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Background: Multivariate testing tools that integrate multiple genome-wide association
studies (GWAS) have become important as the number of phenotypes gathered from
study cohorts and biobanks has increased. While these tools have been shown to boost
statistical power considerably over univariate tests, an important remaining challenge is
to interpret which traits are driving the multivariate association and which traits are just
passengers with minor contributions to the genotype-phenotypes association statistic.

Results: We introduce MetaPhat, a novel bioinformatics tool to conduct GWAS of
multiple correlated traits using univariate GWAS results and to decompose multivariate
associations into sets of central traits based on intuitive trace plots that visualize
Bayesian Information Criterion (BIC) and P-value statistics of multivariate association
models. We validate MetaPhat with Global Lipids Genetics Consortium GWAS results,
and we apply MetaPhat to univariate GWAS results for 21 heritable and correlated
polyunsaturated lipid species from 2,045 Finnish samples, detecting seven independent
loci associated with a cluster of lipid species. In most cases, we are able to decompose
these multivariate associations to only three to five central traits out of all 21 traits
included in the analyses. We release MetaPhat as an open source tool written in
Python with built-in support for multi-processing, quality control, clumping and intuitive
visualizations using the R software.

Conclusion: MetaPhat efficiently decomposes associations between multivariate
phenotypes and genetic variants into smaller sets of central traits and improves
the interpretation and specificity of genome-phenome associations. MetaPhat is
freely available under the MIT license at: https://sourceforge.net/projects/meta-pheno-
association-tracer.

Keywords: multivariate analysis, genotype phenotype correlation studies, feature selection, Bayesian information
criteria, visualilzation, canonical correlation, multivariate GWAS, pheno- and genotypes
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INTRODUCTION

Genome-wide association studies (GWAS) of common diseases
and complex traits in large population cohorts have linked
thousands of genetic variants to individual phenotypes. In
emerging biobank studies as well as in some disease specific
collections have focused on, for example, Type 2 diabetes
(T2D) (Mahajan et al., 2018) or coronary artery disease (CAD)
(Ripatti et al., 2016), multiple related quantitative traits are
simultaneously available for genetic association studies. The
statistical power in these discovery efforts can be boosted
considerably by multivariate tests, which have become more
practical through recent implementations that require only
univariate summary statistics, such as MultiPhen (O’Reilly et al.,
2012), TATES (van der Sluis et al., 2013), CONFIT (Gai and
Eskin, 2018), MTAG (Turley et al., 2018), MTAR (Guo and Wu,
2019), and metaCCA (Cichonska et al., 2016). The merits of many
of these methods are further discussed by Chung et al. (2019).
Concretely, canonical correlation analysis (CCA) (Hotelling,
1936) is the direct extension of the correlation coefficient to
identify linear associations between two sets of variables, and
it has been successfully applied also to GWAS (Inouye et al.,
2012). Moreover, metaCCA extended CCA to work directly from
GWAS summary statistics (effect size estimates and standard
errors) of related traits and studies. However, a remaining
challenge is to interpret which traits are driving the multivariate
association and which traits are just passengers contributing
little to the association statistic. A successful identification of
a subset of central traits for each associated variant can lead
to new biological insights in studies of disease progression
and heterogeneity. To address this important task, we have
introduced MetaPhat (Meta-Phenotype Association Tracer), a
novel method to efficiently and systematically:

1. identify and annotate significant variants via multivariate
GWAS from univariate summary statistics using
metaCCA;

2. perform decomposition by systematically tracing the traits
of highest and lowest statistical importance to identify
subsets of central traits at each associated variant;

3. plot the traces of trait decompositions and cluster the
variants based on the ranking of the importance of traits.

