signals for
the soft and hard definitions of CAD. In addition, we did
not find significant genetic heterogeneity between the different
disease subtypes. Next, our study used existing replication
samples derived from European subjects. Considering the
difference in MAF between geographic populations, lack of the
independent replication samples from the Chinese population
might lead to the failure of replication for some causal variants.
Nevertheless, consistent signals between ethnicities were more
likely to be valid findings. Lastly, this study mainly focused on
providing statistical associations between genetic variants and
ACS risk; however, the biological mechanisms underlying these
associations still remain unclear.

CONCLUSION

In summary, the current study reported an exome-chip
association analysis of ACS, integrating a risk prediction model
into control selection, thereby lowering the misclassification
bias and increasing statistical power. By genotyping 1,669
cases and 1,935 controls and performing in silico replication,
non-significant variants were identified except for one gene,
ZNF655. Further gene-set enrichment analysis also provided
some indications relevant to the pathogenesis of ACS. Future
studies with larger sample size and refined phenotypes are needed
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to validate the promising associations. Our findings highlighted
the importance of conducting genetic association studies in
different ethnic populations.
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