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Currently most methods take manual strategies to annotate cell types after clustering

the single-cell RNA sequencing (scRNA-seq) data. Such methods are labor-intensive

and heavily rely on user expertise, which may lead to inconsistent results. We present

SCSA, an automatic tool to annotate cell types from scRNA-seq data, based on a

score annotation model combining differentially expressed genes (DEGs) and confidence

levels of cell markers from both known and user-defined information. Evaluation on

real scRNA-seq datasets from different sources with other methods shows that SCSA

is able to assign the cells into the correct types at a fully automated mode with a

desirable precision.

Keywords: single-cell RNA sequencing, cell type annotation, CellMarker database, score annotation model,

differentially expressed genes

INTRODUCTION

Recent development of scRNA-seq methods has enabled unbiased, high-resolution transcriptomic
analysis of individual cells in a heterogeneous cell population (Tang et al., 2009; Picelli et al., 2013;
Kolodziejczyk et al., 2015; Haque et al., 2017). scRNA-seq methods have been used to characterize
thousands to millions of cells in developing embryos (Chu et al., 2016), immune cells (Shalek et al.,
2013), complex tissues such as brain (Zhong et al., 2018) and tumor (Chung et al., 2017), which
have greatly promoted our understanding of human development and diseases.

At the core of myriad scRNA-seq applications is the ability to identify different cell types
and cellular states from a complex cell mixture based on gene expression profiles. Recently,
several computational methods have been developed for annotating cell types in scRNA-seq using
cell-based mapping strategy. For instance, SingleR (Aran et al., 2019) infers the cell type for each of
the single cells using a novel hierarchical clustering method based on similarity to the reference
transcriptomic datasets of purified cell types. Similarly, scMatch (Hou et al., 2019) annotates
single cells by identifying their closest match in gene expression profiles of large reference dataset,
such as the Functional Annotation Of The Mammalian Genome 5 (FANTOM5) resource (Brown
et al., 2009; Lizio et al., 2017). However, such approaches required transcriptome of purified cells
or pre-annotated scRNA-seq data, ideally under the same experimental design using the same
platform, which is often not available. Using prior knowledge of cell-type specific marker genes
increased the accuracy and efficiency of cell type assignment, allowing for identification of both
known and de novo cell types in scRNA-seq data of complex tissues, as shown by CellAssign (Zhang
A. W. et al., 2019) and Garnett (Pliner et al., 2019).

A more common practice for cell type annotation is the cluster-then-annotate approach.
Unsupervised clustering methods based on dimension reduction algorithms such as principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) have been
developed to partition the cells based on the similarity of their gene expression patterns

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00490
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00490&domain=pdf&date_stamp=2020-05-12
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wxy@ibms.pumc.edu.cn
mailto:penggongxin@ibms.pumc.edu.cn
https://doi.org/10.3389/fgene.2020.00490
https://www.frontiersin.org/articles/10.3389/fgene.2020.00490/full
http://loop.frontiersin.org/people/730352/overview
http://loop.frontiersin.org/people/967013/overview
http://loop.frontiersin.org/people/881187/overview


Cao et al. SCSA

(Bacher and Kendziorski, 2016; Kiselev et al., 2019). And users
could manually assign a cell type to each cluster based on
differentially expressed markers by consulting the literature
for cell-type specific gene markers. However, there is still
some problem associated with the manual annotation step. For
example, the canonical marker genes used in the assignment
process may have an impact on the annotation accuracy, which
may lead to biased results with uncontrolled vocabularies for
cell type labels in different datasets. Expert-curated knowledge
databases such as CellMarker (Zhang X. et al., 2019) and
CancerSEA (Yuan et al., 2019), have been developed to provide
a comprehensive and unified resource of cell markers for various
cell types in human andmouse tissues. Yet it is still lack a method
to leverage the information in these databases for annotation.
Furthermore, marker genes could express in more than one cell
type, make the annotation more complex for human to process.