MATERIALS AND METHODS

Workflow
MetaPhat requires as input a set of related GWAS summary
statistics from correlated traits. The program implements
efficient multi-trait genome-wide association testing,
identification of significant associations, and systematic tracing
of trait subsets to identify the central traits that consist of a
statistically optimal set of traits together with a set of driver
traits. A workflow is shown in Figure 1. In steps one to three,
genome-wide significant variants [P < 5e-8, the established
genome-wide threshold in the field (Sherry et al., 2001; Pe’er
et al., 2008)] were identified and were clumped into independent

groups that are subsequently represented by the lead variant of
each group (i.e., the variant with the smallest P-value). By default,
two lead variants were defined as independent if their distance
is higher than 1 million base pairs. At step four, we carried out
the decompositions of multivariate association by starting from
model with all K traits and removing one trait at a time until only
one trait remains. We proceeded via two different strategies that
we named the highest trace and the lowest trace. More specifically,
starting from the model with all K traits, we tested all unique
combinations of (K-1) traits to find the subset with the highest
CCA statistic (lowest P-value) that we assigned to the highest
trace and the subset with the lowest CCA statistic (highest
P-value) that we assigned to the lowest trace. We continued both
traces iteratively until only a single trait remained by always
choosing the subset with the highest CCA statistic on the highest
trace and the subset with the lowest CCA statistic on the lowest
trace. Intuitively, at each step, the trait dropped on the highest
trace was the trait that was best replaceable by the other traits
in the model with respect to the genetic association considered.
Analogously, at each step, the trait dropped on the lowest trace
was the trait that was most irreplaceable by the other traits in
the model with respect to the genetic association considered.
Altogether, we evaluated K2 subsets out of all possible 2K subsets
while building these two traces. Base pair distances, GWAS
P-value thresholds, and other program parameters could be
updated using command-line arguments.

We used the two traces to identify central traits that
are primarily responsible for the association with the variant
as explained next.

Evaluating Models
We used two quantities to evaluate models: CCA P-values and
Bayesian Information Criterion (BIC; Schwarz, 1978). P-values
allowed us to compare each association to the established
“genome-wide significance threshold” of 5e-8 (Pe’er et al.,
2008). By using the lowest trace, we could identify those traits
without which the multivariate P-value is no longer genome-
wide significant by simply collecting the traits that have been
removed from the full model when the P-value on the lowest
trace is first time above 5e-8. We call these traits the driver traits
since they drive the association in the sense that without them the
association does not anymore reach genome-wide significance
and hence would not have been reported as a discovery in a
GWAS. This definition of driver traits is based on a fixed P-value
threshold, which is an established practice in the field, but does
not claim any statistical optimality properties in terms of model
comparison. Hence, to more rigorously compare models with
different dimensionalities, we used BIC, which approximates the
negative marginal likelihood of the model and thus penalizes
for the model dimension (Schwarz, 1978). A lower BIC value
suggests a statistically better description of the data. A subset of
traits with minimum BIC would thus be the model of choice.
We defined the optimal subset as the subset with the lowest
BIC among all subsets on the highest trace and all subsets on
the inverted lowest trace. The inverted lowest trace aggregates
the traits that have been dropped on the lowest trace, and, in
particular, includes the set of the driver traits as one of its subsets.
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FIGURE 1 | MetaPhat workflow 1. GWAS results for K traits are accepted as input. 2. After quality control and filtering, a multivariate GWAS is performed on the full
model with all K traits using metaCCA via efficient multi-processing and chunking to reduce computation time. 3. Lead SNPs are detected and sorted based on the
leading canonical correlation/P-value and then clumped based on a user-specified window size. Custom variants can be added. 4. Decomposition of chosen
variants is performed through highest and lowest traces to find an optimal subset with a minimum BIC and driver traits based on the established P-value threshold.
5. MetaPhat results include trace plots for P-values and BIC, univariate association statistics plots for all lead SNPs, cluster maps (shown in Figure 2), and a
summary table listing central traits (union of drivers and optimal subset).

Subsequently, we defined the central traits as the union of traits
from the drivers and optimal BIC subset. MetaPhat traces and
terms are summarized in Table 1.

