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The hard-shelled mussel (Mytilus coruscus) is an economically important shellfish that

has been cultivated for the last decade. Due to over-exploitation, most mussel stocks

have dramatically declined. Efforts to study this species’ natural distribution, genetics,

breeding, and cultivation have been hindered by the lack of a high-quality reference

genome. To address this, we produced a hybrid high-quality reference genome of

M. coruscus using a long-read platform to assemble the genome and short-read,

high-quality technology to accurately correct for sequence errors. The genome was

assembled into 10,484 scaffolds, a total length of 1.90 Gb, and a scaffold N50 of 898 kb.

Ab initio annotation of the M. coruscus genome assembly identified a total of 42,684

genes. This accurate reference genome of M. coruscus provides an essential resource

with the advantage of enabling the genome-scale selective breeding of M. coruscus.

More importantly, it will also help in deciphering the speciation and local adaptation of

the Mytilus species.

Keywords: Mytilus coruscus, hard-shelled mussel, sequencing, genome assembly and annotation, mitochondria,

syntheny

1. INTRODUCTION

The marine mussel Mytilus is among the foremost cosmopolitan marine genera and is present
in estuarine and oceanic habitats, in both the subtidal and intertidal zones (Koehn, 1991). The
global distribution of Mytilus species combined with certain features, such as partial reproductive
isolation, which produces natural hybrids in areas of sympatry (Hilbish et al., 2000), doubly
uniparental inheritance (DUI) of mitochondria (Zouros et al., 1994), very high bio-accumulation,
and a low bio-transformation potential for both organic and inorganic contaminants (Smolders
et al., 2003), make them attractive models for genetic, evolution, and ecological research. Besides,
mussels are commercially important molluscs: the global production of farmed mussels reached
2,164,000 tons in 2017 (Food and Agricultural Organization, 2019).

Mytilus galloprovincialis was the first sequenced marine mussel, and, its genome provided
valuable information for the research and sustainable management of this species (Murgarella et al.,
2016).Mytilus coruscusGould, 1861 (also recognized asMytilus unguiculatusValenciennes, 1858) is
another important mussel species distributed along the coast of China (Ye et al., 2012), Korea (An
and Lee, 2012), and Japan (Okutani, 2000). In addition to its ecological importance in the intertidal
and subtidal communities, it is also a popular edible shellfish in many Asian countries. As a large-
bodied mussel species, M. coruscus is valued for its high nutritional value and good commercial
price (Zhang et al., 2020). It has also been reported that some of its lipids have anti-inflammatory
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properties (Fu et al., 2015). The mariculture of M. coruscus has
been carried out in several regions of China in the past; the
Shengsi Islands (Zhejiang province) are one of the oldest and
largest culture areas in the Eastern China Sea and have an annual
production in excess of 500,000 tons (Guo et al., 2017). The
cultured juveniles primarily originate from natural populations.
In the last few decades, natural juvenile stocks have decreased,
while mussel farms have increased (Shen et al., 2009). Recently,
breeding programs of M. coruscus have been initiated, mainly
aiming to improve growth rates and disease resistance under
aquaculture conditions. Despite its ecological and economic
importance, genome information on this endemic mussel species
is still lacking.

This report presents the first draft genome assembly for
M. coruscus, performed using a hybrid assembly strategy.
An Oxford Nanopore Technologies PromethION long-read
platform was used to assemble the genome and Illumina HiSeq X
Ten short-read, high-quality technologies were used to accurately
correct for sequence errors. The resulting assembled genome
sequence has 10,484 scaffolds, a total length of 1.90 Gb, GC
content of 32.22%, and a scaffold N50 of 898 kb. Furthermore,
we identified 1.01 Gb (52.83% of the assembly) of repeat
content, 42,684 protein-coding genes, 278 rRNAs, and a high
heterozygosity of 1.64%. This high-quality reference genome
will serve as a substantial resource for future studies of basic
genetics as well as genome-scale selective breeding programs
forM. coruscus.

2. MATERIALS AND METHODS

2.1. Sample Collection and DNA Extraction
An adult female specimen ofM. coruscus (133.73 g) was collected
in November 2018 from the Shengsi Islands in Zhejiang province,
China. Gills were dissected and stored in liquid nitrogen until
DNA extraction. Genomic DNA was extracted as previously
reported (Venier and Canova, 1996) with small modifications.
Briefly, gill samples were digested with RNase and proteinase K,
adjusted to 2% SDS, and heated at 60◦C for 10 min. Sodium
perchlorate was added, and DNA was extracted once by gently
shaking with 24:1 chloroform:isoamyl alcohol for 30 min at room
temperature. DNA was then precipitated with cold 75% ethanol
and suspended in TE buffer (10 mM Tris–HCl, 1 mM EDTA,
pH 7.4). The quality and concentration of the extracted genomic
DNA were checked using 0.3% agarose gel electrophoresis and a
Qubit fluorimeter (Invitrogen, Carlsbad, CA, USA).

