
fgene-11-00509 June 23, 2020 Time: 15:52 # 1

ORIGINAL RESEARCH
published: 25 June 2020

doi: 10.3389/fgene.2020.00509

Edited by:
Christian Darabos,

Dartmouth College, United States

Reviewed by:
Tiejun Tong,

Hong Kong Baptist University,
Hong Kong
Gil Speyer,

Arizona State University, United States

*Correspondence:
Taesung Park

tspark@stats.snu.ac.kr

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 24 December 2019
Accepted: 27 April 2020

Published: 25 June 2020

Citation:
Leem S, Huh I and Park T (2020)
Enhanced Permutation Tests via

Multiple Pruning.
Front. Genet. 11:509.

doi: 10.3389/fgene.2020.00509

Enhanced Permutation Tests via
Multiple Pruning
Sangseob Leem1†, Iksoo Huh2† and Taesung Park1*

1 Department of Statistics, Seoul National University, Seoul, South Korea, 2 College of Nursing and Research Institute
of Nursing Science, Seoul National University, Seoul, South Korea

Big multi-omics data in bioinformatics often consists of a huge number of features
and relatively small numbers of samples. In addition, features from multi-omics data
have their own specific characteristics depending on whether they are from genomics,
proteomics, metabolomics, etc. Due to these distinct characteristics, standard statistical
analyses using parametric-based assumptions may sometimes fail to provide exact
asymptotic results. To resolve this issue, permutation tests can be a way to exactly
analyze multi-omics data because they are distribution-free and flexible to use. In
permutation tests, p-values are evaluated by estimating the locations of test statistics in
an empirical null distribution generated by random shuffling. However, the permutation
approach can be infeasible when the number of features increases, because more
stringent control of type I error is needed for multiple hypothesis testing, and
consequently, much larger numbers of permutations are required to reach significance.
To address this problem, we propose a well-organized strategy, “ENhanced Permutation
tests via multiple Pruning (ENPP).” ENPP prunes the features in every permutation round
if they are determined to be non-significant. In other words, if the feature statistics from
the permuted datasets exceed the feature statistics from the original dataset, beyond
a predetermined threshold, the feature is determined to be non-significant. If so, ENPP
removes the feature and iterates the process without the feature in the next permutation
round. Our simulation study showed that the ENPP method could remove about 50%
of the features at the first permutation round, and, by the 100th permutation round,
98% of the features had been removed and only 7.4% of the computation time with
the original unpruned permutation approach had elapsed. In addition, we applied this
approach to a real data set (Korea Association REsource: KARE) of 327,872 SNPs to
find association with a non-normally distributed phenotype (fasting plasma glucose),
interpreted the results, and discussed the feasibility and advantages of the approach.

Keywords: permutation test, multiple hypothesis testing, pruning, big multi-omics data, GWAS

INTRODUCTION

Unlike typical big data, big data in bioinformatics consists of huge numbers of features and
relatively small numbers of samples. For example, the data from genome-wide association
studies (GWAS) contain at least thousands of samples and several hundred thousands of single
nucleotide polymorphisms (SNPs) (Manolio, 2010). In the case of transcriptomic analysis for
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finding differently expressed genes, tens of thousands of genes
are tested from only hundreds of samples at most (McLachlan
et al., 2005). In epigenomic data, such as DNA methylation,
the number of features (e.g., CpG sites) varies from tens of
thousands to several million according to profiling techniques
and their resolution (Bibikova et al., 2011; Adusumalli et al.,
2014). Moreover, not only large numbers of features but also
various characteristics of the features are important points to be
considered. For example, in genomic data, such as SNPs, a feature
is represented as a count of a minor allele at a genomic locus in
each individual. In transcriptome data sets, gene expression levels
are represented as continuous and positive real values measured
from microarray spot intensities. In the case of epigenomics data,
the DNA methylation levels of loci can be provided as a ratio
between read counts of C and read counts of C and T. In addition,
proteomics and metabolomics data provide marker intensities
from mass-spectrometry-based approaches. Therefore, detecting
association between phenotypes and biomarkers using standard
statistical approaches may sometimes be inaccurate, as many of
these are based on parametric assumptions that require specific
properties of the features. Although several remedies have been
proposed in terms of parametric approaches (Thygesen and
Zwinderman, 2004; Lin et al., 2008; Park and Wu, 2016), they
are naturally asymptotic ones and still possibly have type 1 error
inflation or low power.