Computing P-Values and BIC From
GWAS Summary Statistics
metaCCA outputs the first canonical correlation r1 between the
genetic variant x and the set of k traits y1,. . .,yk and computes
the corresponding P-value (Clarke et al., 2011; Cichonska et al.,
2016). In this case, the first canonical correlation r1 equals to
the maximum correlation between the variant and any linear
combination of the traits and hence is equal to the square root
of the variance explained R2 from the linear regression of x on
y1,. . .,yk. In general, the expression for BIC is

BIC = log (n) k− 2 l̂og lk

where n is the sample size, k is the number of parameters (here
traits), and l̂og lk is the maximized log-likelihood. Next, we have
shown how to use metaCCA output r1 to derive BIC from the
maximized likelihood of the linear model written as a function of
R2 = r1

2.
Consider a linear model between a (mean-centered) variant x

and (mean-centered) traits y = (y1,. . .,yk)T .

x = yTβ+ ε = y1β1 + · · · + ykβk + ε, ε ∼ N
(
0, σ2) ,

where we do not include the intercept parameter as its maximum
likelihood estimate (MLE) is zero after mean-centering. The log-
likelihood function is

loglk(β, σ2) = −
n
2

log (2π)−
n
2

log
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σ2)
−

(
x− yTβ
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Thus, the log-likelihood at maximum is
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,

that is, σ̂2

σ̂2
0

= 1− R2 where σ̂2
0 = var(x).
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TABLE 1 | MetaPhat terminology.

Highest trace Starting from the full model of K traits, we tested all unique combinations of (K-1) traits to find the subset with the highest CCA statistic
(lowest P-value), and we iterated until K = 2. The goal was to drop most replaceable traits first.

Lowest trace Starting from the full model of K traits, we tested all unique combinations of (K-1) traits to find the subset with the lowest CCA statistic
(highest P-value), and we iterated until K = 2. The goal was to drop most irreplaceable traits first.

Inverted trace Aggregates the traits that have been dropped on the lowest trace. The goal was to include the driver sets into the search space for the
optimal set.

Drivers/driver traits The traits that have been dropped on the lowest trace at the step where the multivariate P-value was for the first time no longer
genome-wide significant. Interpretation: traits that make the multivariate association statistically significant.

Optimal set The subset of traits that has the lowest BIC among subsets across all three traces. Interpretation: the set that is a statistically optimal
description of the multivariate association.

Central traits Union of drivers and optimal set. Interpretation: includes the important traits of the multivariate association.

Hence, the logarithm of the likelihood ratio between the MLE
and the null model can be written as

log LR = l̂og lk− log lk(0, σ̂2
0) = −

n
2

log
σ̂2

σ̂2
0

=

1 −
n
2

log(1− R2).

Hence, we have that, for an additive constant

c = −2loglk
(

0,
∧

σ2
0

)
,

BIC = k log (n)− 2
(̂loglk) = k log (n)+ n log

(
1− R2)

+ c,

which is possible to compute directly from the metaCCA output
for models with at least two traits up to an additive constant c.
Since c does not depend on the model dimension, we can ignore
it in the BIC calculation, when we are only interested in the
differences in BIC between models.

Finally, for a single-trait model, R2 can be computed directly
from the univariate GWAS summary statistics as

R2
=

1
(1+ n/z2)

where z =
GWAS effect

standard error
,

which can be plugged in the BIC formula above to yield BIC for
the single-trait model.

Implementation and Output
MetaPhat is written in Python (compatible for 2.7 and 3+)
and requires R (3.4+) for plotting. The command-line based
program has been tested on multiple operating systems and
cloud images. Library requirements and command options are
further described in Supplementary Table S1, and test data are
accessible from the project page: https://sourceforge.net/projects/
meta-pheno-association-tracer.

MetaPhat outputs tabular text files and several plots.
A summary result file contains, for each chosen variant, the
driver traits and the optimal subset with their P-value and BIC
statistics. For each variant, trace plots using P-values and BIC
are generated, showing the highest trace, the lowest trace and
the inverted lowest trace. In addition, the univariate P-values
and directions of effects for each trait are also plotted. The
estimated phenotype correlation matrix, clustered heatmaps
of trait importance for the chosen variants and a similarity

between variants using trait rankings on the lowest trace
are produced. Optionally, intermediate statistics during the
decomposition can be plotted to get a more detailed view of the
decomposition process.

