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Imaginal Disc Growth Factor 6 (Idgf6)
Is Involved in Larval and Adult Wing
Development in Bactrocera correcta
(Bezzi) (Diptera: Tephritidae)

Yan Zhao, Zhihong Li, Xinyue Gu, Yun Su and Lijun Liu*

Department of Entomology, College of Plant Protection, China Agricultural University, Bejjing, China

In insects, imaginal disk growth factors (IDGFs), an important component of the
glycoside hydrolase 18 (GH18) family of chitinases, have been reported to be associated
with the maintenance of the cuticle and molting. However, there is little knowledge of
their function. In this study, imaginal disk growth factor 6 (Idgf6), which is an ldgf, was
first identified and cloned from the guava fruit fly Bactrocera correcta (Bezzi) (Diptera:
Tephritidae), one of the most serious pest insects in South China and surrounding
Southeast Asian countries. This gene encodes IDGF6 protein with a conserved domain
similar to ChiA chitinases, the glycoside hydrolase 18 (GH18) family of chitinases,
according to NCBI BLAST. Phylogenetic analysis indicated that all /dgf6s were highly
conserved among similar species. Subsequent temporal expression profiling revealed
that /dgf6 was highly expressed in both the late-pupal and mid-adult stages, suggesting
that this gene plays a predominant role in pupal and adult development. Furthermore,
RNA interference experiments against /dgfé in B. correcta, which led to the specific
decrease in ldgf6 expression, resulted in larval death as well as adult wing malformation.
The direct effects of ldgf6é silencing on B. correcta indicated its important role in
development, and /dgf6 might be further exploited as a novel insecticide target in the
context of pest management.

Keywords: Bactrocera correcta, imaginal disk growth factor 6, RNA interference, death, wing malformation

INTRODUCTION

The epithelial apical extracellular matrix (ECM) is a specialized structure comprising secreted
or transmembrane fibrous proteins and polysaccharides, whose composition varies widely, from
chitinaceous cuticles of insects to cellulose in plants (Ozturk-Colak et al., 2016; Vuong-Brender
et al., 2017; Cosgrove, 2005). Cuticle of insects is an exoskeleton covering the body and internal
organs as an epithelial surface Exoskeleton is essential for controlling body shape, epithelial barrier
formation, and epidermal wound healing and protects cells from direct contact with pathogens,
toxins or pesticides (Galko and Krasnow, 2004; Yoshiyama et al., 2006; Moussian and Uv, 2010;
Uv and Moussian, 2010; Turner, 2009; Toshio et al., 2010). It also further provides a challenge to
maintain homeostasis of body fluids (Jaspers et al., 2014). Moreover, recent work has established an
important role of the ECM in shaping various organs, such as Drosophila wings (Fernandes et al.,
2010). Based on the conservation of amino acid sequences, several conserved motifs and protein
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folding, chitinase has been divided into two families, named
family 18 and family 19 glycosyl hydrolases (Coutinho and
Henrissat, 1999; Henrissat, 1999). The glycoside hydrolase 18
(GH18) family, due to its characteristic glycol-18 domain,
is a key family in insects that is widely distributed in all
kingdoms, including bacteria, plants and animals (Tsai et al.,
2001; Zhu Z. et al., 2004; Zhu et al.,, 2008a; Arakane and
Muthukrishnan, 2010; Zhang et al., 2011a; Huang et al., 2012;
Hussain and Wilson, 2013). Previous studies have shown that
insects utilize multiple GH18 family chitinolytic enzymes for
degrading, remodeling and binding to chitin and possibly for
chitin synthesis (Zhu Q.S. et al., 2004).