As an alternative to these issues, the permutation test
(Pitman, 1937; Annis, 2005) has become a popular approach for
analyzing multi-omics data because it can be used regardless
of the shape of distribution of the biomarkers’ expression and
uses a simple algorithm. In the permutation test, a p-value is
assessed through evaluating the relative rank of the observed
test statistic in an empirical null distribution of the test statistic
generated by random shuffling. The permutation test has already
been used in some omics analysis. For example, in GWAS,
the permutation test is used for adjusting for multiple tests
(Browning, 2008), considering biological structures (Pahl and
Schäfer, 2010), and identifying gene-gene interactions (Ritchie
et al., 2001; Greene et al., 2010). In next-generation sequencing
data analysis, rare variants have been identified by permutation
test for association with a phenotype (Madsen and Browning,
2009) and as a significance test of structural models (Lee et al.,
2016; Kim et al., 2018). In integration analysis of multi-omics
data, the permutation test is used for finding edges in the
integrated network (Jeong et al., 2015) and significance testing
of an aggregated unit with a structure (Kim et al., 2018). In
metagenome studies, the permutation test is used for testing
differences between distances of groups (Chen et al., 2012),
finding differentially abundant operational taxonomic units
(Anderson, 2005), and finding differentially abundant genomic
features (Paulson et al., 2011).

However, a major obstacle to the permutation test is its
large computation time, because the smallest p-value that a
permutation test can reach is inversely proportional to the
permutation time. Therefore, if a data set has a large number
of features, it requires a large number of permutations to
detect significantly associated features because larger numbers
of features require more stringent type 1 error control in

terms of multiple hypothesis testing correction. For example,
if a researcher wants to test an association between 5.0 × 105

SNPs and a specific phenotype, the p-value threshold will be
1.0 × 10−7 [0.05/(5.0 × 105) by Bonferroni correction]. To
achieve such a stringent p-value threshold, the number of
permutations must be at least 1.0 × 107

−1 for each SNP,
and the total computation time for all features is impractical.
Considering that only significant features are of general interest
to researchers, pruning insignificant features can be a way to
resolve the issue.

Therefore, in this study, we propose a well-organized strategy,
ENhanced Permutation tests via multiple Pruning (ENPP). The
key idea of ENPP is simple. When the number of features
is large, the p-value threshold is very low due to multiple
testing correction. In most cases, if a feature is reported to
be significant, its observed test statistic value should be more
extreme than those from permuted data sets. On the other hand,
if a feature has more than a set number of instances of having
larger statistics from permuted data sets, it can be regarded as
a feature with significantly less chance of being significant, and
ENPP prunes the feature during a certain permutation round. In
other words, ENPP specifically removes non-significant features
and continues the permutation procedures with the remaining
features, which can then be candidates for a predetermined
significance level. This approach can reduce total permutation
time to a feasible level compared to ordinary permutation
approaches that conduct the same number of permutation tests
on all features. Herein, we show that ENPP can remove about
50% of features in the first permutation round and requires, at
the 100th permutation round, only 7.4% of the computation time
needed for the unpruned permutation approach. This relative
proportion of computation time becomes smaller as the iteration
time increases. In addition, we applied our approach to a real
data set (Korea Association REsource: KARE) (Cho et al., 2009)
containing 327,872 SNP features and a non-normally distributed
phenotype (fasting plasma glucose, FPG) for validation of our
approach in terms of feasibility and usefulness.