Materials
Our lipidomics data set consisted of the univariate GWAS results
of 21 correlated lipid species with polyunsaturated fatty acids that
were reported to exhibit high heritability (Tabassum et al., 2019)
and showed high correlation (Supplementary Figure S2). These
results originated from 2,045 Finnish subjects with imputed
genotypes available at∼8.5 million SNPs. The arbitrarily assigned
lipid species identifiers along with their class names and fatty
acid chemical properties are listed in Table 2A. To further
validate MetaPhat, we processed summary statistics from four
basic lipids [high-density lipoprotein (HDL) cholesterol, low-
density lipoprotein (LDL) cholesterol, triglycerides (TG), and
total cholesterol (TC)] conducted by the Global Lipids Genetics
Consortium (GLGC) (Willer et al., 2013; Zhu et al., 2018), and
these are listed in Table 2B. With the GLGC data set our aim was
to compare MetaPhat results with univariate results reported by
GLGC for all variants reported to be significantly associated with
two or more traits by GLGC.

RESULTS

Using the lipidomics data sets with GWAS summary statistics
from the 21 polyunsaturated lipids, MetaPhat found seven
independent lead variants after clumping the 415 variants
exceeding the standard GWAS P-value threshold of 5e-8 within a
window of 1 Mb. Table 3 lists these variants along with their gene
annotation, multivariate P-value, and central traits. MetaPhat
has strongly reduced the multivariate association for all seven
variants into smaller and more specific groups of central traits.

We considered in more detail rs7412, which is a missense
variant in the APOE gene and is known for its effect on LDL,
as reported, for example, in the GLGC analysis (Willer et al.,
2013). With the lipidomics data, this variant would not have been
identified from any of the 21 univariate GWAS as the smallest
univariate P-value was 1.1e-4 (trait PCO23, Supplementary
Figure S3.6). On contrary, the multivariate GWAS by MetaPhat
clearly highlighted this variant associated with the multivariate
lipidomics (P = 4.2e-13) and further determined that the
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TABLE 2 | Lipid traits used in MetaPhat analysis.

(A) PLASMA LIPIDOMICS

Identifier Lipid class Lipid species QC’d variants HDL corr. LDL corr. TG corr.

CE14 Cholesteryl ester CE(20 : 4;0) 8,711,715 0.032 0.464 0.251

CE15 Cholesteryl ester CE(20 : 5;0) 8,711,715 0.067 0.396 0.188

CE17 Cholesteryl ester CE(22 : 6;0) 8,711,665 0.107 0.394 0.107

LPC8 Lysophospatidylcholines LPC(20 : 4;0) 8,710,151 0.011 − 0.124 − 0.083

LPC9 Lysophospatidylcholines LPC(22 : 6;0) 8,694,250 0.114 − 0.015 − 0.118

LPE5 Lysophosphatidylethanolamine LPE(20 : 4;0) 8,710,162 0.077 − 0.077 0.073

LPE6 Lysophosphatidylethanolamine LPE(22 : 6;0) 8,711,037 0.235 0.005 0.041

PC17 Phosphatidylcholine PC(16 : 0;0− 20 : 4;0) 8,711,715 0.120 0.115 0.361

PC18 Phosphatidylcholine PC(16 : 0;0− 20 : 5;0) 8,711,533 0.126 0.196 0.248

PC29 Phosphatidylcholine PC(17 : 0;0− 20 : 4;0) 8,704,982 0.113 0.138 0.250

PC36 Phosphatidylcholine PC(18 : 0;0− 20 : 4;0) 8,711,715 0.033 0.190 0.336

PC37 Phosphatidylcholine PC(18 : 0;0− 20 : 5;0) 8,751,062 0.061 0.242 0.243

PC46 Phosphatidylcholine PC(18 : 1;0− 20 : 4;0) 8,711,715 0.240 0.105 0.214

PC21 Phosphatidylcholine PC(16 : 0;0− 22 : 6;0) 8,711,715 0.154 0.204 0.219

PCO7 Phosphatidylcholine-ether PC−O(16 : 0;0− 20 : 4;0) 8,711,715 0.081 0.194 0.076

