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A flurry of methods has been developed in recent years to identify N6-methyladenosine
(m6A) sites across transcriptomes at high resolution. This raises the need to understand
both the common features and those that are unique to each method. Here, we
complement the analyses presented in the original papers by reviewing their various
technical aspects and comparing the overlap between m6A-methylated messenger
RNAs (mRNAs) identified by each. Specifically, we examine eight different methods that
identify m6A sites in human cells with high resolution: two antibody-based crosslinking
and immunoprecipitation (CLIP) approaches, two using endoribonuclease MazF, one
based on deamination, two using Nanopore direct RNA sequencing, and finally,
one based on computational predictions. We contrast the respective datasets and
discuss the challenges in interpreting the overlap between them, including a prominent
expression bias in detected genes. This overview will help guide researchers in making
informed choices about using the available data and assist with the design of future
experiments to expand our understanding of m6A and its regulation.
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INTRODUCTION

N6-methyladenosine (m6A) is the most abundant internal modification of messenger RNA
(mRNA), occurring ubiquitously across the tree of life. In mammals, m6A is thought to be
deposited cotranscriptionally by the METTL3–METTL14–WTAP complex, with METTL3 being
the catalytically active methyltransferase (Ke et al., 2017; Bertero et al., 2018). There is a
strong enrichment for this modification within a degenerate DRACH sequence context (D = A,
G, or U; R = A or G; H = A, C, or U), with early chromatographic studies suggesting a
core RAC motif (Wei and Moss, 1977). The knockout of METTL3 is embryonic lethal in
mice, indicating its critical role in regulating mammalian development (Geula et al., 2015):
the modification is implicated in diverse cellular processes such as differentiation, meiosis,
circadian rhythms, and proliferation in cancer (Fustin et al., 2013; Schwartz et al., 2013; Batista
et al., 2014; Geula et al., 2015; Cui et al., 2017). As a posttranscriptional regulator, m6A is
especially interesting in the context of neurons, where it can potentially regulate localized
translation (Merkurjev et al., 2018; Shi et al., 2018). The best understood mechanism of m6A
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function is via the direct binding of YTH domain proteins, which
target m6A-containing transcripts for nuclear export, translation,
and decay (reviewed in Patil et al., 2018).

To develop a detailed understanding of how m6A dictates
mRNA fate, we need to determine exactly which mRNA
sites are m6A modified in a given biological system. To this
end, high-throughput approaches have been developed to map
m6A transcriptome-wide (Table 1). However, the modification
presents significant challenges, as reverse transcription of native
m6A nucleotides using common reverse transcriptases does not
yield a specific mutational or truncation-based signature, unlike
other RNA modifications.

Here, we provide a brief technical overview of the major
methods to identify m6A transcriptome-wide at single
nucleotide, or near single nucleotide, resolution highlighting
the respective advantages and drawbacks of each method.
Furthermore, by comparing genes identified by each method, we
begin to explore their resulting datasets.

Antibody-Based Methods
The first described methods for transcriptome-wide profiling
of m6A were m6A-seq and MeRIP-seq. These methods use
an antibody for m6A to perform RNA immunoprecipitation,
followed by next generation sequencing (NGS) (Dominissini
et al., 2012; Meyer et al., 2012). However, the resolution of m6A-
seq is limited to the size of RNA fragments, with no objective
way of determining where in the fragment the modification
occurred. Greater resolution was achieved by UV crosslinking the
antibody to RNA, following the principles of the crosslinking and
immunoprecipitation (CLIP) protocol (König et al., 2010). Such
approaches were simultaneously developed in the laboratories
of Samie Jaffrey and Robert Darnell, named miCLIP and m6A-
CLIP, respectively (Figure 1A; Ke et al., 2015; Linder et al., 2015).
Here, purified RNA is incubated in vitro with an m6A antibody.
Following immunoprecipitation, the antibody is digested with
proteinase K, leaving an amino acid adduct attached to the RNA
base. During preparation of the complementary DNA (cDNA)
library, the reverse transcriptase either reads through this
crosslinked adduct, causing a substitution or deletion mutation,
or is stopped, resulting in cDNA truncation. These signals can
be analyzed computationally to identify the modification site
at single nucleotide resolution (Haberman et al., 2017). The
Jaffrey group found that antibodies differed in their propensities
to introduce a mutation or truncation and in the positions
of these signals in relation to the modified adenosine. The
authors concluded that the polyclonal Abcam and Synaptic
Systems antibodies were most efficient at immunoprecipitating
and gave the most predictable mapping signatures; as a result,
they remain the most commonly used antibodies in subsequent
miCLIP publications.

