
fgene-11-00434 May 14, 2020 Time: 20:6 # 1

METHODS
published: 15 May 2020

doi: 10.3389/fgene.2020.00434

Edited by:
Xianwen Ren,

Peking University, China

Reviewed by:
Hongmin Cai,

South China University of Technology,
China

Prashanth N. Suravajhala,
Birla Institute of Scientific Research,

India

*Correspondence:
Xiguo Yuan

xiguoyuan@mail.xidian.edu.cn

Specialty section:
This article was submitted to
Genomic Assay Technology,

a section of the journal
Frontiers in Genetics

Received: 19 January 2020
Accepted: 08 April 2020
Published: 15 May 2020

Citation:
Zhao H, Huang T, Li J, Liu G and

Yuan X (2020) MFCNV: A New
Method to Detect Copy Number
Variations From Next-Generation

Sequencing Data.
Front. Genet. 11:434.

doi: 10.3389/fgene.2020.00434

MFCNV: A New Method to Detect
Copy Number Variations From
Next-Generation Sequencing Data
Haiyong Zhao1,2, Tihao Huang1, Junqing Li1, Guojun Liu2 and Xiguo Yuan2*

1 School of Computer Science and Technology, Liaocheng University, Liaocheng, China, 2 The School of Computer Science
and Technology, Xidian University, Xi’an, China

Copy number variation (CNV) is a very important phenomenon in tumor genomes and
plays a significant role in tumor genesis. Accurate detection of CNVs has become a
routine and necessary procedure for a deep investigation of tumor cells and diagnosis
of tumor patients. Next-generation sequencing (NGS) technique has provided a wealth
of data for the detection of CNVs at base-pair resolution. However, such task is usually
influenced by a number of factors, including GC-content bias, sequencing errors, and
correlations among adjacent positions within CNVs. Although many existing methods
have dealt with some of these artifacts by designing their own strategies, there is still a
lack of comprehensive consideration of all the factors. In this paper, we propose a new
method, MFCNV, for an accurate detection of CNVs from NGS data. Compared with
existing methods, the characteristics of the proposed method include the following:
(1) it makes a full consideration of the intrinsic correlations among adjacent positions
in the genome to be analyzed, (2) it calculates read depth, GC-content bias, base
quality, and correlation value for each genome bin and combines them as multiple
features for the evaluation of genome bins, and (3) it addresses the joint effect among
the factors via training a neural network algorithm for the prediction of CNVs. We test
the performance of the MFCNV method by using simulation and real sequencing data
and make comparisons with several peer methods. The results demonstrate that our
method is superior to other methods in terms of sensitivity, precision, and F1-score and
can detect many CNVs that other methods have not discovered. MFCNV is expected
to be a complementary tool in the analysis of mutations in tumor genomes and can be
extended to be applied to the analysis of single-cell sequencing data.

Keywords: copy number variations, next-generation sequencing data, multiple features, neural network, tumor
purity

INTRODUCTION

Copy number variations (CNVs) are a type of structural variations accounting for the majority
of genomic mutations in human genome. CNVs have been demonstrated to be associated with
various complex diseases including cancer, systemic lupus erythematous, Parkinson’s disease,
and autoimmune diseases (McCarroll and Altshuler, 2007; Sebat et al., 2007; Stankiewicz and
Lupski, 2010). Accurate detection of CNVs from human genome has become a crucial step
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for a deep understanding of a complex disease and its
evolution and has gradually become a regular procedure
for designing precision medicine. The recent development
of next-generation sequencing (NGS) technique has provided
us with an unprecedented opportunity to discover new
CNVs. Compared with traditional chromosomal microarray
technologies including array comparative genomic hybridization
and single nucleotide polymorphism genotyping arrays, NGS
has several distinguishable advantages: high-level resolution,
high efficiency, and reduction of cost (Schuster, 2008; Ansorge,
2009, 2010). Therefore, it is very attractive and promising for
researchers to develop methods for the detection of CNVs and
other types of genomic mutations by using NGS data.