MATERIALS AND METHODS

Data Set
For real data analysis, we chose a Korean GWAS data set collected
since 2007 by The Korean Association REsource (KARE) project
(Cho et al., 2009). In this project, all participants were recruited
from either of two region-based cohorts (rural Ansung and
urban Ansan). The total number of participants was 10,038
(5,018 from Ansung and 5,020 from Ansan), and they were all
genotyped, using genomic DNA from peripheral blood, using
the Affymetrix (Santa Clara, CA, United States) Genome-Wide
Human SNP array 5.0, containing 500,568 SNPs. For quality
control, we followed the same process used in a previous study
(Oh et al., 2016). As a result, we finally obtained 8,842 individuals
and 327,872 SNPs, and the processed data set was used in our
real data analysis. The study was reviewed and approved by the
Institutional Review Board of Seoul National University (IRB
No. E1908/001-004).
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ENPP Approach
Suppose that there are N samples, each with a dependent variable
Y, and J features X1, . . . ,XJ , representing features from a multi-
omics data set. In general, for a significance test of association
between a specific Xj and Y, the null distribution of the test
statistic S consists of test statistics from permuted data sets, and
we call the statistics sr , where r = 1,2,. . .,R, with R denoting
the total number of permutation rounds for the feature. Then,
the observed value, sobs (i.e., the original value of the test
statistic, S) is compared to the null distribution of S, and the
significance is assessed by the proportion of sr values more
extreme than sobs. For exact generation of the null distribution,
N! iterations are required. However, when N! is too large,
R iterations of random shuffling (R) (R << N!) are generally
used for assessing computational feasibility in terms of Monte-
Carlo estimation. A finding that a sobs value is larger than the
simulated sr values implies that the test is more supportive of the
alternative hypothesis, and the p-value is then calculated by the
following equation:

Pperm =
1+

∑r=R
r=1 I(sobs ≤ sr)
R+ 1

, (1)

where I(·) is an indicator function, and +1 in the numerator and
denominator can be omitted.

When the number of features is multiple, the p-value threshold
should be adjusted for a multiple testing comparison. For
example, a typical p-value threshold is 0.05, and, if there are 1,000
features for association tests, then the p-value threshold becomes
0.05/1,000, for the Bonferroni correction. In other words, when a
feature has a p-value smaller than this adjusted p-value threshold
it is reported as significant. Therefore, the possibility of I(·) = 1
(more extreme than the observed statistic value) is extremely
low for this feature. On the other hand, if I(·) = 1 frequently
appears in a feature, the p-value of the feature may be closer to
1, meaning that it may not be significant and would therefore be
of no interest to researchers. Let praw be an unadjusted p-value
threshold (e.g., 0.05) and padj be an adjusted p-value threshold,
for each feature, after the multiple testing correction (e.g., 0.05/J
by Bonferroni correction). padj is then the significance level for
which we need to detect significant features, and the decision of
whether or not to prune a feature, in any specific round, is based
on the hypothesis that:

H0 : p = padj, and H1 : p > padj, (2)

where p implies the true p-value from the permutation approach.
In the hypothesis, the significance level for the test needs to be
determined, and we call the threshold pprun. For the hypothesis
test, a binomial test can be used, and, based on padj and pprun,
we can set an integer Cprun that satisfies pprun in a permutation
round. Therefore, Cprun is a variable that depends on permutation
numbers, while padj and pprun are fixed values for the whole
pruning process. Consequently, using this rule, EPNN counts in
how many cases a feature has a more extreme test statistic than
its observed test statistic value in each permutation round. If a
feature is equal to or greater than Cprun in a round, it is removed

from the next permutation round. The following is a detailed
explanation of the parameter determination.

Let us assume that padj = 5 × 10−5, which is equivalent to a
threshold Bonferroni correction with 1,000 features, and pprun =
padj. In addition, if we let pk|r denote a probability of observing
at least a number k of test statistics values more extreme than the
observed test statistics at the rth permutation round, then pk|r =
t=r∑
t=k

(
r
t

)
ptadj(1− padj)r−t . Therefore, if the p-value of a feature

is significant, then pk|r should be equal to or smaller than pprun.
As an illustration, consider the first permutation round. Based
on a setting of padj = 5 × 10−5, two probabilities, p0|1, p1|1, are
given. Because we set pprun=padj, p0|1 will be 1 and p1|1 will be
padj, implying that Cprun = 1 is in the first round. For the second
round, there are three probabilities, p0|2, p1|2 and p2|2, that can
be easily computed. In this case, p1|2 = 1× 10−4 > pprun p2|2 =

10−9 < pprun. Therefore Cprun will be 2 for the second round.
In this manner, we can obtain Cprun for all permutation rounds
conducted. We will show the properties of the parameters in
the next section.