N6-methyladenosine-crosslinking and immunoprecipitation
is conceptually similar to miCLIP but requires preparation of
multiple libraries and has so far exclusively used the Synaptic
Systems antibody. Two sequencing libraries are prepared from
the same sample: one using the MeRIP-seq approach to identify
m6A-modified oligonucleotides and one using the miCLIP
approach, which is then analyzed to identify both reverse

transcription read-through and truncation events. These signals
are then filtered to retain only those that overlap with peaks
from the MeRIP-seq library. In this way, the authors claimed
greater specificity in identifying true modification sites. The
protocol differs from the miCLIP protocol in several additional
ways; for example, size selection of RNA fragments prior to
immunoprecipitation and a bromodeoxyuridine (BrdU) cDNA-
purification approach. There are also differences in the starting
RNA/antibody ratios—miCLIP uses an excess of RNA, whereas
m6A-CLIP uses an excess of antibody.

A major drawback with these approaches is the promiscuity of
m6A antibodies; for example, some interact with m6Am, which
is found as the first nucleotide after the cap in certain mRNAs
(Schwartz et al., 2013; Linder et al., 2015). Devising appropriate
methods to eliminate false positives is challenging. Studies
generally tackle this issue by only reporting sites found within
the consensus DRACH motif or by perturbing methyltransferase
activity. Neither is optimal: DRACH-only reporting prevents
discovery of m6A in RAC or noncanonical motifs, whereas
knockout or knockdown controls exclude sites that can be
modified by another methyltransferase. Furthermore, disrupting
the m6A machinery may introduce global changes in RNA
abundance that are difficult to account for, except with the careful
use of input libraries and spike-ins (Liu et al., 2020).

Finally, methods that depend on crosslink-induced mutations
as the readout—as opposed to truncations—may be more
susceptible to gene expression changes because higher
read coverage is required to call sites. Additionally, for all
strategies, the necessary integration of multiple control datasets
(methyltransferase depletion, RNA input, etc.) increases the
variance in the experimental design, reducing the statistical
power to call sites. In summary, although antibody-based
methods have been fundamental to paving the way for
transcriptomic analysis of m6A and remain the most common
way to survey the modification, issues with antibody specificity
make orthogonal approaches desirable.

Enzyme-Based Methods
In 2017, the MazF endoribonuclease was described, which cuts
RNA within an ACA sequence motif, but with greater preference
for ACA over m6A-CA sites (Imanishi et al., 2017). Thus, m6A-
modified sites, usually present within a DRACH motif, can
be detected as a reduction in MazF cleavage efficiency. Two
new methods, MAZTER-seq and m6A-REF-seq (Figure 1B)
developed by the laboratories of Schraga Schwartz and Guan-
Zheng Luo, respectively, showed how this enzyme can be used to
map m6A at single-nucleotide resolution (Garcia-Campos et al.,
2019; Zhang Z. et al., 2019).

In both approaches, purified mRNA is treated with the MazF
enzyme, leaving RNA fragments containing an ACA site at the
5′ end and finishing just before the next ACA motif within the
transcript. After sequencing, any ACA sequences present within
a read indicate an uncut and, therefore, modified site. The main
advantage of this approach is that it can provide stoichiometric
information on the m6A modification, based on the cut/uncut
ratio of reads for every ACA site, something the antibody-based
methods currently lack.
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TABLE 1 | Single nucleotide resolution, transcriptome-wide methods for detecting m6A.

Method type Method Cell lines
(human)

Strengths Weaknesses Motif
restriction?