Currently, a lot of computational methods have already been
proposed to detect CNVs on targeted, whole-exome, or whole-
genome sequencing data. These methods could be generally
classified into four categories: read depth (RD), paired-end
mapping, split-read, and de novo assembly (Zhao et al., 2013;
Mason-Suares et al., 2016; Yuan et al., 2019a). Since the size
of CNVs is typically ranging from 1 kb to several mega bases
(Freeman et al., 2006) while the length of the sequencing reads
is usually limited to hundreds of bases, the RD-based methods
are expected to have the most potential to accurately detect
CNVs in a wide range of sizes (Yuan et al., 2019a). One of the
most popular RD-based methods is CNVnator (Abyzov et al.,
2011), which adopts a mean-shift technique (Comaniciu and
Meer, 2002) to partition the observed RD profile into segments
with presumably different copy numbers, merges segments with
minimal difference in RD by a greedy algorithm, and then makes
CNV calls via a t-test procedure. The merit of this method is
that it can discover broad CNVs and can get a high sensitivity
in the analysis of data with high coverage depth. However, when
facing with relatively low-coverage-depth data, the false-positive
rate of CNVnator is not easy to control due to the influence
from artifacts such as GC-content bias and uneven distribution
of reads, although the CNVnator method has dealt with the
GC bias in a reasonable way. Other popular RD-based methods
include ReadDepth (Miller et al., 2011), XCAVATOR (Magi et al.,
2017), Wavedec (Cai et al., 2018), seqCNV (Chen et al., 2017),
iCopyDAV (Dharanipragada et al., 2018), GROM-RD (Smith
et al., 2015), CONDEL (Yuan et al., 2018a), CLImAT (Yu et al.,
2014), CNV_IFTV (Yuan et al., 2019b), m-HMM (Wang et al.,
2014), DCC (Yuan et al., 2018c), CNV-seq (Xie and Tammi,
2009), and FREEC (Boeva et al., 2012). The characteristics of the
existing methods are listed in Table 1. The common steps behind
most of these methods include: (1) read processing, e.g., filtering
low-quality bases, (2) read alignment to the reference genome, (3)
dividing the genome into non-overlapping bins of equal sizes and
calculating the RD for each bin, (4) correcting GC-content bias
across the RD profile, and (5) calling CNVs through establishing
computational models on the RD profile. The primary difference
among these methods lies in their insights into the RD profile
from different perspectives. For example, Wavedec explores the
shared and individual CNV patterns with different characteristics
via wavelet transform on the RD profile, m-HMM models the RD
profile as a series of hidden states, and CNV_IFTV models the
RD profile as a forest of trees. Such methods exhibit their own

advantages in the application to synthetic and real sequencing
datasets. However, many factors related with CNVs and the
interactions between them have still not been explored fully by
the existing methods.

Besides the values of RDs, the intrinsic correlations among
adjacent genomic positions are closely associated with CNVs
(Yuan et al., 2012b, 2018a). An independent analysis of RDs
tends to result in conservativeness in the calling of CNVs.
Although some existing methods have implicitly addressed
the effect of correlations, such as CNVnator (Abyzov et al.,
2011) and CONDEL (Yuan et al., 2018a), which improve the
efficiency of statistics on RDs via partitioning the genome into
independent segments and combining the correlations into a
statistic design, respectively, the interaction between RDs and
correlations is still ignored. The neglect of such interaction
may limit their generalization abilities in detecting CNVs under
various scenarios of sequencing data (e.g., low coverage depth
and low tumor purity). In addition, other factors, such as
GC-content bias and base quality, have also been dealt with
separately. Generally, a separate analysis of these factors is
just suitable to some particular scenarios. For example, if the
sequencing coverage depth or tumor purity is at a low level,
then the proportion of absolute RD signals in the observed
signals may not be dominant. In this case, an inappropriate
correction of GC-content bias and filtering of low-quality bases
with a cutoff will transfer unexpected deviations to the RD
profiles so that the analysis of CNVs is influenced accordingly.
Therefore, a reliable and feasible strategy is to make a full
consideration about the CNV-related factors by addressing the
interactions among them.