Polypeptide factors with mitotic activity in invertebrates
were first reported to be encoded by imaginal disk growth
factors (IDGFs), belonging to group V chitinase, which are
an important member of the GHI8 family (Zurovcovd and
Ayala, 2002). Idgfs were originally identified and isolated from
Drosophila S2 or imaginal disk cells on conditioned media
(Kirkpatrick et al., 1995; Kawamura et al., 1999). In Drosophila
melanogaster, there are six genes encoding IDGFs including
Idgfl, Idgf2, 1dgf3, Idgf4, Idgf5, and Idgf6 (Kirkpatrick et al.,
1995; Kawamura et al., 1999; Bryant, 2001; Varela et al.,
2002). According to previous studies, in imaginal disk cell
culture, Idgfs promote growth, proliferation, cell polarization,
and motility (Kawamura et al., 1999). Some IDGFs are required
for normal ECM formation, larval and adult molting or
innate immune responses and wound healing (Zhang et al,
2011b; Kucerovaa et al, 2016; Pesch et al, 2016; Broz
et al,, 2017). Some studies have focused on the function of
individual Idgf genes; for example, by individually knocking
down genes in cuticle-secreting tissues, a large number of
Idgfs have been shown to be involved in cuticle molting
during the larval and pupal stages. This result was then
supported by gene-specific spatial-temporal expression profiles
and by developmental lethality profiles upon gene knockdown.
Moreover, after the genes were knocked down, the mutants
were highly susceptible to mechanical stresses and bacterial
infections (Pesch et al., 2016). The non-enzymatic Idgfs play an
important role in protecting newly synthesized cuticle matrix
from degradation, which can stabilize and expand the size
of ECM in larvae (Pesch et al., 2016). The target gene of
our study, Idgf6, is one of the first identified Idgf genes;
Idgf6 was isolated by Kirkpatrick et al. and localized on the

second chromosome at 53D (Idgf6 is synonymous to Chtl3
and DmDS47) (Kirkpatrick et al., 1995; Zhang et al., 2011b).
Pesch et al. investigated the molecular network in Idgf6 RNAi-
induced mutants and showed that Idgf6 RNAi-induced mutants
exhibited the strongest lethality and most severe cuticle defects
among other mutants (Pesch et al., 2016). Idgf6 is critical
for larval cuticle barrier formation and protection against
invasive microorganisms and mechanical stresses (Pesch et al.,
2016). Overall, few studies of this gene have focused on larval
development, and knowledge of this gene in insect pupal and
adult development is limited.

The guava fruit fly Bactrocera correcta (Bezzi) (Diptera:
Tephritidae) is an economically important insect pest that
is widely distributed in South China and other surrounding
Southeast Asian countries (Liang et al, 1996; Drew and
Raghu, 2002). This fruit fly infests a wide variety of types of
commercial fruits, including guava, mango and peach, and
vegetables in tropical and subtropical regions of the world (Liang
et al.,, 1996; Bezzi, 1916; White and Elsomharris, 1992). Due
to its polyphagous nature, along with its highly adaptive,
reproductive and dispersal capabilities, it is considered
to be a highly invasive fruit pest species that has been
listed as a quarantine pest species by many countries and
regions (White and Elsomharris, 1992). Therefore, the
control of the guava fruit fly is thus increasingly important.
Insect cuticle and molting have been the focuses of pest
control research; consequently, clarification of insect Idgf
gene expression should provide new knowledge that is
useful for pest control (Togawa et al, 2007). Although
Idgfs have been studied systematically in model insects
such as D. melanogaster, relevant information is limited
inB. correcta.

In the current study, we first cloned and identified the
full-length ¢cDNA of Idgf6 from B. correcta, and previously,
little was known about Idgf6 in nonmodel organisms.
We then analyzed the temporal expression pattern of
Idgf6 in eight different developmental stages of B. correcta
using qRT-PCR. RNA interference technology was applied
to explore the function of Idgf6 in B. correcta at larval
and adult stages. The Idgf6 gene was found to play an
important role in fruit fly development. Silencing of
the Idgf6 gene resulted in larval death and adult wing
malformation. Our data reveal a critical role for Idgf6 in

TABLE 1 | Primers used for cloning, real-time qgRT-PCR amplification and dsRNA synthesis.