PCO23 Phosphatidylcholine-ether PC−O(18 : 0;0− 20 : 4;0) 8,711,560 0.187 0.115 − 0.154

PCO29 Phosphatidylcholine-ether PC−O(18 : 1;0− 20 : 4;0) 8,710,292 0.198 0.115 − 0.086

PE7 Phosphatidylethanolamine PE(18 : 0;0− 20 : 4;0) 8,707,361 − 0.027 0.028 0.585

PEO3 Phosphatidylethanolamine-ether PE −O(16 : 1;0− 20 : 4;0) 8,706,846 0.083 0.198 0.154

PEO11 Phosphatidylethanolamine-ether PE −O(18 : 2;0− 20 : 4;0) 8,693,147 0.148 0.238 0.099

PI9 Phosphatidylinositol PI(18 : 0;0− 20 : 4;0) 8,711,715 − 0.026 0.231 0.460

(A) Polyunsaturated lipid species with acyl chains- C20:4 (14 lipids), C20:5 (3 lipids), and C22:6 (4 lipids) measured for 2,045 individuals (Tabassum et al., 2019). After
quality control (QC), a total of 8,576,290 variants were available for all 21 traits. Correlations to basic lipids HDL, LDL, and TG are also shown. (B) Four basic lipids from
GLGC (Willer et al., 2013). After quality control, a total of 2,267,285 variants were available for all four traits.

(B) GLGC LIPIDS

Identifier Lipid class QC’d variants Sample size

HDL High-density lipoprotein cholesterol 2,343,025 95,129

LDL Low-density lipoprotein cholesterol 2,271,091 90,421

TC Total cholesterol 2,341,292 95,537

TG Triglycerides 2,286,633 91,598

association was driven by CE14 and PCO23 (P-value after
excluding these driver traits is 1.8e-06). The BIC-optimal subset
for this variant extended the drivers by one additional trait
and included CE14, PC36, and PCO23, which form the central
traits. The trace plots for rs7412 are shown in Figure 2A (P-
values for defining driver traits) and Figure 2B (BIC for defining
optimal subset).

Variants rs66505542 near BUD13 and rs261290 near
ALDH1A2 both have only one driver trait (PI9 for BUD13 and
PE7 for ALDH1A2) and three or five central traits (Table 3).
Earlier, the APOA1 variant rs964184 within 100 kb of rs66505542
has been reported to be associated with TG (lead trait, P = 7.0e-
224), TC, HDL, and LDL in GLGC data and rs66505542 itself
with several cell phenotypes (platelet count, red cell distribution
width, sum of eosinophil and basophil counts) in the GWAS
catalog, while rs261290 has been reported to be associated with
HDL (lead trait, P = 1.0e-188), TC, and TG in GLGC data
(mapped to LIPC gene) and with HDL in the GWAS catalog.

A very different picture emerges for rs174567 near FADS1/2
since its 18 central traits show its wide effects across the
lipidomics traits studied here. Previously reported FADS1/2
associations are with all lipid traits (TG lead trait, P = 7.0e-38)
in GLGC data and with metabolite measurements and gallstones
in the GWAS catalog.

Trait importance map that clusters each variant based on the
lowest trace is shown in Figure 2C and the similarity of the
variants as measured by rank correlation of the traits on the
lowest trace is shown in Figure 2D. The trace plots for the other
six variants than rs7412 are shown in Supplementary Figure S1.

Validation and Global Lipids Genetics
Consortium
We processed the Global Lipids Genetics Consortium (GLGC)
GWAS study for four plasma lipids (HDL, LDL, TC, and
TG, as listed in Table 2B). These correlated traits along with
large sample sizes and available summary files are suitable for
MetaPhat GWAS and decomposition. We focused on the 13
variants reported by GLGC to have associations with three or
more lipid traits (Supplementary Tables S2 and S3 from Willer
et al., 2013). In Table 4, we validated that at 12 out of the
13 variants the same associations are confirmed by MetaPhat’s
central traits. The only discordance was at rs6831256 (DOK7)
where we found TC and TG as central traits compared to
previously reported univariate associations with TC, TG, and
LDL. As TC and LDL are highly correlated, it is understandable
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TABLE 3 | MetaPhat results of the 7 lead variants from the multivariate analyses of the lipidomics data.