With the concerns above, in this paper, we propose a new
method, called MFCNV (detection of CNVs based on multiple
features), for an accurate detection of CNVs from NGS data.
The primary principle of MFCNV is that it incorporates four
factors (RD, GC-content, correlations among adjacent genomic
positions, and base quality) into the analysis of genome bins
and makes a joint effect among them via training a neural
network algorithm for the prediction of CNVs. Compared with
existing methods, it has considered the major factors related with
CNVs, especially for the intrinsic correlations among adjacent
genomic positions that very few methods have been concerned
of. Moreover, MFCNV addresses the interactions among the
incorporated factors rather than marginal effects. To demonstrate
the performance of MFCNV, we carry out experiments on
simulation and real sequencing samples and compare it with
several peer methods. The comparative results indicate the merits
of MFCNV over the other methods. MFCNV can be expected
to be a routine approach for the detection of new CNVs from
NGS data in real applications and can be extended to analyze
single-cell sequencing data.

The remainder of this paper is organized as follows: The
workflow of MFCNV and the related principles are described
firstly, and then simulation studies are designed to evaluate the
performance of the proposed method and its peer methods as well
as validations by applying it to real sequencing samples. Finally,
the proposed method is discussed and an outline of future work
for improvements is illustrated.
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TABLE 1 | The characteristics of the existing methods.

Methods Signals Analysis
samples

Data input Language and
interface

ReadDepth Read depth Single BED R, CLI

XCAVATOR Read count Multiple,
matched,
single

Read count Perl, bash, R,
Fortran, CLI

Wavedec Read depth Multiple,
single

Array, aCGH,
read depth

–

seqCNV Read count Matched BAM and BED Perl, CLI

iCopyDAV Read depth Matched BAM and BED C+++, R, CLI

GROM-RD Read depth Single BAM and BED C, CLI

CONDEL Read depth Single Read depth C++, Perl, CLI

CNV IFTV Read depth Single Read depth Python, CLI

m-HMM Read count Matched Positions and
read count

R, CLI

DCC Read depth Multiple Read depth C++, Perl, CLI

CNV-seq Read depth Single BED R, Perl, CLI

FREEC Read depth
and GC
content

Single,
matched

BAM, SAM C++, CLI

Single, single sample analysis with normal-matched samples; matched, tumor-
normal matched samples; multiple, multiple sample analysis; CLI, command line.

MATERIALS AND METHODS

Workflow of MFCNV
The workflow chart of the MFCNV method is illustrated in
Figure 1. It starts from an initial input of a reference genome
and a sequencing sample to a preprocessing of the input data and
then carries out four primary steps to realize the prediction of
CNVs. Here the reference genome can be chosen from the latest
version of references such as GRCh38, and the sequencing sample
to be analyzed can be obtained from tumor samples without
normal matched samples. The four primary steps include: (1)
definition of factors related to CNVs, where four types of factors
are calculated and their values are normalized, (2) construction of
a neural network based on the factors, where a back-propagation
(BP) neural network algorithm is selected, (3) training of the
neural network, where labeled CNVs could be sampled from
both synthetic and real sequencing datasets, and (4) prediction
of CNVs and declaration of gains or losses, where the CNV state
for each genome bin is predicted based on the trained neural
network algorithm as well as the type of CNVs (gain or loss).
The codes of the MFCNV method are freely available at the
website https://github.com/BDanalysis/mfcnv. In the following
text, we make a detailed description of the principle for each
of the four steps.