Gene Primer Sequence Size (bp)

Bc 18s rRNA-rt 18s-rt-F 5’- GCGAGAGGTGAAATTCTTGG -3 192
18s-rt-R 5’- CGGGTAAGCGACTGAGAGAG -3’

Bc Idgf6-rt Idgf6-rt-F 5’-CGGACGAGAAGAGCAGC-3’ 176
Idgf6-rt-R 5’-GGCACGCAGTATGGGAT-3

Bc cloneldgf6-1 Idgf6-whole seq-F 5'-GCGTGTATTTGCTTGTTG-3’ 1398
Idgf6-whole seg-R 5’-CGCAGTATGGGATATTTATC-3’

Bc dsldgfé Idgf6-dsRNA-F 5’-AGCTGCCCTTGCGTGTAT-3’ 542
1dgf6-dsRNA-R 5’-GAACCATCAGCGCCTTCA-3’
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FIGURE 1 | Protein sequence alignments of IDGF6 proteins in Drosophilidae and Tephritidae fruit flies based on NCBI BLAST results. The alignments that present
one predicted and conserved domain similar to ChiA chitinases, the glycoside hydrolase 18 (GH18) family of chitinases. Asterisks and star indicate the positions of
residues that have been shown to be required for catalytic activity in bacterial chitinase (Watanabe et al., 1993). For the species both in Drosophilidae and
Tephritidae, the second and third (star) match the required residues in chitinases, but the fourth (asterisks) is E in chitinases while Q in IDGFs. As for the first
(asterisks), in Drosophilidae it is S, which matches the required residues in chitinases, but in Tephritidae it is G. All species IDGF sequences contain single consensus
motif (arrowhead) for N-linked glycosylation (Kirkpatrick et al., 1995) that is missing in chitinase.
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insect development and thus provide new insights into
pest management.

MATERIALS AND METHODS

Experimental Insects

The B. correcta population used in this study was collected
from Yunnan Province and was cultured in the laboratory
at 25 £ 0.5 °C with 65 £ 5% relative humidity under a
14 h light/10 h dark photoperiod. All adults were maintained
under the same conditions before starting the experiments
to ensure the consistency of the experimental materials. The
population had been cultured for approximately 10 generations
to eliminate the influence of the local environment. The
insects were fed artificial diets as previously described (Yuan
et al, 2006). Two hundred individuals were maintained in
three insect rearing cages (45 cm x 45 cm X 50 cm) in
this experiment.

For temporal expression analysis, we collected samples from
different stages: 1% instar larvae (2-day-old indicates 2 days
post hatching), 3™ early instar larvae (5-day-old), 3™ instar
larvae (7-day-old), early pupae (1-day-old indicates 1 day post
pupating), medium pupae (5-day-old), late pupae (9-day-old),
early adults (1 day post eclosion), and late adults (10 days post

eclosion). Each stage had five replicates, and different numbers of
individuals at each stage were collected to detect the expression
because of different sizes of insects. Fifty individuals for 1st
instar larvae, thirty individuals for 3rd instar larvae and all the
pupa stages, ten for the adult stages. For the functional study,
five replications were performed for each treatment, and each
replicate contained 30 larvae. And for the functional study of
the larval stage and adult stage, we obtained samples from 3"
instar larvae and 2-day-old adults, respectively. The samples were
immersed in an RNA storage reagent (Tiangen, Beijing, China),
immediately frozen with liquid nitrogen and stored at —80°C for
further experiments.

Bioinformatics Analysis

RNA Extraction, Reverse Transcription, and cDNA
Synthesis

RNA was extracted from the whole body using the RNAsimple
Total RNA Kit (Tiangen, China) in accordance with the
manufacturers protocol. The extracted RNA was immediately
dissolved in RNase-free water, and then was checked for
quality, concentration, and purity using a NanoVue UV-
Vis spectrophotometer (GE Healthcare Bio-Sciences, Uppsala,
Sweden) at 260 and 280 nm. RNA integrity was checked by
1% agarose gel electrophoresis at 180 V for 16 min. Five
biological replicates were conducted per treatment. Finally,

Drosophila willistoni
I Drosophila busckii
74 |_|:Drosophila navojoa
95 91 Drosophila hydei
—Drosophila kikkawai
56 100 L Drosophila serrata
Drosophila obscura
,WI: Drosophila miranda
99 | Drosophila bipectinata Drosophila
Drosophila rhopaloa
31 Drosophila ficusphila
Drosophila takahashii
99 39 ﬁ Drosophila suzukii
100 Drosophila biarmipes
31 Drosophila eugracilis
47 —‘MI:Drosophila melanogaster
Drosophila elegans
Rhagoletis zephyria
100 Ceratitis capitata
35 Zeugodacus cucurbitae .
390 Bactrocera oleae Tephrltldae
77 Bactrocera latifrons
E Bactrocera dorsalis
68 Bactrocera correcta @
2.0
FIGURE 2 | Phylogenetic analysis of /dgf6 using the maximum-likelihood method in RAXML. One hundred bootstrap iterations were conducted to obtain branch
support values. The B. correcta Idgfé sequence we obtained is labeled with a red triangle. The amino acid and nucleotide sequences were downloaded from NCBI.
The accession numbers of the genes are designated with the corresponding abbreviations and are listed in Supplementary Table S1.
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first-strand ¢cDNA was synthesized from 1000 ng of total
RNA using the PrimeScript@ RT reagent Kit with gDNA
Eraser (Perfect Real Time) (Takara, Japan) following the
manufacturer’s instructions.