2.2. Library Construction and Sequencing
High-quality DNA was used for subsequent library preparation
and sequencing using PromethION and Illumina platforms
(Biomarker Technologies Corporation, Beijing, China). To
obtain long non-fragmented sequence reads, ∼15 µg of
genomic DNA was sheared and size-selected (30–80 kb) with
a BluePippin (Sage Science, Beverly, MA, USA). The selected
fragments were processed using the Ligation Sequencing 1D Kit
(Oxford Nanopore, Oxford, UK) according to the manufacturer’s
instructions and sequenced using the PromethION DNA
sequencer (Oxford Nanopore, Oxford, UK) for 48 h. For the

estimation and correction of genome assembly, an Illumina
DNA paired-end (PE) library with an insert size of 350 bp
was constructed in accordance with the manufacturer’s protocol
and sequenced with an Illumina HiSeq X Ten platform
(Illumina, Inc., San Diego, CA, USA) with paired-end 150
read layout.

2.3. De novo Assembly
Reads from the two types of sequencing platforms were used at
different assembly stages (Figure 1A). Long reads were filtered
for length (>15,000 nt) and complexity (entropy over 15), while
all short reads were filtered for quality (QC> 25), length (150 nt),
absence of primers/adaptors, and complexity (entropy over 15)
by using fastp (Chen et al., 2018). Using Jellyfish (Marçais and
Kingsford, 2011), the frequency of 31-mers in the Illumina
filtered data was calculated with a 1 bp sliding window (Vurture
et al., 2017). Long reads were then assembled using wtdbg2
(Ruan and Li, 2020), which uses a fuzzy Bruijn graph. As it
assembles raw reads without error correction and then builds the
consensus from intermediate assembly output, multiple stages
of error correction, gap closing, and polishing were applied.
Original output was realigned against the long reads and polished
using Minimap2 (Li, 2018) and Racon (Vaser et al., 2017), first
with filtered reads to bridge potential gaps, and then with the
filtered reads to correct for error. Finally, Pilon (Walker et al.,
2014) was used to polish and correct for sequencing error using
the short reads.

2.4. Gene Models
We used Braker (Hoff et al., 2019) to perform ab initio
gene prediction, combining methods that integrate ab
initio gene prediction and RNA-seq-based prediction to
annotate the protein-coding genes in the M. coruscus genome.
These raw RNA-seq reads were downloaded from the EBI
for three independent transcriptomic projects, covering
multiple tissues and multiple conditions: PRJNA301064 (Xu
et al., 2016), PRJNA269003 & PRJNA269004. The resulting
predictions were then filtered for the presence of at least
one InterPro (Jones et al., 2014) pattern using InterProScan
(Mitchell et al., 2019).

2.5. Repeat Sequences
The transposable elements were annotated using a de novo
prediction by using RepeatModeler (Smit and Hubley, 2017)
and LTR-Finder (Stanke et al., 2008). The repetitive sequences
returned from these two algorithms were combined to compile
a non-redundant repeat sequence library. With this library, we
scanned the representative sequences in theM. coruscus genome
using RepeatMasker (Smit et al., 2019).

2.6. Completeness
The completeness of gene regions was further assessed using
BUSCO (Simão et al., 2015), using a Metazoa (release 10)
benchmark of 954 conserved Metazoa genes.

2.7. Synteny With M. galloprovincialis
To assess the macro-synteny between M. coruscus and
M. galloprovincialis (Murgarella et al., 2016) genomes, we
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FIGURE 1 | Genome size and quality estimations. (A) Genome assembly workflow. (B) The 31-mer distribution used for the estimation of genome size and

heterozygosity. The heterozygous and homozygous peaks of k-mer depth are clearly markers, suggesting a high-complexity genome and high heterozygosity of

1.64%. (C) BUSCO assessment (Metazoa database; number of framework genes 954); 96.44% of the genes were recovered.

reciprocally mapped all M. coruscus and M. galloprovincialis
scaffolds with a minimum overlap of 100 nt.