RESULTS

Simulation Analysis
In this section, we evaluated the advantages of ENPP compared
to a strict permutation approach, including its need for only
very few counts for rejecting and removing non-significant
features. As a consequence of this attribute, ENPP can greatly
reduce total computation time to a feasible level compared to an
unpruned permutation approach. To show the desired properties,
we artificially generated data sets whose features did not associate
with a feature. When the Bonferroni threshold was applied and
praw = 0.05, the first example had p1

adj = 0.05/1,000 and the second
example had p2

adj = 0.05/(5 × 105). In addition, we also assumed
that pprun = padj for both examples.

Distribution of Cprun
Firstly, we investigated the distribution of Cprun values according
to each permutation round for p1

adj, and p2
adj, respectively.

Using the formula described in the methods, Cprun values were
calculated for r = 1,2,. . ., 10,000, and the resulting values are
shown in Figure 1A, which also shows that the values of Cprun
for p1

adj are at most 6 in the 10,000th round. This implies that
the threshold is not hard to satisfy and that we can reduce a
large proportion of the number of features at each permutation
round. In the case of p2

adj, Cprun becomes smaller (Figure 1B).
In detail, Cprun is 1 for i = 1, 2 for i ∈ [2, 4, 473], and 3 for
i ∈ [4, 474, 10, 000], implying that smaller padj values provide
smaller Cprun values, although pprun is proportional to padj.

Pruning Rates and Computational
Efficiency in Each Permutation Round
Based on the Cprun values calculated above, we also evaluated
the pruned proportion of the total features for each permutation
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FIGURE 1 | (A) Distribution of Cprun with Pprun = 5 × 10−5. (B) Distribution of Cprun with Pprun = 1 × 10−7.

round. Suppose that the p-value of a feature has a uniform
distribution, meaning that the feature has no association with
a phenotype. In this setting, the pruned proportion of features
depends only on Cprun. For example, at the first round, for
Cprun (1) = 1, the proportion of pruned features will be

∫ 1
0 pdp =

1
2 . At the second round, for Cprun (2) = 2, no pruning will
happen, because the event that Cprun (1) = 1 includes the
event that Cprun (2) = 2. At the third round of permutation,
for Cprun (3) = 2, the expected pruning proportion after the
permutation will be:

∫ 1

0
(1− p)p2dp =

∫ 1

0
(p2
− p3)dp =

1
3
−

1
4
=

1
12

.

In other words, at the first permutation, 1
2 of the features are

expected to be pruned, and 1
12 of the features are additionally

pruned after the third round. In this manner, the expected
proportions of remaining features after pruning from 1 to
10,000 permutation rounds are calculated using the Cprun values
(Figure 1), and the results are described in Figure 2. Because the
cumulative pruning proportion is not easily derived by numerical
calculation, we estimated the proportion by simulation using
variables from a Bernoulli distribution, with the probability for
success taken from a uniform distribution U(0,1). In Figure 2A,
only about 2% of features remain after the 100th permutation
round in both pprun settings, thus greatly reducing the number
of tests for the data set at the round. However, as Cprun becomes
different, the remaining proportions also become different. For
example, at the 1000th permutation round, 0.3% of total features
remained for p1

adj and 0.2% for p2
adj. The ratio between the two

proportions became larger at the 10,000th permutation round,

with 0.057% for the former, p1
adj, and 0.028% for the latter, p2

adj.
These results reflect the differences of Cprun provided in Figure 1.