ORF Cloning of B. correcta Idgf6 and Sequence
Analysis

To verify the ORF of Idgfé in B. correcta, primers were
designed based on the conserved regions of Idgf6 in B. oleae,
Ceratitis capitata, and D. melanogaster (sequence from GenBank)
and the sequence of Idgf6 from the B. correcta transcriptome
(No. MK450457). DNAMAN v.6.03 (Lynnon Biosoft, San
Ramon, CA, United States) was used for sequence alignment.
The primers for cloning are listed in Table 1. The open-
reading frame (ORF) sequence of Idgf6 was amplified using
PrimeSTAR high-fidelity DNA polymerase (Takara, Dalian,
China) following the manufacturer’s protocol. The PCR products
were isolated, purified and ligated into a pGEM-T Easy vector
(Promega, Beijing, China) and sequenced by a company (BGI,
Beijing, China).

The ORF and conserved domain were identified with ORF
Finder software' and NCBI BLAST results’. To predict the
conserved domains of B. correcta Idgf6, Idgf6 protein sequences
from 23 species in Drosophilidae and Tephritidae were collected
by BlastP in GenBank (Supplementary Table S1) and aligned
with the sequence of B. correcta 1dgf6 with ClustalX 2 software
and GeneDoc 2.7.0 (Nicholas et al., 1997; Larkin et al., 2007).

Phylogenetic Analysis

The integrity of homologous amino acid sequences of other
species was retrieved from the NCBI server. Sequences were
first aligned by the conserved sequences using Geneious v10.22
(Kearse et al., 2012), and then phylogenetic analysis was
performed using the maximum-likelihood method with RAxML
software (Stamatakis, 2014). One thousand bootstrap iterations
were conducted to obtain branch support values.

Temporal Expression Pattern of Idgf6 by qRT-PCR
Following first-strand ¢cDNA synthesis of Idgf6, qRT-PCR was
performed using SYBR” Premix Ex Taq™ II (Tli RNaseH Plus)
(Takara, Japan) on an ABI 7500 instrument (United States). The
thermocycler conditions were 95°C for 30 s, followed by 40
cycles at 95°C for 5 s and 52°C for 34 s. Melting curve analysis
was performed at the end of each expression analysis using the
following conditions: 95°C for 15 s, followed by 52°C for 60 s.
The sequences of the qRT-PCR primers used for the reference and
target genes are described in Table 1. The relative expression level
was calculated using the 272 2CT method (Chen and Wagner,
2012), with 18S rRNA as the reference gene (Gu et al., 2019). Fold
changes were determined after the relative expression values were
standardized using the lowest value.

Silencing of Idgf6 by RNAI
Double-stranded RNA of Idgf6 (dsIdgf6) was used to knock
down Idgf6 expression, and double-stranded RNA of green

Uhttp://www.ncbi.nlm.nih.gov/gorf/gorf.html
Zhttp://blast.ncbi.nlm.nih.gov/Blast.cgi

fluorescent protein (dsGFP) was used as the negative control. We
synthesized dsRNAs with the T7 RiboMAX Express RNAi system
(Promega, United States) using specific primers containing a T7
promotor sequence (Table 1). Then, dsRNA was purified using
phenol, chloroform and ethanol, according to the manufacturer’s
instructions, and dissolved in RNase-free water.