Variant/Gene Samples
missing

P-value
all traits

Driver trait(s) P-value without
drivers

BIC optimal
subset

P-value BIC
optimal
subset

Central traits

*rs174567/FADS2 1.3% 2.40e–145 PC36, CE14, PC17, LPC8,
PEO11, PEO3, LPE5,
PC21, PC46, PC29, CE15,
PC37, PC18, PCO7,
PCO29, PCO23, PI9, PE7

1.95e–05 CE15, LPC8, PC17,
PC21, PC36, PC46,
PE7, PEO11, PI9

2.10e–146 PC36, CE14,
PC17, LPC8,
PEO11, PEO3,
LPE5, PC21,
PC46, PC29,
CE15, PC37,
PC18, PCO7,
PCO29, PCO23,
PI9, PE7

*rs66505542/BUD13 0.1% 1.55e–08 PI9 3.39e–04 PI9, LPC9, PC36 3.27e–12 PI9, LPC9, PC36

rs146327691/SLCO1A2_
UTR

1.2% 4.27e–08 LPE5 1.91e–06 LPE5, LPC9, LPE6,
PE7

5.60e–11 LPE5, LPC9, LPE6,
PE7

rs188167837/ENSG00
000200733_UTR_13KB

1.0% 2.95e–08 PC17 7.59e–05 PC17, CE14, CE17,
PC21

4.64e–09 PC17, CE14,
CE17, PC21

*rs261290/ALDH1A2 0.6% 2.51e–40 PE7 2.04e–07 PE7, CE15, PC17,
PCO29, PI9

1.37e–46 PE7, CE15, PC17,
PCO29, PI9

*rs7412/APOE 0% 4.17e–13 CE14, PCO23 1.82e–06 CE14, PCO23, PC36 5.79e–18 CE14, PCO23,
PC36

rs8736/MBOAT7 23.6% 9.12e–50 PI9 5.89e–02 PI9, LPE6, PC36, PE7 1.25e–81 PI9, LPE6, PC17

The lipid trait class names and acyl chain properties are listed in Table 2A. *Variant region reported as significant for basic lipids by GLGC (Willer et al., 2013).

that the smaller dimension of the set TC, TG, may in some
analyses be preferred over the set that also includes LDL. In
Supplementary Table S2, we further report high concordance
between our central traits and GLGC variants found associated
with two or more standard lipids.

Performance
For computing the test statistic, MetaPhat uses metaCCA
that, for a single SNP, has previously been shown to reliably
estimate the results of standard CCA applied to individual level
data (canoncorr function in Matlab) (Cichonska et al., 2016).
Additionally, we also empirically validated MetaPhat multivariate
findings with GLGC results.

MetaPhat considerably cuts down the computational demands
of comprehensive subset testing. With K traits, there are 2K-
1 non-empty subsets that have quickly become infeasible to
systematically assess, while MetaPhat only considers about K2

models. For example, in our example with K = 21 traits, the gain
in performance is about 4,700-fold compared to the complete
subset testing. To further increase performance and usability,
we have implemented flexibility for multi-thread processing
to enable high performance and memory efficiency. On a
moderate Google cloud image (16 vCPUs, 8 GB), the complete
MetaPhat workflow for our lipidomics analysis, containing 21
lipids and 8.5 million SNPs, was completed in less than 2.5 h
(143 min). Using 10 processors and 9 gigabytes of memory,
the GLGC job with the four basic lipids and 2.4 million
imputed SNPs completed in 24 min. MetaPhat also allows
decomposition and plotting of custom SNPs. For example, the
custom analysis of the 13 GLGC variants associated with three
or more traits, shown in Table 4, was run again on existing
GLGC MetaPhat results, and decomposition and plotting took

only 2 min. We note that the run time could be longer on
shared servers but also substantially shorter using more powerful
dedicated cloud images.