Data Input and Preprocess
The input two files (i.e., a reference file formatted in fasta and
a sequencing sample file formatted in fastq) are handled by
adopting one of the classic alignment approaches BWA (Li and
Durbin, 2009). This will result in an alignment file formatted
in BAM. A read count (RC) profile can be obtained from this
BAM file by using the SAMtools software (Li et al., 2009). The

FIGURE 1 | Workflow of the MFCNV method for the detection of copy
number variations from next-generation sequencing data.

template of the RC profile is the reference genome, where a
large majority of the positions have been determined with the
regular bases (“A,” “T,” “C,” and “G”), while a small fraction
of them have not been determined (Yuan et al., 2019a). The
undetermined positions are usually filled with letter “N” so that
no sequencing reads could be matched to these areas. To obtain a
complete and reasonable RC profile, we discard the “N” areas in
the reference template. This is similar to our previous work (Yuan
et al., 2019a). However, this will inevitably lead to a situation:
the observed mean RC across the whole genome is smaller than
the expected coverage depth since a set of sequencing reads
that originated from “N” areas are unmapped. This implies that
taking the mean RC as a baseline of normal copy number may
not be reasonable in the calling of CNVs. Therefore, in our
work, we do not rely on such baseline but train a predictor
for the declaration of CNVs. This will be described in detail in
the following text.

For the calculation of the RD profile, we divide the extracted
RC profile into non-overlapping and continuous genome bins of
equal sizes. The mean RC within each genome bin is taken as
the RD value. The bin size can be set to 1,000 or 2,000 bp or
other suitable values according to the users (Yuan et al., 2018a,c).
Generally, if we focus on detecting broad CNVs, a large bin size
should be preferred, while if we focus on detecting focal CNVs,
a small bin size should be preferred. It is a fact that the larger
the bin size, the larger the boundary deviation from the ground
truth might be. Another factor that affects the setting of bin size
is the sequencing coverage depth. If the coverage depth is at an
extremely low level (e.g., less than 2×), a small bin size tends to
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produce a high false-positive rate. This is because many bins may
present zero RD values, which cannot be discriminated from real
homogeneous deletions. If the coverage depth is at a moderate
or high level, a relatively small bin size could be chosen, which
can narrow the deviations between the detected CNVs and the
ground truths without losing the sensitivity. Therefore, we take
the bin size as a flexible parameter in the design of the MFCNV
software rather than fix its value. For convenience, we denote the
template of bins and the RD profile by using Eqs (1) and (2),
respectively.

B =
{
b1, b2, b3, . . . , bn

}
, (1)

R = {r1, r2, r3, . . . , rn} , (2)

where n represents the total number of bins in the whole genome
to be analyzed, bi represents the i-th bin, and ri represents the RD
value of the i-th bin. Our purpose is to determine whether each
bi is abnormal or normal and then further determine if it is an
amplification or a deletion event.

Definition of Factors Related to CNVs
Based on the template of B, the RD profile R can be used to
establish statistical or computational models for testing each
bin in B. However, the RD profile is usually influenced by
some artifacts such as GC-content bias, sequencing errors,
and even uneven distributed sequencing reads. This may
lead to the observed R which may not be a reasonable
reflection of copy numbers across the whole genome. If the
statistical or computational models are established directly on
the observed R, the performance of calling CNVs is difficult
to guarantee. Although many existing methods have made
preprocess procedures to deal with some artifacts, the effect may
be suitable to some particular situations according to our analysis
in the previous text. In this work, we do not make a correction
to the GC-content bias beforehand but take the GC-content as a
factor for the detection of CNVs. At the same time, we do not
deliberately discard the bases with qualities below a predefined-
cutoff but also take the quality as a factor. Except for the factors
that can influence the RD profile, some characteristics associated
with structural variation itself should be taken into consideration.
The intrinsic correlation among adjacent genome positions is
one of the most important characteristics. Accordingly, we have
obtained a total of four factors including RD for the prediction of
CNVs. Since the RD profile is definitely given in Eq. (2), below we
focus on the definition of the other three factors, including their
calculations and normalizations.

In order to maintain the consistency of the representation
format, we denote the GC-content, base quality, and correlation
by using Eqs (3–5), respectively, where n represents the total
number of bins in the whole genome to be analyzed, gi, qi, and
ci represents the fraction of GC-content, average quality, and
correlation of the i-th bin, respectively. Accordingly, each bin bi
can be represented by using a quadruple, bi = (ri, gi, qi, ci). Now
our purpose is to determine whether bi is a CNV or not according
to the quadruple.