Diagnostic
signature

UMI RNA selection References and
(data access)

Antibody based miCLIP HEK293
MOLM13

• High throughput, can be
used to assess multiple
conditions
• RNA can be taken from any
source as crosslinking occurs
in vitro
• Reproducible data

• Difficult to correct for
nonspecific antibody binding
• Requires UV crosslinker
• Complex library preparation
• Requires high amounts of
input material

DRACH Truncations and
C→ T mutations

Yes Total RNA and poly(A)
selected available

Linder et al., 2015;
Vu et al., 2017
(GSE98623)

m6A-CLIP A549
CD8+ T cells
HeLa

RRACU/RAC Truncations and
mutations
(substitutions and
deletions)

Yes poly(A)
HeLa—ribo0, poly(A),
nucleoplasm,
chromatin

Ke et al., 2015
(GSE71154); Ke
et al., 2017
(GSE86336)

MazF enzyme
based

MAZTER-seq HEK293T • Generates stoichiometric
data
• Semiquantitative output

• Can only detect sites in
ACA sequence context
• Sequence-specific biases in
enzyme cutting efficiency
• Complex bioinformatics
analysis

ACA Enzymatic cleavage
efficiency,
measured as
truncations vs.
read-through

No poly(A) Garcia-Campos
et al., 2019

m6A-REF-seq HEK293T ACA No poly(A) Zhang Z. et al.,
2019

Fusion domain
based

DART-seq HEK293T • Low RNA input
• Simple library preparation

• Biases in background
APOBEC1 targeting
• Mapping is limited to
YTH-recognized sites
• Resolution is low compared
to CLIP methods
• Must express fusion
construct in vivo for
maximum efficiency

Mutation site
must be C→ U

C→ U mutations No None Meyer, 2019

In silico prediction WHISTLE Any • Can predict m6A sites in
any gene, regardless of
expression

• Trains based on CLIP
datasets, so will learn CLIP
biases

RRACH Truncations and
mutations

Yes poly(A) Chen et al., 2019
(http://180.208.58.
19/whistle/
download.html)

Direct RNA
sequencing by
Nanopore

MINES HEK293 • Potential for measuring
stoichiometry of sites and
combinatorial modification
dynamics (although currently
not systematically
implemented)

• Trains based on CLIP
datasets, so will learn CLIP
biases

RGACH Tombo’s fraction
modified values
and coverage files

NA poly(A) Lorenz et al., 2019

NanoCompore MOLM13 • Can detect other
modifications as well as m6A
• Potential for measuring
stoichiometry of sites and
combinatorial modification
dynamics (although currently
not systematically
implemented)

• Currently low throughput
• High input requirements
• Requires a low or no
methylation control, which
might be difficult to obtain

No Difference in k-mer
current intensity
and dwell time in
pore between WT
and METTL3 KD
control

NA poly(A) Leger et al., 2019
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FIGURE 1 | High throughput methods to detect or predict m6A in transcriptomes. (A) Crosslinking and immunoprecipitation (CLIP) methods involve UV crosslinking
of the m6A antibody to purified RNA. m6A-CLIP and miCLIP differ in the antibodies used, complementary DNA (cDNA) library preparation, and computational
processing, among other differences. (B) MazF Escherichia coli endoribonuclease preferentially cuts at nonmethylated ACA sites. This forms the basis of
MAZTER-seq and m6A-REF-seq. (C) DART-seq expresses an APOBEC1-YTH fusion protein. The YTH domain targets APOBEC1 to m6A sites, where it deaminates
surrounding cytosines to uracil. (D) Direct RNA sequencing with Nanopore technologies facilitates detection of m6A due to differences in ionic current intensities
between A- and m6A-containing sequences and dwell time in the pore. Methods differ by how these signals are deconvolved. m6A identification using nanopore
sequencing (MINES) is a combination of four random forest models, pretrained using CLIP m6A sites as true positives. NanoCompore relies on a comparison in
signal between two conditions, for example wild type (WT) and METTL3 knockdown, or in vivo RNA vs. nonmodified in vitro transcribed RNA. (E) In silico prediction
of m6A sites is performed by WHISTLE, a support vector machine algorithm that uses miCLIP and m6A-CLIP sites as training data.

Nevertheless, due to the specific attributes of the MazF
enzyme, careful quality control in calculating m6A stoichiometry
is required. In MAZTER-seq, potential m6A sites are prefiltered
to remove any ACA sequences that are too close to each other
to be accurately measured. Furthermore, reads that do not
begin and end within a cleaved ACA sequence are removed,
as they could occur through random RNA fragmentation or
nonspecific cutting. Finally, for a subset of analyses, ACA
sites containing a G at the +3 position are removed, as this
impairs MazF cleavage efficiency. The authors calculate that,
theoretically, 25% of DRACH sites in yeast and 16% in mammals
can be quantified using MAZTER-seq. In contrast, m6A-REF-
seq does not apply filters based on incorrect read endings or
calculations of the minimal ACA proximity; instead, ACA sites
predicted to be in double-stranded RNA regions are discarded,
as they are considered to alter cutting efficiency. Furthermore,
for a site to be called, the authors require a decrease in the
modification ratio >10% when the RNA is treated with the
demethylase enzyme FTO.