DISCUSSION

It is expected that a particular genetic variant may affect
only a subset of related biomarkers that are risk factors of
complex disorders, such as T2D or coronary heart disease.
We implemented MetaPhat to systematically decompose and
visualize statistically significant multivariate genome-phenome
associations into a smaller group of central traits, based only
on univariate GWAS summary statistics. We are not aware
of comparable software to MetaPhat that would automatically
carry out multivariate GWAS and identify central traits for
the associations from summary statistics. ASSET (Bhattacharjee
et al., 2012) aims to find the best trait subsets within a pool
of multiple studies and has been applied particularly for case-
control studies. MTAG (Turley et al., 2018) can be applied to
GWAS results of multiple related traits and overlapping samples,
but its aim is to improve the accuracy of the univariate effect
sizes by using the information from correlated traits rather than
decomposing the multivariate association to individual traits.

In our results from an analysis of 21 lipidomics traits, we
demonstrated that the APOE association (rs7412) benefited from
multivariate testing (driven by CE14 and PCO23 traits), as
the univariate P-value was insignificant (P > 1e-4) across all
21 GWAS traits (shown in Supplementary Figure S3.6), but
multivariate P-value was low (P < 5e-13). This variant is known
to have a strong effect on LDL, and Table 2 shows that CE14
has the highest correlation with LDL (0.464). The other two
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FIGURE 2 | MetaPhat results using multivariate lipidomics data. (A) Trace plot of rs7412 identifies CE14 and PCO23 as the driver traits. (B) CE14, PC36, and
PCO23 form the optimal subset as defined by minimum BIC (highest negative BIC). (C) Trait importance map of each SNP is the rank on the lowest trace where the
rankings are transformed to the range of 0 and 1 values, with darker blue shades representing the most important traits of the multivariate association. (D) SNP
similarity based on the rank correlation on the lowest trace.

central traits of this variant, PCO23 and PC36, did not have any
correlation to basic lipids larger than 0.20 in absolute magnitude.

Table 3 lists the multivariate results including which four
of these seven variants were previously reported by GLGC as
associated with at least one of the four basic lipids. The other
three variants also have some nearby variants that have been
reported in the GWAS catalog (Buniello et al., 2019). First, rs8736
in MBOAT7 has been previously reported to be associated with

human blood metabolites (Shin et al., 2014) as well as alcohol
related cirrhosis of the liver (Buch et al., 2015). Second, variants
in the region of rs146327691, near the SLCO1A2 gene, have been
previously reported for response to serum metabolites (Krumsiek
et al., 2012) and, interestingly, also for response to statins (Ho
et al., 2006; Carr et al., 2019). Lastly, variants in the region
of rs188167837 have been previously identified to be associated
with nasopharyngeal carcinoma (Su et al., 2013). Additionally,
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TABLE 4 | MetaPhat detection of driver and optimal lipid sets for 13 variants reported to be associated with at least three lipids by GLGC (12).

Gene Variant Chr:Pos GLGC associated
lipids

GLGC lead
P-value

MetaPhat all
traits P-value

MetaPhat
driver(s)

Without driver
(s) P-value

BIC optimal
set

Central traits

HDL lead

PIGV-NR0B2 rs12748152 chr1:27138393 HDL LDL TG 1e–15 2.8e–23 HDL LDL TG 3.0e–06 HDL LDL HDL LDL TG

PPP1R3B rs9987289 chr8:9183358 HDL LDL TC 2e–41 1.6e–76 HDL TC LDL 1.0e–04 HDL LDL HDL LDL TC

LIPC
(ALDH1A2)

rs1532085 chr15:58683366 HDL TC TG 1e–188 0 HDL TC TG 6.4e–01 HDL TC TG HDL TC TG