G =
{
g1, g2, g3, . . . , gn

}
, (3)

Q =
{
q1, q2, q3, . . . , qn

}
, (4)

C = {c1, c2, c3, . . . , cn} . (5)

As far as calculations of the factors are concerned, gi is defined
as the fraction of “G” and “C” within the i-th bin and its value
is ranging from 0 to 1, and qi is defined as the average quality of
the mapped reads within the i-th bin. As for ci, it is not easy to
calculate based on a single sample, instead we extract a value that
can reflect the smoothness of the i-th bin with its surrounding
area. This value is obtained by using Eq. (6).

ci =

∣∣∣∣∣∣ri − 1
2w

i+w∑
i−w,j6=i

rj

∣∣∣∣∣∣ , (6)

where w denotes the number of left adjacent and right adjacent
bins for the i-th bin. The meaning of Eq. (6) can be explained as
such that the RD difference between the i-th bin and its adjacent
bins should be small if they are within the same copy number
segment; otherwise, the difference should be relatively large. The
fundamental concept underlying such explanation is that copy
numbers are structural and intrinsic-correlated.

By far, we could achieve the values for all the elements in
bi. Since each element may have different ranges of values,
for example, the value of qi is usually dozens while the value
of gi is limited to 1, it is necessary and meaningful to make
normalizations for the values so that they are at the same
level. Such procedure will bring a balanced adjustment effect on
various factors. The normalization strategy for GC content can
be expressed as Eq. (7), and it is similar for other factors. Here to
maintain the values of the observed RDs, we use a weight to make
a scaling of the normalized values for some factors.

G =
G

max
{
g1, g2, g3, . . . , gn

} , (7)

Establishment of a Neural Network
Based on the representation of each bin with a quadruple,
bi = (ri, gi, qi, ci), we establish a neural network on the four
factors for the prediction of CNVs. Such approach implicitly
addresses the interaction between the four factors, producing a
joint effect, rather than a separate analysis of each factor with a
marginal effect. We take the four factors as four types of features
to establish a neural network, which can model the potential
interaction between features and adapt to changing input to
generate the best possible result. Here we choose the classic BP
algorithm (Rumelhart et al., 1986) as the basic architecture of
the neural network. This type of neural network is simple in
topology and has a nonlinear mapping ability and thus has been
commonly applied in a wide range of fields such as pattern
recognition, image processing, and natural language processing
(Huang et al., 2005; Chen, 2018; Xue and Cui, 2019; Zhao et al.,
2019). Generally, the BP neural network is composed of three
categories of layers including input, hidden, and output layers,
where users can set multiple hidden layers according to their
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requirements. In our work, we set three layers in the BP neural
network and each of them is corresponding to each type of
layer. The topology of the BP neural network is illustrated in
Figure 2, where the input layer is composed of four neurons, the
hidden layer is composed of 25 neurons, and the output layer is
composed of three neurons. The input layer is responsible for
the input of the four types of features, and the output layer is
responsible for the output of normal, amplification, and deletion
copy numbers. In terms of the hidden layer, the number of
neurons is determined according to our experience on extensive
testing of the algorithm. For the hidden and output layers,
we consistently utilize the Sigmoid function as the activation
function, which is expressed by Eq. (8).

f (wTx+ b) =
1

1+ e−(wTx+b)
, (8)

where w represents the weights between any two layers, b
represents the corresponding biases, and x represents the neuron
input vector from its previous layer. For a more detailed
description about the theorem of the BP neural network, refer to
(Rumelhart et al., 1986; Liu et al., 2019).