In addition to calculating stoichiometric ratios of CLIP-
annotated m6A sites, MAZTER-seq was used to identify
previously unknown m6A sites. This was achieved by comparing
cleavage efficiencies within DRACH motifs in three different

control scenarios. The first was between WT and m6A
methyltransferase deletion input libraries, the second was m6A-
IP with the same strains, and the third, a comparison between
input and m6A IP WT conditions. In this way, the authors
classified all published sites into confidence groups and found
a number of previously unannotated sites within the high-
confidence groups. Crucially, this suggests that probable m6A
sites have been missed by antibody-based methods.

MazF clearly enables valuable approaches to calculate m6A
stoichiometry at a focused set of sites, validate previously
identified m6A sites, and identify a number of novel sites. The
limitation of the MazF enzyme to ACA sites and the extensive
filtering requirements do mean, however, that these methods
alone cannot provide a full transcriptome-wide map of m6A.
Nonetheless, the careful work to identify and quantify the
biases inherent in this system is of great value in developing
high-confidence m6A maps and offers an important orthogonal
method to other transcriptome-wide mapping approaches.

Fusion Domain-Based Methods
DART-seq employs the in vivo expression of a YTH
protein domain fused to the APOBEC1 enzyme (Figure 1C;
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Meyer, 2019). The YTH domain was identified in numerous
studies as the major “reader” of the m6A modification (Zaccara
et al., 2019), whereas the APOBEC1 enzyme deaminates cytosine
to uracil, which can be detected as a mutation compared with
a reference sequence. Thus, this construct allows deamination
of cytosine residues in the vicinity of m6A sites recognized by
YTH. Previous studies suggest that m6A is invariably followed
by cytosine (Wei et al., 1976), raising the possibility of single-
nucleotide resolution mapping, although in practice, more
distant cytosines are also modified.

The most notable benefit is the low input requirements:
libraries can be made with as little as 10 ng of total RNA as
starting material. Additionally, as the YTH-APOBEC1 construct
can be transiently expressed in cells, library preparation is
much more straightforward than either the antibody- or
enzyme-based methods, since no treatment of the RNA is
required to identify the m6A signal following extraction. Owing
to targeting by the major m6A reader, it is also possible
that DART-seq will identify more functionally relevant m6A
sites than other methods. One possible drawback is that the
APOBEC1 enzyme displays sequence preferences: expressed
alone, it modifies cytosine residues in the 3′ untranslated
region (UTR), making it difficult to detect confidently in
this region, while ∼70% of APOBEC1-only deaminated sites
are preceded by an adenosine (Supplementary Figure 6C
from Meyer, 2019), meaning that using APOBEC1 and
APOBEC1-YTH mutant as a control is likely to result in
false negatives.

Direct Sequencing-Based Methods
Ideally, it would be possible to detect m6A via direct RNA
sequencing. Pore-based sequencers measure changes in an ionic
current as nucleic acids pass through a nanopore: information
about changes in current and dwell time in the pore is used
to identify the nucleotide in question. Several publications
demonstrated that RNA modifications produce specific current
and dwell time signals, suggesting nanopore-based methods
could identify modified nucleotides in a high throughput manner
(Figure 1D; Garalde et al., 2018; Workman et al., 2018; Smith
et al., 2019). The potential benefits of this approach for mapping
RNA modifications are huge, as stoichiometric and positional
information of multiple modifications could be interpreted
simultaneously. The reality of deconvolving the raw signal to
infer m6A sites, however, is not straightforward.

The first application of the Oxford Nanopore technology
(Nanopore) to detect m6A in a whole transcriptome examined
yeast mRNA (Liu et al., 2019). The authors trained a
support vector machine (SVM), called EpiNano, on Nanopore
sequencing data of synthetic transcripts containing m6A residues
in every possible 5-mer combination to identify the most
informative signals that distinguish m6A from other nucleotides.
Surprisingly, the raw current intensities alone were found to
be poor predictors of methylation status; instead, the selected
training features included mean per-base quality, mismatch
frequency, and deletion frequency. The model achieved ∼90%
prediction accuracy for the training dataset. It was then used
to recover 363 previously identified, high-confidence m6A sites,

previously identified using m6A-seq, which it was able to do
with 87% accuracy.