CETP rs3764261 chr16:56993324 ALL 1e–769 0 ALL NA HDL LDL TG ALL

LDL lead

MIR148A rs4722551 7:25991826 LDL TG TC 4e–14 2.5e–24 TG LDL TC 2.0e–02 LDL TG LDL TG TC

APOE rs4420638 19:45422946 ALL 2e–178 6.3e–210 ALL NA LDL HDL TC ALL

TC lead

TIMD4 rs6882076 5:156390297 TC LDL TG 5e–41 1.3e–49 TG TC LDL 6.9e–01 TC TG TC LDL TG

CILP2 rs10401969 19:19407718 TC TG LDL 4e–77 1.3e–138 TG TC LDL 1.0e–01 TC TG TC TG LDL

TG lead

LRPAP1
(DOK7)

rs6831256 4:3473139 TG TC LDL 2e–12 6.3e–16 TG TC 1.0e–07 TG TC TG TC

ANGPTL3 rs2131925 1:63025942 TG LDL TC 3e–74 7.8e–157 TG LDL TC 9.5e–05 TG TC HDL ALL

TRIB1 rs2954029 8:126490972 ALL 1e–107 1.6e–148 ALL NA TG TC LDL ALL

FADS123 rs174546 11:61569830 ALL 7e–38 1.3e–104 ALL NA ALL ALL

APOA1 rs964184 11:116648917 ALL 7e–224 7.9e–264 ALL NA TG TC ALL

We confirmed that the vast majority of the MetaPhat central traits are either the same or a subset of the reported GLGC associated lipids (11/13 for driver traits, 12/13
for BIC).

MetaPhat decomposed most variants to substantially smaller
sets of central traits than the full set of 21 traits, which can
provide new biological insight regarding the variants identified.
On the other hand, the essential role of FADS2 gene region
in regulating unsaturation in fatty acids was clearly reflected
in MetaPhat results, as we observed as many as 18 central
traits at the lead variant. Provided that the exact mechanistic
roles of polyunsaturated lipids toward heart disease (Teslovich
et al., 2010; Malovini et al., 2016; Pizzini et al., 2017) are under
active investigation, our findings warrant further evaluation. We
further confirmed good concordance (60/67, Supplementary
Table S2) with MetaPhat central traits with respect to the earlier
reported GLGC associations with two or more standard lipids,
and excellent concordance (12/13) with the associations with
three or more standard lipids.

MetaPhat optimal subsets are derived from the minimum BIC
score representing the model that best describes the data when
we account for both the model fit and the model dimension.
Qualitatively BIC statistic is similar to the widely-used AIC
(Akaike, 1973) statistic, but BIC quantitatively differs from
AIC by favoring smaller dimensions, which also improves the
interpretation of the optimal models. As intuitively expected,
and as seen in Table 3, the driver traits tend to be members
of the optimal set although they do not always agree, since the
driver traits are defined by a GWAS-specific criterion of P-value
threshold 5e-8, which does not need to coincide with the optimal
subset chosen by a more statistically justified BIC criterion.

Our software implements flexible parameters for custom
multi-thread chunking to enable high performance, genome-
wide, multi-trait meta-analysis while integrating metaCCA for
multivariate testing followed by systematic decomposition of
traits. Thus, a limitation of MetaPhat is that it relies on metaCCA,
but other multivariate GWAS algorithms could also be used
provided that these methods can work with univariate GWAS
results as inputs and produce suitable metrics that can be
used to derive the model comparison statistics. With regard to
false positives, we used the standard GWAS cutoff (P = 5e-
8), as carried out only a single multivariate GWAS to pick
the lead variants. This cutoff can be adjusted according to
the preferences of the users. MetaPhat also optionally allows
the running of metaCCA+ (Cichonska et al., 2016) shown to
protect against false positives via shrinkage that adds robustness
to the analysis.

Finally, we remind the reader that MetaPhat decompositions
are sequential, dropping one trait at a time, and hence are not
guaranteed to produce the globally optimal subset. Additionally,
for highly correlated traits, such as LDL and total cholesterol, the
choice of which one is dropped first may not be completely robust
to small changes in data.

The ability of MetaPhat to identify and visualize central
traits will also be valuable in supporting efforts and pipelines
(Fatumo et al., 2019) comparing results between univariate
and multivariate associations as well as in studies that aim to
increase specificity of multi-trait associations. We also expect
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that the multi-phenotype clustering results of MetaPhat can assist
researchers investigating disease subtypes.
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