To overcome these difficulties and to streamline the cell type
assignment process for scRNA-seq data, we developed SCSA, an
algorithm that can automatically assign cell types for each cell
cluster in scRNA-seq data. SCSA uses marker genes of known
cell types highly expressed in a cell cluster to label the cluster. It
can be directly applied to clustering results generated from other
scRNA-seq analysis softwares such as CellRanger (Zheng et al.,
2017) and Seurat (Butler et al., 2018). To eliminate the bias of
marker selection, SCSA integrates all marker genes to cell-type
matrix from CellMarker (Zhang X. et al., 2019), and CancerSEA
(Yuan et al., 2019) database, using a score annotation model
that accounts for quantitative information and discrepancies
information of marker genes. For cell clusters lacking known
cell markers, SCSA will also perform a Gene Ontology (GO)
enrichment analysis and report the results to give some clues to
the user. Through extensive evaluation on several real scRNA-
seq datasets of both human and mouse origin generated from
different platforms including Smart-seq (Ramskold et al., 2012),
Smart-seq2 (Picelli et al., 2013), and 10x Genomics (Zheng et al.,
2017).We demonstrated that SCSA has an excellent and unbiased
performance on cell type annotation with a desirable precision.

MATERIALS AND METHODS

Marker Genes Identification
The input of SCSA is a DEGs clusters matrix, in a format that
is supported by the clustering output of CellRanger or Seurat.
Based on thematrix, SCSA identifies themarker genes of each cell
cluster through a filtration with log2-based fold-change (LFC)
value and P-value (LFC ≥1, P ≤ 0.05). For each cell cluster, a
marker gene identification vector is generated for j genes with
LFC values, which is defined as Ej =

{

e1, e2, · · · ej
}

= (e)j×1,
here, e represents the absolute value of LFC multiplied by mean
of all.

Cell Marker Database
In order to improve the accuracy of cell cluster annotation
for scRNA-seq data, SCSA uses cell markers from two public
databases: CellMarker and CancerSEA. SCSA integrated 11,464
manually curated cell markers of 459 cell types in 158 human
tissues/sub-tissues and 7,855 cell markers of 385 cell types in

80 mouse tissues/sub-tissues from CellMarker database. Also
SCSA integrates 1,244 markers from CancerSEA database,
which consists of 14 functional states from 25 human cancer
types. Furthermore, SCSA can accept user-defined marker gene
database as additional information for cell cluster annotation.
The user-defined marker gene database must have two columns,
with the name of cell types in the first column and marker gene
for each cell type in the second column. In that case, SCSA
will combine both known databases and the custom database to
predict the annotations for cell clusters.

Annotation Model Construction
For those genes which existed in both the DEGs and known
cell marker databases, SCSA constructs a cell-gene sparse matrix
(defined as M1 =

(

aij
)

c1×g1
) with c1(c1 ≤ i) cells and g1(g1 ≤ j)

genes as “marker evidence.” Here, for each cell i and each gene j
in the matrixM1, a refers to the sum number of references in the
CellMarker database. To eliminate the huge differences of marker
evidence between the well-known gene and less-known genes,
we transform the value to log2-based and plus a constant (0.05).
Also, to represent the whole gene set for a certain cell, we create
a cell type style vector which takes multiplication of standard
deviation of the marker evidence and marker numbers [defined
as L1 =

{

l1, l2, · · · lc1
}

, where l = std(aij)∗num(aij > 0)]. So, for
the known marker database, the raw score vector of a cell type is
Sc1 = M1×Eg1∗L1 =

{

s1, s2, · · · sc1
}

.
For marker databases from multiple sources including

known and user-defined ones, with k as the total number
of databases, multiple cell-gene sparse matrices could be
constructed according to the DEGs, which are defined asMk =
(

aij
)

p×q
, p × q ∈

{(

c1 × g1
)

,
(

c2 × g2
)

, · · · ,
(

ck × gk
)}

.

With the definition of multiple gene expression vectors defined
as Ek = (e)q×1, q ∈

{

g1, g2, · · · , gk
}

,
(

q ≤ j
)

, k raw
score vectors will be generated, which is defined as Sk =

MkEkLk =
(

aij
)

p×q
× (e)q×1∗(l)q×1 = (s)

p×1
, p ∈ {c1, c2, · · · ck}.

Suppose Sk to be a function to the score vectors, which is
defined as Fl. To eliminate the difference of those vectors and
compare them with each other standardly, SCSA performs z-
score normalization for them. In detail,

Fl = MlElLl =
(

fl
)

p×1
, l ∈

[

1, k
]

Zl = (zmn)p×1 =
(

f ′l
)

p×1
, l ∈

[

1, k
]

f ′l =
fl − f

d
, f =

1

p

p
∑

l=1

fl, d =

√

√

√

√

1

p− 1

p
∑

l=1

(fl − f )
2

Notably, the score vectors derived from different kinds of
databases may have different lengths. To give a uniform score to
a certain cell type, SCSA transforms them to the same length:

Z′
l = (zm′n′)p′×1 , zm′n′ =

{

zmn, m = m
′
, n = n′

0, m 6= m
′
‖ n 6= n

′ ,

p′ = num {c1 ∪ c2 ∪ · · · ∪ ck}
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Finally, an annotation model will be constructed by merging
the database weight coefficient matrix W and the last uniform
score vector.