An alternative approach, m6A identification using nanopore
sequencing (MINES), was used to create the first Nanopore-
based m6A transcriptome for humans (Lorenz et al., 2019).
This method applied Tombo, a program that was previously
developed to detect de novo modifications in Nanopore DNA-
sequencing data based on base-calling errors (Oxford Nanopore
Technologies, 2018). The authors trained random forest models
using the Tombo modification values to classify the m6A status
of four RGACH motifs. Those RGACH sites overlapping with
HEK293 miCLIP and HeLa m6A-CLIP sites (Linder et al.,
2015; Ke et al., 2017) were labeled as true positives in the
training data, and the models achieved an average accuracy of
79%, representing 35% of m6A sites identified with CLIP-based
methods (in part due to the motif restriction). The authors then
predicted 13,034 novel RGACH m6A sites, which were validated
by METTL3 knockdown.

A further approach is NanoCompore (Leger et al., 2019),
which compares Nanopore signals between two datasets and
therefore does not require a training dataset. Specifically,
this is achieved by contrasting the median current intensities
and dwell times of k-mers between the experiment and
a control with perturbed modifications (e.g., wild type vs.
knockdown, or in vitro modified vs. unmodified controls). To
identify METTL3-dependent m6A sites, the authors processed
polyA+-selected RNA sequencing data from wild-type and
METTL3 short-hairpin RNA (shRNA) knockdown MOLM13
cells. NanoCompore is not restricted to m6A and can be
readily extended to other modifications that have a reliable
control. A major advantage is that it avoids being biased by
the accuracy of previous mapping methods to train the models,
as site identification is instead determined by the sensitivity
to a specific modification enzyme. Of course, the dependence
on a comparison between samples is a limitation, as reliable
controls are currently unavailable for many modifications and
biological systems, and specific sites or RNA species are often
modified by distinct enzymes. As a result, there is probably
a reduced risk of false-positive site assignment at the cost
of sensitivity.

Finally, a simplified approach was recently published for the
Arabidopsis thaliana transcriptome (Parker et al., 2020), in which
the base-calling error rate was used as the sole parameter for
identifying m6A sites. The authors compared the transcriptomes
for a vir-1 mutant, an Arabidopsis m6A methyltransferase, with
a vir-1 restored line, identifying ∼17,000 sites with an error
rate twofold greater in the control line compared to mutant.
Taking this approach 66% of identified m6A sites fell within five
nucleotides of a miCLIP peak.

The above methods demonstrate that direct RNA sequencing
can be used to detect m6A. A common limitation pertains
to the resolution and accuracy of modification assignment for
transcripts with low sequencing depth. However, with third-
generation sequencing technologies developing rapidly, the
benefits of using direct sequencing to map RNA modifications—
such as the possibility of correlating modifications with other
transcriptomic features within a single RNA molecule, and
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FIGURE 2 | m6A-containing genes identified by eight methods. (A) Bar chart showing the number of m6A-containing transcripts identified by each method. Some
methods have data from multiple cell lines or apply several possible thresholds, which are shown separately. The cell lines for each dataset are indicated along with
the type of method. The hashed bars denote genes that are commonly expressed between all the cell lines considered here. For DART-Seq, MAZTER-Seq, and
MINES, several thresholds were possible: “DART-Seq M3” refers to sites identified by comparison with METTL3 knockdown. “Low” and “high” refer to two
stringency thresholds applied by the authors. “MAZTER-Seq” refers to all sites with a cleavage efficiency <50%, and “MAZTER-Seq cond” refers to FTO
overexpression, WT ≥ 20%, and/or Alkbh5 overexpression, WT ≥ 20%. “MINES” refers to all sites identified by MINES, and “MINES 30×” refers to MINES sites with
≥ = 30× coverage. (B) Bar chart showing the numbers of overlapping target genes between the eight methods, considering all the reported genes.
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accurately calculating m6A stoichiometry genome-wide—are
likely to push the boundaries of the field.