Training of the Neural Network
A reasonable training of the BP neural network algorithm is a
crucial step before putting it into practical applications. One of
the key parameters to the algorithm is the learning rate, which
is strongly associated with the learning speed and convergence.
Finding an appropriate learning rate can guarantee a fast and
robust convergence (Jing, 2012). According to our experience on
extensive testing of the algorithm, we choose an appropriate value
of 0.1 as the learning rate. Such value is moderate (Rumelhart
et al., 1986; Chen et al., 2004) and is the default value in the BP
neural network algorithm.

In addition to the parameter setting, another important point
to influence the training effect of the algorithm is the collection

FIGURE 2 | The topology of the back-propagation neural network, which
includes three layers: input layer with four neurons, hidden layer with 25
neurons, and output layer with three neurons.

of training datasets. Generally, the BP neural network algorithm
could be trained by using both simulation and real sequencing
datasets. Since the input to the algorithm is a quadruple, we
represent the training dataset by incorporating a column of labels,
Tm×5 = (r, g, q, c, L), where m denotes the number of bins to be
used for training, r, g, q, and c are column vectors that represent
the values of the four types of features, and L is a column vector
that represents the labels of the bins. Now the task is to collect
the set of bins labeled with normal, amplification, and deletion.
Generally, simulation sequencing samples could provide definite
ground truth CNVs from which the bins with different labels
could be smoothly extracted. Meanwhile, the ground truth CNVs
in real sequencing samples are not easy to obtain since it is
difficult for researchers to label regions absolutely correctly.
Therefore, collecting labeled bins from simulation datasets might
be reasonable and reliable. It should be noticed that, in the
real world, genomes sequenced from tumor tissues are usually
contaminated with a fraction of normal cells. This means that
the bins in the samples with different levels of tumor purity
may display different feature values. Therefore, to facilitate
the generalization performance of the trained algorithm, it is
suggested to collect bins from samples with various levels of
tumor purity, even with various sequencing coverage depths.
In addition, the training dataset should be dynamic, i.e., it
can be updated by adding new labeled bins or removing low-
quality bins along with the continuous application of the trained
algorithm. Such dynamic updating to the training dataset can
help to improve the ability of the algorithm. In this work,
we use various individuals sampled from different sequencing
coverage depths and different tumor purity levels, and in each
individual we extracted a great number of bins represented by
quadruples with labels to train the algorithm. In the training
datasets, no chromatin elements and DNase hypersensitive
sites were included.

Prediction of CNVs
With the trained BP neural network algorithm, we can perform
the prediction of CNVs on testing datasets. For each bin, the
output of the algorithm includes three values mapped from
the Sigmoid function. These values are ranging from 0 to 1,
representing the probabilities of one bin belonging to normal,
amplification, or deletion state, respectively. We determine the
state of one bin according to the largest probability. For example,
if the probability of amplification is larger than the other two,
then the bin is declared as amplification. After all the bins across
the whole genome have been declared, the adjacent bins with
the same copy number state can be merged into a segment, and
then the segments will be finally output with copy number states
(normal, amplification, or deletion).

RESULTS

Simulation Studies
The performance evaluation is crucial to decide whether the
proposed method is valid or not. Simulation studies are
usually regarded as an appropriate and feasible way to evaluate
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performance for existing and newly developed methods (Yuan
et al., 2012a, 2017, 2018b). This is because the ground truth
underlying the simulation samples could be used for an exact
calculation of true-positive and false-positive rates. In addition,
simulation studies can assist us to seek for an appropriate
parameter setting for the algorithm. To mirror this, we carry out
simulation experiments to test our proposed method and to make
comparisons with several peer methods [CNAnator (Abyzov
et al., 2011), FREEC (Boeva et al., 2012), GROM_RD (Smith
et al., 2015), and iCopyDAV (Dharanipragada et al., 2018)]. To
ensure a fair comparison between our method and the four
peer methods, we use the default parameter settings of the peer
methods in the running of their algorithms. The command lines
of executing these algorithms can be referred to the manuals of
the corresponding software packages.