S′ =
(

Z′
1,Z

′
2, · · · ,Z

′
k

)

W + b, W = (wz)k×1

GO Enrichment Analysis
Not all gene markers of cell types have been curated in known
cell marker databases. To solve this problem, SCSA employs
a GO enrichment analysis to give some clues to the user
to identify new cell types. In detail, for a certain GO term,
SCSA uses Fisher’s exact test to calculate the P-values, using
DEGs of the selected cluster as foreground values and DEGs
in other clusters as background values, respectively. After that,
P-value was adjusted by the Benjamini-Hochberg (BH) method
(Benjamini and Hochberg, 1995).

FANTOM5+SingleR Dataset
FANTOM5+SingleR dataset was collected from GitHub
repository of scMatch (https://github.com/forrest-lab/scMatch).
The dataset contained gene expression data of 916 human
samples (660 primary cell samples and 256 cell lines) and
821 mouse samples (471 primary cell line samples, 302 tissue
samples, and 48 transformed cell lines) from FANTOM5 and
972 human samples and 1,188 mouse samples in SingleR’s
reference dataset. Annotation of these cells into certain
categories were also downloaded from the same repository.
For human cells in FANTOM5+SingleR dataset, terms of cell
types associated with more than 10 samples were collected as
the FANTOM5_hs1 dataset. And cell types associated with
more than 40 samples were used FANTOM5_hs2 datasets.
Similarly, FANTOM5_mm1 contained cell types with more than
10 samples and FANTOM5_mm2 included cell types with more
than 40 samples in the FANTOM5+SingleR mouse dataset.

Real scRNA-seq Datasets
Four real datasets (GSE72056 (Tirosh et al., 2016), GSE81861
(Li et al., 2018), E-MTAB-6149 (Lambrechts et al., 2018),
and the PBMCs dataset) were used for evaluation of SCSA.
GSE72056, GSE81861, and E-MTAB-6149 datasets are single
cell data obtained from human tumors (melanoma, colorectal,
and lung) using Smart-seq2, Smart-seq, and 10X genomics
technology, respectively. Normal cells in the GSE72056 dataset
was downloaded from Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE72056) and used to optimize the parameters for SCSA.
Normal cells in the GSE81861 dataset was downloaded from
GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE81861). E-MTAB-6149 was downloaded from ArrayExpress
repository (https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-6149).

The peripheral blood mononuclear cells (PBMCs) datasets,
including four scRNA-seq data of peripheral blood mononuclear
cells (3k, 4k, 6k, and 8k of PBMCs) were downloaded from the
10X Genomics official website (https://www.10xgenomics.com/
resources/datasets). The 3k and 6k data were blood samples from

one donor generated using the v1. chemistry and preprocessed
with CellRanger1.1.0. They were labeled “3k PBMCs from
a healthy donor” and “6k PBMCs from a healthy donor,”
respectively. The 4k and 8k datasets, under the label “4k PBMCs
from a healthy donor” and “8k PBMCs from a healthy donor,”
were samples collected from one donor, generated using the v2.
Chemistry and preprocessed using CellRanger2.1.0.

Evaluation of SCSA Performance on Real
Datasets
For the known cell type datasets, we defined cell type cluster by
their real cell types. Then we generated calculated the DEGs for
each clusters using two methods. One is traditional Student’s t-
test perform by in-house script and the other using Seurat. We
obtained the final two lists of DEGs for the input of SCSA through
setting the threshold with P < 0.001 and LFC value of 1.

For the four PBMCs datasets, data preprocessing,
normalization, and unsupervised clustering were already
performed by CellRanger workflow from its website. Since 10X
Genomics official website illustrated a workflow example using
3k PBMCs from a healthy donor containing five cell clusters and
gave a final annotation results contained monocytes, T cells, NK
cells, megakaryocytes, and B cells, respectively, we choose results
with five clusters to do the further evaluation. SCSA identified
the DEGs of each cluster through the LFC (LFC ≥1.5) value
and P-value (P ≤ 0.05) and predicted the cell types according to
the clusters.