The 31 early instar larvae (5-day-old) of B. correcta were
collected and placed into a 50 ml tube with 3 holes on the
lid. Five replications were performed for each treatment, and
each replicate contained 30 larvae. Three grams of artificial
diet material with 30 pl of a dsRNA solution was used for
feeding, and the concentration of the dsRNA solution for the
primary exposure was 1000 ng/ul. The larvae were first fed
with dsGFP and dsldgf6 for 48 h, and then transferred to a
new artificial diet with the same treatment for another 48 h.
After 96 h, the larvae developed to maturity. Larval mortality
was counted, and larval body size was measured; 5 larvae were
killed for RNAi efficiency detection. The remaining individuals
were fed until the adult stage was reached and were used for
phenotype observation on the 2" day after emergence. The
mortality of emerged individuals was recorded twenty days after
the flies emerged.

Statistical Analysis

All experiments included five biological replicates. Statistical
analysis was performed using SPSS 20 (IBM Corporation,
United States). One-way ANOVA followed by Tukeys HSD
tests was applied to gene expression data to test for significant
differences among different developmental stages, and the

0 I B. correcta Idgf6 d

Relative mRNA expression folds

L1 L3-1 L3-3 P-E P-M P-L A-E A-M

Larval instar Pupal instar  Adult instar

FIGURE 3 | The expression of /dgf6 at eight developmental stages of

B. correcta. The eight developmental stages examined include the 1st instar
larvae (L1, 2-day-old indicates 2 days post hatching), 3rd early instar larvae
(L3-1, 5-day-old), 3rd instar larvae (L3-3, 7-day-old), early pupae (P-E,
1-day-old indicates 1 day post pupating), medium pupae (P-M, 5-day-old),
and late pupae (P-L, 9-day-old), early adults (A-E, 1 day post eclosion) and
late adults (A-M, 10 days post eclosion). The results are presented as the
relative expression after normalization against the endogenous 78S rRNA
gene. Expression is relative to the gene expression in 15 instar larvae
(assigned a value of 1), and the same letter means there are no significant
differences. Different letters above the bars represent significant differences at
P < 0.05, as determined by ANOVA followed by Tukey’s HSD tests.
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means were separated using a least significant difference test
at a significance level of P < 0.05. An independent samples
t-test (P < 0.05 and P < 0.01) was used to determine the
significance of differences between the treatment and control
in the dsRNA injection assay. All data are expressed as
mean =+ standard error (SE).

RESULTS

Cloning and Characterization of Idgf6

Idgf6 (GenBank accession no. MK450457) was cloned from
B. correcta. Five ORFs, which were 1254 bp encoding 465 amino
acids, were identified. Preliminary predictions of the conserved
domains of the IDGF6 protein with NCBI BLAST showed
that one conserved domain similar to ChiA chitinases, the
glycoside hydrolase 18 (GH18) family of chitinases was predicted
(Figure 1). Compared to the Drosophila species, which has one
amino acid substituent, there are two amino acid substituents in
the Tephritid fruit flies, which can eliminate the catalytic activity
of chitinase (Figure 1). Besides, among all the Tephritid fruit flies,
we found that there was one type of gene with the same domain
as the phylogenetic tree (Figures 1, 2). Nucleotide sequence
analysis revealed that the Idgf6 of B. correcta had the highest
identity with a homolog from B. dorsalis (96.73%), followed by
the Idgf6 of B. oleae (92.82%), Zeugodacus cucurbitae (90.67%),
and B. latifrons (88.52%). Compared to the similar Drosophila

species, the sequence had the highest identity with Idgf6 of
D. navojoa (73.44%).

Using the protein sequences, we analyzed the phylogenetic
relationships between Idgf6 in B. correcta and other Idgfés with
the maximum-likelihood method. The phylogenetic tree revealed
the relationship between insect Idgf6s (Figure 2). All Idgf6s
were highly conserved among similar species. The Idgf6 in
B. correcta was clustered close to that in B. dorsalis. We clearly
observed that Idgf6s of the Tephritid fruit flies and the Drosophila
fruit flies were clustered in two branches of the phylogenetic
tree. The amino acid sequence alignment and evolutionary
relationship suggested that Idgf6s were highly conserved among
the Tephritid species.