In silico Prediction
Even in the best circumstances, experiments are still costly and
time consuming to run and can only identify m6A sites that
are present in the prepared sample. In silico prediction offers
the potential of identifying all possible m6A sites (Figure 1E).
However, algorithms rely on two critical factors: (i) the reliability
of the training data and (ii) the ability to identify and encode
relevant features indicating m6A presence into the model.
Existing approaches either use SVMs (methyRNA—Chen et al.,
2017; RNAMethPre—Xiang et al., 2016; WHISTLE—Chen et al.,
2019) or random forest models (RF; SRAMP—Zhou et al., 2016)
to classify whether or not an adenosine is modified. The benefits
of a machine-learning model, over other modeling approaches,
is that predictive features do not have to be selected a priori.
Indeed, the learned weighting of features in a model can aid
our mechanistic understanding of methylation. The authors
of WHISTLE (whole-transcriptome m6A site prediction from
multiple genomic features) showed that nucleotide sequence was
the most important predictor of m6A but that 14 other genomic
features also contributed. Among the top features was the site
being in a long exon, which was previously found to be a defining
characteristic of sites measured using m6A-CLIP (Dominissini
et al., 2012; Ke et al., 2017). WHISTLE achieved an area under the
curve of 0.948 when tested against previously unseen CLIP data.

Currently, all in silico m6A models use antibody-based
methods as training data and so will also learn the biases present
in them. To continue improving predictions, it will be important
to generalize models by training on orthogonal datasets.

ASSEMBLING A DATASET TO COMPARE
DETECTED AND PREDICTED m6A
TRANSCRIPTS

The rapid expansion in orthogonal methods for transcriptomic
m6A detection offers an opportunity to compare the published
datasets. We assembled the processed data produced by eight
high-resolution methods using human cells: two antibody-based
CLIP approaches (miCLIP, m6A-CLIP); two endoribonuclease
MazF-based (MAZTER-seq, m6A-REF-seq); one deamination
approach (DART-seq); two using Nanopore direct RNA
sequencing (MINES, NanoCompore); and finally, one based
on computational predictions (WHISTLE). Here, we examine
the overlap between these methods at the level of transcripts,
focusing on a single representative transcript per gene. We
include only sites with a matching DRACH motif, although
some datasets have additional restrictions (such as MazF “ACA,”
WHISTLE “RRACH,” and MINES “RGACH”). In total, we
consider 134,470 unique sites in 12,391 mRNAs (Figures 2A,B;
sites per gene are summarised in Supplementary Data Sheet S1).

Filtering for Commonly Expressed Genes
Since there is not a single cell line that is used across all of
the methods, we focused on commonly expressed mRNAs. For

studies with no accompanying gene expression data, we accessed
published RNA-seq measurements for equivalent cells lines from
the EBI Expression Atlas (HEK293, HEK293T) and the Gene
Expression Omnibus (MOLM13) (accession numbers listed in
Table 2) (Edgar et al., 2002; Papatheodorou et al., 2018). For
HEK293 and HEK293T, raw counts were assigned to the longest
annotated transcript obtained from Ensembl BioMart v98 for
GRCh38.p13, and transcripts per million (TPM) were calculated
as expression measurements (Kinsella et al., 2011). For MOLM13
and HeLa, processed expression measurements were available
as fragments per kilobase of transcript per million (FPKM)
values. For A549 and CD8+ T cell, we used the matched poly-
A sequencing data from the m6A-CLIP study. BedGraph files
were downloaded, and coordinates were lifted over to hg19 using
UCSC liftOver (Kuhn et al., 2013). Poly(A) sites were assigned
to genes using bedtools closest -s -id -a stdin
-b../hg19_mRNA_annotation.gtf -D a (Quinlan and
Hall, 2010) with a threshold of 2,000 nt from the end of the
annotated 3′ UTR. Expression was quantified as read counts
per transcript. Expression values were visualized in histograms,
with most cell lines displaying bimodal distributions allowing
a straightforward separation of expressed and unexpressed
genes. For A549 and CD8+ T cells, which displayed unimodal
distributions, we applied an arbitrary threshold of five counts.
Finally, for each cell type, we assigned expressed genes into deciles
according to their expression values.

The procedure yielded between 8,235 and 12,968 expressed
genes for each cell line (Table 2). Transcripts that were detected
by the m6A measurement, but not RNA-seq, were assigned
post hoc to the lowest expression decile of the cell line in question.
In total, we considered 6,585 genes with commonly expressed
transcripts across six cell lines.