The design of the simulation experiments is described as
follows: we adopt our previously developed simulation tool
IntSIM (Yuan et al., 2017) to produce various datasets with
varying tumor purity from 0.2 to 0.4 and varying sequencing
coverage depth from 4× to 6× (Yuan et al., 2019b). In each
simulation configuration, 50 replicated samples are generated for
a sufficient test of our proposed method and the peer methods.
In each replicated sample, 14 CNVs have been simulated with a
size ranging from 10,000 to 500,000 bp. We implement the five
methods on these datasets. To guarantee a fair comparison, we

always use the default parameter settings for the methods to be
compared. The comparative results are illustrated in Figure 3,
where sensitivity, precision, and F1-score (colored curves) are
presented. Here the presented sensitivity is the averaged value
over the 50 replicated samples as well as the presented precision
and F1-score. The sensitivity is calculated as the number of
correctly detected CNVs (true-positive) divided by the total
number of ground truth CNVs, and the precision is calculated
as the number of correctly detection CNVs divided by the total
number of calls. For MFCNV, true-positives are counted based
on the unit of bins, i.e., if a bin is correctly labeled, it is declared
as a true-positive. For the four peer methods, true-positives are
counted based on the unit of the markers since their output CNVs
is a list of segments with different lengths.

From Figure 3, we could observe that the performances of
all the methods are improving along with the increase of tumor
purity. For example, the F1-score of the CNVnator method is
around 0.7 at a tumor purity of 0.2 and a coverage depth of
4×, while it gets to 0.8 at a tumor purity of 0.4 and a coverage
depth of 4×. For precision, the CNVnator ranks first in two
of six cases, GROM_RD ranks first in two of the other four
cases, and MFCNV ranks first in the rest of the two cases. For
sensitivity, MFCNV is superior in most of the six cases, followed
by FREEC, CNVnator, GROM_RD, and then iCopyDAV. As far
as F1-score is concerned, MFCNV obtains the largest values in

FIGURE 3 | Performance comparisons between our proposed method and the four peer methods in terms of sensitivity, precision, and F1-score (colored curves) on
simulation datasets.
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TABLE 2 | Comparison of the number of detected copy number variations
between MFCNV and the four peer methods on real samples.

Sample CNVnator FREEC GROM-RD iCopyDAV MFCNV

NA19238 252 222 0 26 233

NA19239 145 91 5 11 181

NA19240 109 88 9 8 183

all the six cases, followed by CNVnator or FREEC, and then the
other methods. This means that MFCNV displays the best trade-
off between sensitivity and precision in the detection of CNVs
under these simulation experiments.

The advantage of MFCNV over the four peer methods
can be explained from two primary perspectives. On the
one hand, MFCNV addresses the joint effect among multiple
factors associated with CNVs by establishing a neural network
algorithm, while the other methods emphasized on the marginal
effects of the factors. On the other hand, we train the MFCNV
algorithm by selecting a great number of bins from different
samples with various tumor purities and sequencing coverage
depths. Such strategy can improve the adaptability of the method
in facing different scenarios of datasets.

Real Data Applications
To validate the usefulness of our proposed method, we apply it
to analyze three real samples, NA19238, NA19239, and NA19240,
which are obtained from the CEU family trio and can be accessed
at the 1000 Genomes Project1. We perform the MFCNV method
and the four peer methods on chromosome 21 for each of the
samples. In these experiments, MFCNV have detected 233, 181,
and 183 CNVs for the three samples, respectively. The total
number of CNVs detected by MFCNV is larger than that detected
by any other method (shown in Table 2). For these samples, the
database of genomic variants (DGV)2 has provided the confirmed
CNVs, which can be used to quantify the performance of our

1http://www.internationalgenome.org/
2http://dgv.tcag.ca/

method and of the other four methods. The comparative results
with respect to recall, precision, and F1-score are depicted in
Figure 4. Here the calculation of these evaluation indices are
based on the bin unit, i.e., a true-positive is counted when one
bin in the ground truth CNVs is declared as CNV.