We next assessed computational efficiency by comparing
the total permutation time for ENPP to that for the original,
unpruned permutation test. The efficiency is represented as a
ratio between the number of tests in the original unpruned
permutation approach and the cumulative number of tests in
the ENPP approach. The total permutation time for a given
permutation round in ENPP is calculated by accumulating all
permutation times of earlier permutation rounds. Therefore,
larger computational efficiencies imply a large timesaving
advantage for ENPP analysis. For example, during the first round,
there is no reduction of permutation time, but for the second and
third permutation rounds, ENPP needs only 1

2 the computations
compared to the original unpruned permutation tests, and 5

12
the permutations are needed for the fourth round. Therefore,
computational efficiency will be 1

1 = 1 for the first permutation
round, and 1+1

1+ 1
2
=

4
3 , 1+1+1

1+ 1
2+

1
2
=

3
2 , 1+1+1+1

1+ 1
2+

1
2+

5
12
=

48
29 . for the

second, third, and fourth permutation rounds, respectively. The
Inverse Computational Efficiency (ICE) for each permutation
round is summarized in Figure 2B. In Figure 2B, ICE does
not seem to decrease as fast as the remaining proportion, as
shown in Figure 2A, due to the fact that permutation times
of precedent rounds accumulate in estimating computational
efficiency. Compared to the ordinary unpruned permutation test,
only about 7.4% of the computation time is needed at the 100th
permutation round in both settings, because they have the same
numbers for Cprun and the same resulting remaining proportions.
However, as in the remaining proportion of features, ICE became
more different in terms of ratios between the two settings as
the permutation round progresses. For example, at the 1000th
permutation round, ICE is 1.3% for pprun = 5 × 10−5 and
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FIGURE 2 | (A) Proportion of tested features at each round after pruning for the two Pprun values in Figure 1. (B) Inverse of computational efficiency (ICE) for 2A.
(C) Type 1 error results. We divided the number of false-positive features by 1,000 to obtain the family-wise type 1 error rate. 95% confidence intervals of the
estimated type 1 errors are also provided.

1.2% for pprun = 1 × 10−7. However, in the 10,000 iteration,
0.23% is needed for the former, pprun while 0.17% is needed
for the latter, pprun. Thus, the overall computational efficiency
improves as the iteration round progresses because the remaining
rate of the features grows smaller, and smaller pprun requires
less computation.

On the other hand, we assessed the type 1 error rate of non-
associated features from the ENPP approach. For p1

adj and p2
adj,

we generated 106 and 5 × 108 non-associated features from the
Bernoulli distribution so that the expected numbers of features
with type 1 error are 50 in both settings. We first applied the
pruning process to the non-associated features and then the full
permutation approach to the remaining unpruned features. After
the full permutation approach had been applied, we counted
how many non-associated features were found significant at the
given significance levels. The type 1 error rates are summarized
in Figure 2C, showing that the ENPP approach controls the
type 1 error well.

Real Data Analysis
We next applied our approach to a real genome-wide data set
(Korea Association REsource: KARE), which has 327,872 SNPs
from each of 8,842 individuals (Cho et al., 2009). In order to
detect significant SNP features at the Bonferroni significance
level in the data set, the ordinary permutation approach (without
ENPP) requires at least (1/0.05) × 327,8722 = 2.15 × 1012, a
computationally impractical number of tests. Therefore, using a
pruning approach for this data set becomes inevitable when the
permutation approach is used. For the application of ENPP, we
set praw = 0.05 and pprun = padj = 0.05/327,872 = 1.52 × 10−7,
and the corresponding Cprun is calculated and described in
Figure 3A. Here, we set the number of iterations to 100,000
because simulation analysis found that the remaining proportion
of features was 3.7 × 10−5 at the 100,000th round and

the corresponding expected count of remaining features was
3.7 × 10−5

× 327,872 = 12.13 if all features were assumed
not to associate with a phenotype. We selected fasting plasma
glucose (FPG) as a phenotype because its distribution is very
highly skewed (skewness = 5.32) and the skewness is still high
(=2.71) (Kim, 2013) even after log-transformation. Consequently,
we expected that this property may produce results that differ
between a parametric approach and a permutation approach. For
the association analysis, we used age, gender, and living regions as
covariates, and we assumed that the genotype of the SNP features
has an additive effect on the phenotype. As a test statistic for the
permutation test, we used a t-statistic for the genotype effect.