Expression of Idgf6 in Eight Different

Developmental Stages of B. correcta

Using qRT-PCR, the expression levels of Idgf6 differed
significantly in certain developmental stages (Tukey HSD
tests: P < 0.05). In the larval stage, Idgf6 was expressed in the 1%
instar and tended to stabilize until the 3™ instar. In the pupal
stage, a lower level of mRNA expression was detected in early
pupae, and its expression rose during medium pupae and reached
the second highest level in late pupae (P = 0.000). In adults,
the relative expression of Idgf6 in late adults was significantly
higher than that in early adults, and the highest expression level
was measured in late adult individuals (P = 0.001). Overall,
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within each stage, Idgf6 expression is gradually up-regulated
and specially enriched at the late (Figure 3). The different
expression levels indicate that Idgfé has special physiological
roles in different developmental stages.

Knocking Down Idgf6 Caused Larval
Death and Adult Malformation of

B. correcta

The Functional Study of the Larval Stage

After 3¢ early instar larvae of B. correcta were exposed to dsldgf6
at 1000 ng/pl for 96 h, the mRNA expression level of Idgf6
was significantly reduced by 41.2% (P = 0.008) (Figure 4A).
We also investigated the phenotypic changes of recipient insects
after dsRNA treatment. Obvious increases in mortality were
observed in treatment groups throughout the feeding period
which increased by 37.8% as compared to the control dsGFP
group (Figure 4B). Then, we measured the body size after
feeding. The body sizes of surviving larvae in dsGFP and
dsIdgf6 groups were 0.7438 £ 0.1636 and 0.6861 =+ 0.1452
after feeding, respectively. Thus, body size for the dsIdgf6 group
decreased by 8.4 % when compared to the control dsGFP group
(Figures 4C, 5A).

The Functional Study of the Pupal Stage

After all the fruit flies emerged, some individuals per treatment
were found to exhibit two types of malformation compared
with individuals fed dsGFP (Figures 5B,C). One type led to
smaller body sizes, which accounted for 13.33%, and the other
resulted in partly extensible wings, accounting for 6.67%, which
led to a loss of flight capacity (Figures 5D,E). During subsequent
development, 100% of deformed adults died before sexual
maturity, approximately 5 days after emergence. In addition,
there were no dead or malformed flies in the control groups, and
all the flies lived for more than half a month.

DISCUSSION

In this study, the full-length cDNA sequence of Idgf6 was
cloned from B. correcta. There is one predicted and conserved
domain in B. correcta 1dgf6 protein similar to ChiA chitinases,
the glycoside hydrolase 18 (GH18) family of chitinases was
predicted. In D. melanogaster, IDGFs have eight-chain alpha/beta
barrel fold associated with GH 18 chitinase, but they have a
known amino acid substituent that can eliminate the catalytic
activity of chitinase (Kawamura et al., 1999). However, we
found there are two amino acid substituents in the Tephritid
fruit flies (Figure 1), which may play a similar role in
eliminating the catalytic activity of chitinase. The presence
of Chi A domain may indicate that Idgf6 evolved from
chitinases and gained new functions as a growth factor with
the interaction of cell surface glycoproteins (Kawamura et al.,
1999; Varela et al, 2002). Finally, using Idgf6 nucleotide
sequences of Drosophilidae and Tephritidae in GenBank,
we applied the maximum-likelihood method to obtain a
phylogenetic tree. Idgf6 in B. correcta has high identity
with homologues in other Tephritid fruit flies (Figure 2),

:
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FIGURE 5 | B. correcta larval and adult malformed individuals after silencing.
(A) Malformed phenotype of larvae after feeding dsGFP and dsldgf6. (B) Front
view of the phenotype of adults after feeding dsGFP. (C) Side view of the
phenotype of adults after feeding dsGFP. (D) First type of malformed
phenotype observed in adults after feeding dsldgf6, which resulted in partly
extended wings. (E) Second type of malformed phenotype of adults after
feeding dsldgf6, which led to smaller fruit flies.

and Idgf6 in B. correcta has the closest relationship to
B. dorsalis 1dgf6.