To evaluate the stability of SCSA in annotating the cell type of
a cluster, a heat map was generated using hierarchical clustering
method for all cell types of top five scores in a cell cluster. To
further demonstrate the accuracy of SCSA, we calculated the
percentage of the five clusters cell types tomeasure the abundance
of the same cell type based on the prediction of SCSA in the four
PBMCs datasets, respectively.

Comparison With Other Cell Type
Annotation Tools
Three annotation tools, scMatch (Hou et al., 2019), CellAssign
(Zhang A. W. et al., 2019), and Garnett (Pliner et al., 2019)
were used for comparison. scMatch was run with default
parameters using FANTOM5 as the reference dataset. For
CellAssign (version 0.99.2), a build-in set of markers contain
eight common cell types in human tumor microenvironment
were used to test for human datasets. For Garnett (version
0.1.14), two pre-trained classifiers, trained from human
PBMCs tissue (Garnett_human_pbmc) and lung tissue
(Garnett_human_lung), were downloaded from (https://
cole-trapnell-lab.github.io/garnett/classifiers) and used for
classification. Because CellAssign and Garnett only annotate
cell types for each of single cells instead of cell cluster, to make
the evaluation at the same level, all cells of a certain cluster
were predicted and the cell type with the maximum occurrence
was chosen as the final predicted result. Three tags were used
to compare the results. “Positive”meant correct prediction to
the cell type. “Negative” meant incorrect prediction cell type.
“Missed” meant no clear cell type prediction. Accuracy of cluster
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was calculated as sum of clusters with “Positive” tag divided by
sum of all clusters.

Software Availability
SCSA is implemented in Python3 as an open source software
under the GNU General Public License, and the source code
is freely available together with full documentation at https://
github.com/bioinfo-ibms-pumc/SCSA.

RESULTS

Design Principles of SCSA
The SCSA algorithm is a three-step procedure that includes
marker genes identification, annotation model construction, and
GO enrichment analysis (Figure 1). First, the input of SCSA is a
gene expression matrix with cell cluster information (such as the
output results of CellRanger or Seurat). SCSA identifies a group
of marker genes for each cluster from input expression matrix
by differential gene expression analysis. Next, for each cluster,
genes identified as marker genes that have one or more linked
cell types in a database will be used to generate a cell-gene matrix
for that cluster. For each cell type in the matrix, SCSA then used
a decision model to assign a score by combining the enrichment
of marker gene expression and the strength of evidence for the
marker genes in the database. SCSA could also take marker gene
information frommultiple databases and assign different weights
to them. Finally, SCSA provides an alternative gene ontology
enrichment analysis step to give some clues to the user for the
function of a cell cluster in addition to its annotation.

Evaluation Performance of SCSA on
Known Datasets
We first evaluated the performance of SCSA on three scRNA-
seq datasets with known cell types (Table S1). The GSE72056
dataset include 2,840 single cells isolated from normal tissues
of 19 melanoma patients (Tirosh et al., 2016). These cells have
been annotated manually by experts into six cell types, namely
B cells, T cells, Cancer-associated fibroblast (CAF), Macrophage,
Endothelial cells, and Natural killer cells. SCSA accurately
annotated five of the six cell types, except for the “Cancer-
associated fibroblast (CAF)” cells (Tables S2, S3). Instead, SCSA
gave the CAF cluster a different label named “Mesenchymal stem
cell.” It has been reported that fibroblasts shared more common
features with mesenchymal stem cells (Haniffa et al., 2009) by
expressing similar cell immunophenotypic markers, as well as
the genes that are known to be expressed in stem cells (Brohem
et al., 2013). Therefore, we considered the “Mesenchymal stem
cell (MSC)” label SCSA reported concordant with the “CAF” label
assigned by human expert. Similarly, for seven known clusters in
GSE81861 dataset (Li et al., 2017), which contains 265 single cells
derived from normal tissues adjacent to 11 colorectal tumors,
SCSA correctly predicted six of the seven clusters and identified
the “Fibroblast” group as “MSC” (Tables S2, S3). In the lung
cancer dataset of 45,232 normal cells containing seven known
cell types (Lambrechts et al., 2018), SCSA accurately assigned
B cells, Endothelial cells, Epithelial cells, Myeloid and T cells,

and identified “Fibroblast” group as “MSC” and “Alveolar” as
“Epithelial Cell” (Tables S2, S3).