Comparison of the Top-Ranking
Transcripts Between Methods
The eight m6A studies applied very different, and in some cases
arbitrary, thresholds leading to large differences in the numbers

TABLE 2 | Number of expressed genes per cell line and origin of the expression
dataset.

Cell line Number of genes
expressed

Accession References

HEK293 11,018 E-GEOD-44384 (EBI
Expression Atlas)

Hussain et al., 2013

HEK293T 11,703 E-MTAB-7029 (EBI
Expression Atlas)

Doumpas et al., 2019

MOLM13 12,968 GSE114111 (GEO) Pei et al., 2018

HeLa 12,839 GSM2300445 (GEO) Ke et al.,
2017—m6A-CLIP
paper

A549 9,963 GSM1828600 (GEO) Ke et al.,
2015—m6A-CLIP
paper

CD8T+ 8,235 GSM1828598 (GEO) Ke et al.,
2015—m6A-CLIP
paper
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TABLE 3 | Number of m6A modified transcripts for each method following thresholding.

Method Sample Thresholding Number of
transcripts

Number of total
transcripts for method

Number transcripts
(6,585 commonly

expressed genes subset)

miCLIP CIMs HEK293 As from paper 3,755 6,282 4,000

CITs HEK293 As from paper 2,779

MOLM13 As from paper 3,662

m6A-CLIP A549 As from paper 5,915 8,560 4,694

CD8+ T cell As from paper 4,697

HeLa As from paper 6,415

DART-seq High stringency
HEK293T

C > U events from paper filtered for
DRACH motif

5,648 8,331 5,445

Low stringency
HEK293T

C > U events from paper filtered for
DRACH motif

7,614

WT vs. METTL3
depleted HEK239T

C > U events from paper filtered for
DRACH motif

2,370

m6A-REF-seq HEK293T As from paper 1,843 1,843 1,243

MAZTER-seq HEK293T MazF cleavage efficiency < 50% 3,545 3,705 2,568

HEK293T FTO overexpression, WT ≥ 20%,
and/or Alkbh5 overexpression,
WT ≥ 20%

482

WHISTLE Trained on miCLIP and
m6A-CLIP

Posterior probability of being
m6A ≥ 0.95

3,877 3,877 2,177

MINES Nanopore As from paper 6,910 6,910 4,390

Nanopore Filtered for 30× coverage (threshold
for NanoCompore)

1,883

NanoCompore WT vs. METTL3 KO
Nanopore

DRACHs within clustered 5-mers with
contextual p < 0.001

556 556 387

of reported targets. In comparing the results, we found that
studies reporting greater numbers of m6A targets tended to have
better overlaps with other studies (data not shown), making them
appear ostensibly more reliable; however, it is also possible that
those methods suffer from higher false-positive rates.

To facilitate comparisons, we focused on the top ∼1,000 m6A
modified transcripts for each method (Table 4). We wished to use
“modification scores” for each study to identify thresholds that
produce similar numbers of top-ranking targets; however, scores
are not available for all methods, so instead, we ordered genes
according to the number of detected m6A sites per transcript.
NanoCompore reported only 387 transcripts that met our
expression criteria, due to the lower sequencing throughput, the
stringent requirement for 30× coverage over sites, and restriction
to sites that change between wild type and METTL3 knockdown
cells. In total, we considered 3,875 top-ranking transcripts among
genes that are commonly expressed across all cell lines, with a
total of 73,914 unique m6A sites.

Of the 3,875 transcripts across all methods, 55% (2,121) are
identified as m6A modified by at least two, 31% (1,213) by at
least three, and 16% (619) by four or more methods (Figure 3A).
Hierarchical clustering shows that methods of the same type
cluster together, indicating that they are more likely to detect
similar targets (Figure 3B); however, the shallowness of the
dendrogram highlights that despite this, distinct methods tend
to differ greatly in their outputs. WHISTLE and MINES cluster
with the CLIP-based methods, reflecting the underlying training
datasets. MAZTER-seq and m6A-REF-seq also cluster but share

little overlap (40% of MAZTER-seq sites and 33% of m6A-REF-
seq sites overlapped with each other). The method with the
highest proportion of unique genes is NanoCompore (48%),
followed by m6A-REF-seq (26%). The method with the lowest
proportion of unique genes is m6A-CLIP (10%), which suggests
its sites could be the most reliable (Figure 3C).