Idgf genes play an important role in promoting growth,
proliferation, cell polarization, and motility (Kawamura et al.,
1999). In the present study, an examination of the temporal
expression pattern of Idgf6 revealed that the gene was detectable
throughout the development of the insect and highly expressed
in the late pupa and adult stages, with lower expression observed
in other stages. These results indicate that this gene may play
an important role in the whole stage of insect development,
mainly in the pupa and adult stages. This result is consistent
with previous findings in D. melanogaster, in which analysis of
DS47 (IDGF6) protein production and mRNA expression during
fly development indicated that both are present throughout
the entire D. melanogaster life cycle, but are relatively lower
in the embryos stage (Wang et al., 2009; Pesch et al., 2016).
Idgf6 is expressed in the cuticle producing organs, the mouth
hooks, the epidermis, the tracheal system and the posterior
spiracles, and especially in larvae, its message is made in the
fat body and by hemocytes and secreted into the hemolymph
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(Kirkpatrick et al., 1995; Pesch et al., 2016). Besides these,
it's very interesting that within each stage, Idgf6 expression is
gradually up-regulated and specially enriched at the late, which
may match its special requirement for molting into the next stage
(Pesch et al., 2016).

Idgf6 was depleted at the larval stage, which caused partial
larval death and adult wing malformation. However, the
percentage of malformation was low, and the potential
overlapping function between the six IDGF proteins could
contribute to the incomplete penetrance in the RNAi
experiments. These experimental results imply that Idgf6
in B. correcta is related to larval mortality and adult wing
development. Insect body contains hard, insoluble chitin,
which is part of the exoskeleton, trachea, and the peritrophic
membrane (PM) that surrounds the midgut food (Merzendorfer
and Zimoch, 2003). Chitin is found in a number of different
structures in addition to the cuticle and PM (Wilson and Cryan,
1997) whose synthesis occurs throughout insect development,
including embryonic, larval, pupal and adult stages (Zhu Q.S.
et al,, 2004). Chitin in organs provides protection to insects
against environmental and mechanical injuries, but it limits
the growth and development of insects. Thus, the cuticles
and PM are degraded periodically and reshuffled to allow
growth and development (Merzendorfer and Zimoch, 2003).
Insect chitinase plays a key role in degrading chitin in the
old cuticles and PM during the larval molting and purulent
process, and chitinase also plays a defensive role to prevent
bacteria and fungi from penetrating PM. Therefore, in this
study, knocking down the Idgf6 gene in the larval stage may
result in a decrease in the ability to degrade chitin in the
old cuticles and a limitation in body size elongation. The
decline in defensive ability makes the larvae susceptible to
infection by bacteria, fungi, etc., resulting in an increase in larval
mortality. According to a previous study, chitin is associated
with wing joints in B. dorsalis, so it is speculated that the
malformation of the adult wing after interference is related to
this (Gu et al., 2019).

The GH18 genes of chitinases have potential use for pest
management as biopesticides (Kramer and Muthukrishnan,
1997). Homologues of these genes exist in parasites and pests
harmful to mankind and agriculture, such as mosquitos, lice
and spotted wing Drosophila (Zhang et al., 2011b; Eichner
et al, 2015; Fan et al, 2015). Insect chitinase genes have
been suggested as targets for gene silencing via RNAi and
have also been proposed as appropriate candidates in host-
mediated silencing of pest genes (HMSPGs) for the control
of diseases and insect pests of date palm (Zhu et al., 2008¢;
Niblett and Bailey, 2012; Al-Ayedh et al, 2016; Su et al,
2016; Cao et al,, 2017). Therefore, it is of interest to focus
on the functions of the genes involved in development and
reproduction for future pest control. The target gene in our
study, the Idgf6 gene, provides a new target for a gene-
specific search of pesticides, because the epithelial barrier was
damaged and caused premature death of animals, and it is
more sensitive to pathogenic infections. Blast searches showed
that parts of the N-terminus of Idgf6 were not conserved
among insects, providing a specific target for insecticides.

This opens the possibility to search for small molecules
that may inhibit the function of insect species-specific Idgf6
without affecting beneficial organisms. Chitin-ECM is the most
important insect barrier against any environmental stresses.
Hydrolase enzymes affecting function and the ECM protection
system provide new strategies to eliminate already problematic
animals in larval stages and prevent the growth of next
generation pests (Pesch et al., 2016). Our research implies
that silencing the Idgf6 gene can cause larval death and
adult wing malformation. Our findings indicate an essential
role of Idgf6 in larval mortality and adult wing development.
Additionally, our results provide new insights into the function
of Idgfs family members and may reveal a new potential gene
for pest control.
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