In order to evaluate the robustness of SCSA on large scRNA-
seq datasets, we used four PBMCs (3k, 4k, 6k and 8k) datasets
from 10X genomics website. We collected all possible cell types
of a cell cluster according to the top five scores under the score
annotation model of SCSA. The correlation of all cell types and
scores were calculated and compared. As shown in Figure 3A,
based on the five annotated cell types (monocyte cells, T cells,
NK cells, megakaryocytes cells, and B cells) of CellRanger, SCSA
achieved a great consistency in the four PBMCs datasets. Notably,
the “macrophage cell” type was predicted as the second top score
for the cluster, which was annotated as “monocytes” by SCSA due
to the reason that they share many marker genes.

To further demonstrate the robustness of SCSA over the
five annotated cell types (monocytes cells, T cells, NK cells,
megakaryocytes cells, and B cells), we compared their abundance
in each cluster using the four PBMCs datasets. As shown in
Figure 3B, the percentages of cell numbers for five cell types
annotated by SCSA remained stable across these datasets. T cells
occupied half of the PBMCs, and monocytes cell represented
another 25%, B cells and NK cells had similar levels, while
megakaryocytes cell has the lowest number among all the five cell
types. Meanwhile, as shown in Figure 3C, SCSA can predicted
the five cell types consistent with the reference information of
four PBMCs.

In addition, to test the GOmodule in SCSA, which is designed
to give some clues on cluster cell function in addition to its
label, we collected gene expression profiles of primary cells and
cell lines from FANTOM5+SingleR dataset, which contains both
human and mouse cell types (Table S8). For cell types with 10
or more samples, SCSA achieved a 60% (15 of 25) and a 57%
(12 of 21) accuracy for human and mouse data, respectively. For
cell types containing more than 40 samples, the accuracy of SCSA
were improved to 73% (8 of 11) for human data and achieved 56%
(5 of 9) for mouse data, respectively (Table S2). For the “Aortic
smooth muscle cell” cell type, which was not identified correctly
due to lack of evidence in the CellMarker reference database, a
GO analysis step in SCSA revealed a functional enrichment in
the term “extracellular matrix structural constituent,” suggesting
its role in regulating cell shape and cross-talk with extracellular
matrix (Owens et al., 2004).

Comparison to Other Cell Type Annotation
Tools
We compared the performance of SCSA with three other tools
(scMatch (Hou et al., 2019), CellAssign (Zhang A. W. et al.,
2019), and Garnett Pliner et al., 2019) using three known cell
type datasets. Since scMatch, CellAssign and Garnett annotate
each of the single cells instead of cell clusters, all cells were
first annotated and a cell type with the maximum occurrence
in the cluster was defined as the final predicted result of the
cluster (Tables S2–S8). As showed in Figure 2, for the three
human tumor datasets (GSE72756, GSE81861, and E-MTAB-
6149), SCSA achieved the highest accuracy. scMatch owned
the similar accuracy with Garnett when using the predefined
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FIGURE 1 | Flowchart of the SCSA. First, DEGs of each cluster will be extracted and filtered from gene expression file. Next, SCSA employs marker gene databases

to annotate cell clusters. In this step, both known marker gene database and user-defined marker database could be used simultaneously. For each cluster each

database, a cell-gene matrix (M) with two vectors (E, L) will be generated to form a raw score vector (S). If multiple databases were selected, vectors would be

normalized and combined together to make a new vector (Z), then multiplied with a database weight matrix (W) to make the last uniform vector. In the last step, ranked

cell type vector will be generated according to the uniform score. In addition, SCSA employs GO enrichment analysis to give users some clue for unidentified clusters.

FIGURE 2 | Performance of SCSA in comparison with other methods (scMatch, CellAssign, and Garnett) based on three known cell type datasets. Dataset identity

was labeled on top of the panel with cluster numbers in brackets. For legends, “Positive” meant percentage of correctly predicted clusters, while “Negative” meant

incorrectly predicted clusters and “Missed” meant predictions with uncertain cell types.

lung classifier (Garnett_human_lung) on the three human tumor
datasets. CellAssign had a better prediction results than Garnett
on GSE72756 and GSE81861 datasets, with 83 and 86% accuracy,
respectively. However, for E-MTAB-6149 dataset with more than
45,000 cells, CellAssign only yielded 43% accuracy which was
lower than Garnett using pre-trained classifier from human lung
(Garnett_human_lung) (71%). A possible explanation for these
might be that CellAssign was not suitable to annotate cell types
for large datasets. Another possible explanation for these was that
E-MTAB-6149 dataset is the training-set of pre-trained classifier
of Garnett.