In general, the higher the expression, the more likely a
transcript is to be identified by multiple methods (Figure 3D);
this is expected as most of the experimental methods described
here are biased toward highly expressed genes. In this regard,
NanoCompore displays the largest expression dependence
(Figure 3E). Interestingly, miCLIP shows a greater preference
for highly expressed genes compared with m6A-CLIP, perhaps
due to differences in starting RNA/antibody ratios in the
immunoprecipitation step. In conclusion, the low overlap

TABLE 4 | Number of top-ranking targets selected per method.

Method Number of transcripts

DART-seq 1,019

m6A-CLIP 1,072

m6A-REF-seq 1,243

miCLIP 1,233

NanoCompore 387

WHISTLE 1,198

MINES 1,104

MAZTER-seq 944
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FIGURE 3 | Comparing the top-ranking target genes identified by eight methods. (A) Bar chart showing the numbers of top-ranking genes that overlap between the
eight methods. (B) Heatmap showing overlap between the top targets. Dendrograms are produced by complete-linkage hierarchical clustering using the Jaccard
index as the distance metric. Dark blue indicates presence of the gene among the top targets for a method, and gray indicates absence. Colored bars denote the
category of the method. (C) Proportions of top targets that are unique to each method. (D) Number of methods detecting a target gene plotted against its mean
expression decile across all studied cell lines. (E) Minimum expression deciles for the top ranked genes were plotted for each method.
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between methods may arise partly from the expression-
linked bias in m6A detection and additional technical aspects
of each method leading to different subsets of DRACH
sites being detected.

DISCUSSION

Our analysis suggests that data coverage and mRNA expression
are among the main biases for m6A detection. With sufficient
coverage, potential sites of m6A modification can be detected in
most mRNAs. However, in the absence of a gold standard, it is
not possible at this point to estimate the false-positive rate of
any single method for m6A detection nor of integrated datasets.
This will be important moving forward because it is clear that
different studies display varying degrees of overlap. Determining
the reasons behind this is valuable for the community, especially
as several databases now give users access to repositories of
miCLIP data (CVm6A—Han et al., 2019; m6AVar—Zheng et al.,
2017) and algorithms trained on such data are being used to
make conclusions about the functionality and disease relevance
of m6A sites (m6AVar—Zheng et al., 2017; Deep-m6A—Zhang
S.-Y. et al., 2019; m6Acomet—Wu et al., 2019; DeepM6ASeq—
Zhang and Hamada, 2018). Predictions will be limited by the
validity of the training data, and it will be interesting to see
how data from the newer non-antibody-based methods can be
incorporated into such efforts.

In this review article, we performed analyses at the gene
level as a tentative step to give the reader a broad perspective
of the data types that are available for studies of m6A RNA
modifications. An important aspect for further analyses will be
to compare individual sites within a transcript across methods,
experimental conditions, and variants of DRACH motif. In
this way, it will be possible to address the positional or
sequence biases of methods, compare the dynamics of m6A
sites between conditions, cells or cellular compartments, and
assess the modification rates of different DRACH sites. Such
analysis could be approached in various ways, taking into account
variable distances between sites assigned by different techniques
and other method-specific issues. For such analyses, the use of
unique molecular identifiers (UMIs) that control for PCR biases
in library preparation—integrated into CLIP-based approaches—
are particularly valuable. None of the antibody-free approaches
currently use UMIs; therefore, quantifications of MazF and
DART-seq datasets may be affected by variable PCR duplication
rates. Direct RNA sequencing with Nanopores is not affected by
PCR duplication, but the shallow sequencing depth may limit
quantitative comparisons across large numbers of sites.

Finally, we have examined only m6A sites that occur within
DRACH motifs, in line with the computational approaches used
in past studies. In the future, it will be interesting to analyze
noncanonical sites: currently, the technical noise is often too high
to reliably include such sites and therefore appropriate controls
will be needed, such as METTL3 depletion. This would also help
establish the methylation status of lowly expressed genes, which
generally have lower sequencing coverage.

Ultimately, untangling the benefits and biases of each method
in determining m6A sites is crucial for the field as we move
toward further understanding the mechanism, regulation, and
function of m6A methylation on a transcriptomic scale.
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