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Editorial on the Research Topic

Precise Genome Editing Techniques and Applications

The CRISPR/Cas system, particularly CRISPR/Cas9 (Jinek et al., 2012; Cong et al., 2013), has been
developed as a robust and versatile platform for manipulating the genomes of a variety of species.
In recent years, numerous reports have suggested its powerful potential application for human gene
therapy and life science research, as well as animal and plant breeding. This might be evidenced by
the collections in this Research Topic, “Precise Genome Editing Techniques and Applications.”

Generally, the CRISPR/Cas9 nuclease is used to cleave target genomic DNA to generate site-
specific double-strand breaks (DSBs), which are predominantly repaired via non-homologous end
joining (NHEJ) or, to lesser extent, by homology-directed repair (HDR). The classical NHEJ repair
pathway can generate small insertions or deletions (indels), resulting in loss-of-function of targeted
coding genes by introducing a frameshift in the open reading frame (ORF). NHEJ mutagenesis is
a highly popular strategy for gene manipulation. In addition to the classical NHEJ, alternative or
accurate NHEJ-mediated repair can achieve precise genomic DNA deletions (Guo et al., 2018; Shou
et al., 2018).

Two papers in this Research Topic by Chao et al. and Zhao et al. describe the manufacture of
allele-specific knockout and double gene knockout mouse models for rapid disease gene validation
and human xenograft studies, respectively. N6-methyladenosine (m6A) is a well-established
epigenetic modification on eukaryotic mRNA. An increasing number of studies have uncovered
the significance of m6Amethylation, which has given rise the nascent field of “epitranscriptomics.”
Another article in this volume (Huang et al.) describes a knock-out study in mouse spermatogonial
GC-1 cells of the fat mass and obesity-associated (Fto) gene, which has been shown to act on the
epitranscriptome as an m6A demethylase (Li et al., 2017; Lin et al., 2017).

On the other hand, the HDR repair pathway relies on homologous donor DNA to produce
targeted gene knock-ins at the DSB site or gene replacement between two DSB sites. Precise point
mutations and designed small indels can also be achieved by this method. One paper in this topic
describes efforts to precisely correct the methyl-CpG binding protein 2 (MECP2) gene in the
context of Rett syndrome (RTT) by CRISPR/Cas9-mediated HDR in human induced pluripotent
stem cells (iPSCs). This report provides a reference for iPSC-based disease modeling and gene
correction therapy (Le et al.).

Although the HDR-based genome can achieve gene insertions and precise substitutions, it is
still confronted by several disadvantages during the precise editing process including low HDR
efficiency, failure of biallelic targeting, complications of positive selection, and the re-deletion of
selection markers.
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It has been reported that inhibiting the key molecules of the
competitive NHEJ pathway, such as DNA ligase IV (LIG4) and
KU70, could improve the HDR efficiency effectively (Chu et al.,
2015; Maruyama et al., 2015). We have previously developed a
novel sgRNA-shRNA structure transcribing multiple sgRNAs for
multiplex genome targeting (Yan et al., 2016). Here, the structure
was further used for simultaneous LIG4 RNA interference and
the enhanced HDR-based IGF2 SNP editing (Sun et al.). On
the other hand, the HDR pathway can be also enhanced by the
association of Cas9 with a variety of homologous recombination
factors, such as yRad52 (Shao et al., 2017), dn53BP1 (Paulsen
et al., 2017; Jayavaradhan et al., 2019), hRad51 (Rees et al., 2019),
and CtIP (Tran et al.). A review paper in this topic (Liu et al.)
further summarizes the methodologies and other considerations
for improving the HDR efficiency.

Regarding biallelic targeting, we have previously reported a
novel strategy using two donors with paired selectable markers
(Wu et al., 2017). However, the removal of the selection is often
required to allay concerns of marker-dependent effects. There
are several “pop in and out” two-step techniques for marker-
free genome engineering, including the Cre/LoxP system (Zhu
et al., 2015), the piggyBac transposon (Xie et al., 2014), and the
SSA repair mechanism (Li et al., 2018). This Research Topic
presents a protocol article for biallelic HDR targeting using
piggyBac-mediated selection removal (Jarazo et al.).

The ever-expanding repertoire of CRISPR editing systems
includes the widely used Cas9 of Streptococcus pyogenes
(SpCas9) (Jinek et al., 2012; Cong et al., 2013), as well as
Streptococcus thermophilus (StCas9) (Xu et al., 2015), and
Neisseria meningitides (NmCas9) (Hou et al., 2013). In addition,
other proteins in the CRISPR family such as Cpf1/Cas12a
(Zetsche et al., 2015) have been applied for genome editing. More
recently, CRISPR/Cas-derived novel genome editing tools that
do not create DSBs have been developed, including the cytidine

and adenine base editors (CBE and ABE) (Komor et al., 2016;
Gaudelli et al., 2017), as well as prime editors (PE) (Anzalone
et al., 2019). The paper by Wu et al. in this topic describes efforts
to increase the CBE scope and efficiency in rice.

The rapid development of genome editing technology has
provided opportunities for modifying large animal models and
domestic animal breeding. Pigs serve as an important agricultural
resource as well as animal models for biomedical studies. In this
topic, Yang and Wu summarize the genome editing of pigs in
agricultural and biomedical applications. Off-target effects are
one of the major concerns for genome editing research. The last
two articles (Li et al.; Zhou et al.) in this Research Topic report
no obvious off-target events in the offspring of genetically edited
goats. However, it remains to be determined as to whether these
observations might be affected by survivorship bias, as well as
differences in off-target events between human gene therapy and
animal genetic breeding.

In conclusion, the articles contained within this Research
Topic illustrate the mechanisms and great potential of precise
genome editing techniques to further scientific inquiry and
produce useful outcomes that benefit society.
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