Cell-based annotation approaches could assign multiple cell
type labels to one cluster due to cell heterogeneity in the clusters.
Evaluation results of CellAssign in E-MTAB-6149 illustrated
that only 8 (0.1%) of B cells were correctly assigned for true
B cell cluster, whereas 2,861 (51.1%) cells were mistakenly

assigned as myofibroblast cells and 1,755 (31.3%) cells were
not able to assign a clear cell type. In general, most predicted
cell types in the cluster (>50%) from these tools were not
consistent with true cell type. For example, the T cells of
E-MTAB-6149 dataset was not annotated by CellAssign, the
fibroblasts of GSE81861 dataset was missed by scMatch, and
the natural killer cells of GSE72056 dataset were not identified
by CellAssign and scMatch (Tables S2, S4–S6). Moreover,
Garnett failed to assign epithelial cells and T cells of E-
MTAB-6149 dataset although using classifier trained from the
same dataset.

DISCUSSION

Currently, for scRNA-seq data, cell type annotation of cell
clusters after unsupervised clustering is mainly conducted
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FIGURE 3 | Cell components of PBMCs predicted by SCSA. (A) Clustering of uniform scores of the top five predicted cell types in four PBMCs datasets by SCSA.

Each column stands for one cluster of four PBMCs datasets and each row stands for one cell type. Uniform scores were normalized using the z-score method to

make clusters comparable. (B) Percentages of four different cell types in four PBMCs datasets based on SCSA’s prediction. (C) Five cell types plotted by t-SNE based

on the prediction of SCSA for four PBMCs datasets.

manually. The limitation of the manual procedure makes
it impossible to generate high-quality, reproducible, and
standardized annotation results for the growing number of
scRNA-seq datasets.

To address this challenge, we presented a novel tool, SCSA,
for automatic annotating the cell types from single-cell RNA
sequencing data, which can be applied directly on the output
generated from CellRanger or Seurat. By introducing the newly
developed annotation model merging DEGs and cell markers
reference information to replace the manual steps, and based
on the extensive evaluation of performance on seven real
known datasets, as well as comparisons with alternative methods
(CellAssign (Zhang A. W. et al., 2019), Garnett Pliner et al., 2019,
and scMatch Hou et al., 2019), SCSA can perform the annotation
task at a high accuracy and efficient level and have a preferentially
choice on annotating cell types in tumor and rare cell
type datasets.

In cell type annotation, it is usually hard to find high-

quality marker genes to describe a cell cluster. A strategy is

to use genes specifically expressed in a cell cluster to mark
the cell type. However, using a few marker genes is often

not sufficient to distinguish a cell cluster from the others. In

addition, using the whole expressed gene sets may decrease
the power to find the true patterns within each cell cluster.

Therefore, we used DEGs in the marker gene identification

step in SCSA. This step avoids the influence of ubiquitously
expressed genes and collects the appropriate genes for calculating

the optimal score in the annotation model. There still exist
some limitations, which may influence the accuracy of cell
type annotation using SCSA. First, the quantity of marker
genes in these cell marker databases greatly impacted the
results of cell type annotation. Since cell marker collection
is far away from completion, it is possible that some cell
types are unclassifiable due to the lack of appropriate markers.
Specifically, this phenomenon is quite common for unknown

tissues and novel sub-clusters of cells at different states. User-
defined marker combinations need to be developed to solve
this problem. SCSA can accept them as additional information
to improve the annotation results. Second, for complex tissues
such as cancer tissues, the accuracy of cell annotation is heavily
relied on the clustering algorithms. Different unsupervised
clustering method could have different results, especially when
the cluster size is unevenly distributed in the population (Kiselev
et al., 2019). In that situation, algorithms using supervised
clustering may be more appropriate for cell type classification
(Pliner et al., 2019).

Compared with the results of SCSA over different
datasets, SCSA exhibited a reasonable accuracy, and
robustness in cell type annotation. Further efforts could
be made to improve the annotation ability of SCSA
by taking into account more information (e.g., the
more accurate information of cell marker genes, the
comprehensive clustering algorithm). We believe that
SCSA is an important addition to the toolbox used for
single-cell studies and will greatly improve our efficiency
and capacity to explore the functional potential of novel
cell types.
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