2.8. Code Availability
The versions, settings, and parameters of the software used in this
work are as follows:

Genome assembly: (1) fastp: version 0.20.0, short-read
parameters: -q 25 -y -Y 15 -l 150 -detect_adapter_for_pe; (2)
fastp: version 0.20.0, long-read parameters: -Q -y -Y 15 -l 15000;
(3) wtdbg2: version 2.4, parameters: -x rs -k 23 -p 0 -AS 6 -R -g
1567m -rescue-low-cov-edges; (4)wtpoa-cns: version 2.4, default
parameters; (5)minimap2: version 2.17, parameters: -x map-ont
-r2k; (6) racon: version 1.4.3, default parameters; (7) bwa: version
0.7.17, mode mem, default parameters; (8) pilon: version 1.23,
parameters: -diploid -fix all -changes; (9) BUSCO: version 4.0.2,
parameters: -l metazoa_odb10; (10) RepeatModeler: version
1.0.11, parameters: -database mussel; (11) LTR_Finder: version
1.07, default parameters; (12) RepteatMasker: version 4.0.9,
parameters: -lib mussel-families.fa; (13) Braker: version 2.1.4,
parameters: -gff3 -softmasking; (14) InterProScan: version 5.42-
78.0, parameters: -f tsv -dp -iprlookup -goterms.

K-mer analysis: (1) jellyfish: version 2.3.0, parameters: -m 31
-C -s 10G; (2) GenomeScope: version 2.0, default parameters.

Mitochondria annotation: (1) MITOS: revision 999, online
version, parameters: "Genetic code 5".

Synteny blocks: (1) nucmer: version 3.23, parameters: -
simplify -maxgap = 500 -mincluster = 100; (2) circos: version
0.69-9, default parameters (tutorial 5.9).

TABLE 1 | Sequencing data statistics.

Category Number/length

Total number of long reads 11,312,815

Total number of bases 161,041,744,749

N50 length 21,771 nt

Maximum read length 259,852 nt

Coverage 87×

Total number of PE short reads 288,220,402

Total number of bases 86,466,120,600

Read length 150 nt

Coverage 46×

3. RESULTS AND DISCUSSION

3.1. Sequencing Results
After sequencing with the PromethION platform, a total of
11.31 million (161.04 Gb) long reads were generated, and these
were used for the subsequent genome assembly. The N50 of the
sequences produced was 21,771 nt. The Illumina HiSeq X Ten
platform produces 288.22 million (86.47 Gb) paired-ended short
reads (150 nt). The genome size of M. coruscus was estimated
to have 2n = 28 chromosomes (Pérez-García et al., 2014) and
a C-value of 1.90 pg (Ieyama et al., 1994) or 1.85 Gb; therefore,
the average sequencing coverage was 87× and 46×, respectively
(Table 1).
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TABLE 2 | Statistics of the genome assembly of Mytilus coruscus.

Category Number/length

K-mer = 31 4,311,539,104

Heterozygous peak 18.87

Homozygous peak 37.74

Estimated genome size 1,567,289,679 nt

Estimated repeats 530,204,285 nt

Estimated heterozygosity 1.64%

Largest contig 11,437,774 nt

Total length 1,903,799,720 nt

N50 664,188 nt

Largest scaffolds 13,847,550 nt

Total length 1,903,825,920 nt

N50 898,347 nt

GC 32.22%

Mapped 98.42%

Properly paired 77.04%

Avg. coverage depth 138x

Coverage over 10× 99.48%

N’s per 100 kbp 1.38

BUSCO recovered 96.44%

Predicted rRNA genes 278

Predicted gene models 92,615

Predicted protein-coding genes 42,684

3.2. De novo Assembly of the M. coruscus

Genome
The frequency of 31-mers in the Illumina filtered data was
calculated using Jellyfish and followed a Poisson distribution
(Figure 1B). The proportion of heterozygosity in theM. coruscus
genome was evaluated to be 1.64%, and the genome size was
estimated as 1.57 Gb, with a repeat content of 36.35% (Table 2).
Long-read assembly using wtdbg2 (Ruan and Li, 2020), polished
using Racon and sequence-corrected using short reads and
Pilon, produced an assembled genome ofM. coruscus containing
10,484 contigs with a total length and contig N50 of 1.90 Gb and
898 kb, respectively (Table 2).

3.3. Repeat Sequences and Gene Models
The transposable elements and repetitive sequences were
annotated using RepeatMasker and LTR-Finder. In total, 1.01 Gb
(52.83%) of the genome was identified as repetitive sequences
(Table 3).