From Figure 4, we could observe that CNVnator has got the
highest recall for the sample NA19238, while MFCNV has got
the highest recalls for the remaining two samples, followed by
FRECC and the other methods. As for precision, MFCNV is
superior to the other methods for all the three samples, followed
by CNVnator, FREEC, or GROM-RD. In terms of F1-score,
MFCNV ranks first and has got a value of around 0.8 for all
the three samples. Such comparative results demonstrate that
our proposed method has the best trade-off between recall and
precision over the other methods. This implies that MFCNV is
reliable in the applications to real sequencing samples, although
we cannot guarantee that the ground truth in the DGV database
is absolutely correct and complete.

DISCUSSION

Accurate detection of CNVs is a crucial step for a comprehensive
analysis of genomic mutations in the study of genome evaluation
and human complex diseases. In this paper, we propose a new
computational method, MFCNV, for the detection of CNVs from
NGS data. The major principle of the proposed method is that
it integrates multiple CNV-related features and trains a neural
network algorithm to predict CNVs. It is different from most
of the existing methods, which separately analyze the factors
associated with copy numbers and just focus on the significance
of RD signatures on CNVs, while our method addresses
the joint effect between different factors. Compared with the
strategies of existing methods, the advantages of MFCNV
include the following: (1) it does not require a GC-content
bias correction procedure so that it can avoid the errors
transferred from the procedure to the downstream analysis, (2)
it extracts four effective features that are closely associated with
CNVs and genome structures and utilizes a nonlinear model

FIGURE 4 | Performance comparisons between our proposed method and the four peer methods in terms of recall, precision, and F1-score (colored curves) on real
samples.
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(i.e., neural network) to explore the interaction between them;
such interaction may be more powerful than the marginal effect
in the separate analysis of factors, and (3) it trains the neural
network algorithm by using datasets with various levels of tumor
purities and sequencing coverage depths; this will improve the
adaptability and generalization performance of the algorithm.

Generally, each of the four selected features may have its own
marginal effect and may pose different significance to the CNV
prediction. Here, we integrate the four features and train a neural
network algorithm to predict CNVs. In the training of the neural
network, the connection weights can be learned and can reflect
the marginal effects of the corresponding features. Meanwhile,
their integration can produce a joint effect for the prediction
of CNVs. Since different features may have different ranges of
values, we make normalization for the values before inputting
them to the neural network. The normalization is conducted to
scale the feature values at the same level so that the values of the
different features can be balanced.

For the performance evaluation, we first simulate a large
number of synthetic datasets with various configurations and
test MFCNV in terms of sensitivity, precision, and F1-score.
The experimental results indicate that MFCNV can get a
higher performance than the four peer methods. Furthermore,
we carry out experiments on three real samples and utilize
the confirmed CNVs in the DGV database to quantify the
performance of MFCNV and the peer methods. The results
also demonstrate the merits of MFCNV. Therefore, we could
conclude that MFCNV is a valid and reliable method in the
detection of CNVs by using NGS data and is expected to
become a complementary and regular tool in the field of genomic
mutation analysis.

For the future work, we intend to make improvements to
the current version of MFCNV from the following aspects:
In the first place, the contamination of normal genomes in
the sequenced genomes is an important factor to influence
the power of CNV detection (Yu et al., 2011; Yuan et al.,
2017). Thus, it is meaningful to integrate the module of tumor
purity prediction into the pipeline of CNV detection. In the
second place, single-cell sequencing technique has provided new

opportunities to analyze genomic mutations at individual cells.
The genome bins including aberration and normal states from
such sequencing data can be collected to train the algorithm
of MFCNV, which can then be extended to detect CNVs from
single-cell sequencing data. In the last place but not the least, an
alternative architecture of the neural network can be designed,
i.e., the output layer of the current neural network with three
neurons can be placed with only one neuron. This neuron is
responsible for determining whether one genome bin is abnormal
or normal. If it is abnormal, we further compare its RD value to
the mode of RDs to decide whether it is amplification or deletion.
Such decrease in the number of neurons in the output layer may
improve the efficiency of the algorithm.
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