We used a combined method that integrates ab initio
gene prediction and RNA-seq-based prediction to annotate the
protein-coding genes in theM. coruscus genome. In total, 42,684
distinct gene models were annotated.

3.4. Evaluating the Completeness of the
Genome Assembly
To estimate the quality of the hybrid genome assembly, short
reads were aligned to the consensus genome, and 98.42% did

TABLE 3 | RepeatMasker statistics.

Element Number of

elements*

Length occupied

(bp)

Percentage

of sequence

(%)

SINEs 2,854 525,572 0.03

ALUs 0 0 0.00

MIRs 0 0 0.00

LINEs 437,682 160,984,195 8.46

LINE1 812 607,529 0.03

LINE2 13,314 5,148,240 0.27

L3/CR1 7,119 3,117,407 0.16

LTR elements 35,692 25,465,347 1.34

ERVL 0 0 0.00

ERVL-MaLRs 0 0 0.00

ERV classI 0 0 0.00

ERV classII 675 176,007 0.01

DNA elements 74,846 21,072,684 1.11

hAT-Charlie 0 0 0.00

TcMar-Tigger 0 0 0.00

Unclassified 3,215,437 784,518,335 41.21

Small RNA 0 0 0.00

Satellites 1,170 118,198 0.01

Simple repeats 307,099 12,840,131 0.67

Low complexity 56,444 2,732,946 0.14

Total repeats 1,005,864,117 52.83

*Repeats fragmented by insertions or deletions have been counted as one element.

TABLE 4 | Comparison between Mytilus spp. assemblies.

Category M. galloprovincialis* M. coruscus

Num. scaffolds 1,002,334 10,484

Span 1,500,149,602 nt 1,903,825,920 nt

Longest scaffold 67,529 nt 13,847,550 nt

Shortest scaffold 200 nt 3,201 nt

N50 2,931 nt 898,347 nt

GC 31.71% 32.22%

Syntenic 281,841 (28.12%) 7,365 (70.25%)

*Sequences deposited and reported by Murgarella et al. (2016) differ, as only sequences

over 200 nt were publicly deposited.

align overall, suggesting that our assembly results contained
comprehensive genomic information.

The completeness of the gene models was also assessed
using BUSCO (Simão et al., 2015) using a Metazoa (release
10) benchmark of 954 conserved Metazoa genes: 91.09%
had complete gene coverage (including 13.63% duplicated
ones), 5.35% were fragmented, and only 3.56% were missing
(Figure 1C). This largely supports a high-quality M. coruscus
genome assembly and gene models.
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FIGURE 2 | Genome comparisons. (A) Circos Krzywinski et al. (2009) mapping of longest synteny blocks between M. galloprovincialis (287 dark gray scaffolds) and

M. coruscus (104 blue scaffolds). (B) M. coruscus annotated mitochondrial genome.

3.5. Synteny With M. galloprovincialis
To uncover the macro-synteny between the M. coruscus and
M. galloprovincialis (Murgarella et al., 2016) genomes, we
reciprocally mapped all M. coruscus and M. galloprovincialis
scaffolds with a minimum overlap of 100 nt (Table 4). A
total of 28.12% of M. galloprovincialis scaffolds mapped to
a M. coruscus scaffold while 70.25% M. coruscus scaffolds
mapped to a M. galloprovincialis scaffold. Figure 2A reports
the synteny blocks of over 3,000 nt; the map shows a good
synteny between the two genomes despite M. galloprovincialis
genome fragmentation.

3.6. Mitochondrial Genome
The mitochondrial genome was manually recovered from the
genome assembly. The contig was validated for continuity and
circularity and annotated using MITOS (Bernt et al., 2013). The
complete mitochondrial genome (Figure 2B) was compared to
the referenceM. coruscus genome (Lee and Lee, 2016). Only one
haplotype was recovered, which differed from the reference by
only 6 SNPs and one 2-nucleotide insertion.

4. CONCLUSION

This study is the first to present a high-quality genome
sequence assembly of the hard-shelled mussel M. coruscus.
We generated a hybrid genome assembly of 1.90 Gb with
an N50 of 898 kb. The assembled genome was predicted to
contain 42,684 protein-coding genes, 278 rRNAs, 1.01 Gb
(52.83%) of repetitive elements, and high heterozygosity
of 1.64%. We also recovered and annotated the whole
circular mitochondrial genome of 16.65 kb lacking atp8
gene. This high-quality reference genome will serve as a

substantial resource for future studies of basic genetics
as well as genome-scale selective breeding programs
forM. coruscus.
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