Based on the expected remaining proportion of the features,
we found ICE to be 2.4 × 10−4 at the 100,000th permutation
round (Figure 3C), meaning that we needed only 24 times
more computation compared to the parametric linear regression
approach. This number of permutation tests can be done in
a few days, even in a single thread. After implementing the
100,000th iteration of ENPP with the real data set, we plotted
the number of remaining features (Figure 3B) and the ICE
(Figure 3C) in each round. Those results showed that 46 SNP
features remained and that the computational efficiency was
3.7× 10−4, implying that some SNP features were candidates for
significant features. For each of 46 SNP features, we implemented
a 3×107

−1 permutation test to provide a p-value not only for
Bonferroni correction but also for a genome-wide significance
of 5 × 10−8 (Xu et al., 2014). After implementation of the test,
we found that five SNP features passed the Bonferroni threshold,
and two SNPs also passed for genome-wide significance (Table 1).
On the other hand, the parametric approach found four SNPs
for Bonferroni correction, and two SNPs passed genome-wide
significance. However, only three SNPs overlapped for the
former threshold, and one SNP overlapped for the latter one.
To determine substantial differences of p-values between the
two approaches, we used an exact binomial test (Clopper and
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FIGURE 3 | (A) Distribution of Cprun for the real data set with Pprun = 1.52 × 10−7. (B) Proportion of tested features after pruning. (C) ICE for Pprun = 1.52 × 10−7.
Black lines are expected values from the simulation, and blue lines are observed values from the real data analysis.

TABLE 1 | 6 SNPs selected from either parametric (linear regression) or non-parametric (ENPP) tests at a Bonferroni significance level p = 1.52 × 10−7.

CHR SNP id MAF P-value from
linear regression

P-value from
permutation

P-value from comparison
between the two values

6 rs9348440T 0.478 1.63 × 10−7 1.33 × 10−7 1

6 rs6456368C 0.480 1.54 × 10−7 1.00 × 10−7 0.640

6 rs10946398C 0.479 8.35 × 10−8 6.67 × 10−8 1

6 rs7754840C 0.479 4.93 × 10−8 3.33 × 10−8 1

6 rs9460546G 0.481 5.45 × 10−8 3.33 × 10−8 1

16 rs7197218G 0.014 4.81 × 10−8 7.33 × 10−7 <2.2 × 10−16

Here, we provide information for SNP features such as chromosome, SNP id, and minor allele frequency (MAF) and the p-values from both tests. In the last column of
the table, we also include the results of an exact binomial test for permutation results based on the null hypothesis that the p-value of the permutation test is the same as
the results from the parametric approach.

Pearson, 1934) that regarded p-values from the parametric
approach as a null hypothesis p-value for the permutation results.
From the test, we found that only one SNP (rs7197218G in
chromosome 16) showed a significant difference between the
two results (Table 1). This SNP showed a more conservative
result from the permutation approach; this result may come
from type 1 error inflation in the parametric test in the presence
of very low minor allele frequency and large differences of
variance between FPG values with and without the minor allele
(Zimmerman, 2004).

DISCUSSION

For the analysis of multi-omics data, the permutation test has
been popularly used because it is non-parametric and flexible
to use. However, the main drawback of this approach is that it
may require such a large number of tests as to make it infeasible,
especially for data sets with large numbers of features and a
Bonferroni-corrected significance level. To resolve this issue, we
proposed a well-organized strategy, ENhanced Permutation tests
via multiple Pruning (ENPP), for enhanced permutation tests,
using the idea of pruning. ENPP investigates the features at every

permutation round and removes them if they have less chance
of being significant. Our empirical study showed that the ENPP
method could remove about 50% of the number of features at
the first permutation round and required only 7.4% of the total
computation time at the 100th permutation round as is needed by
an unpruned approach. Moreover, in real data analysis, on a data
set of 327,872 SNP features, our approach was found to greatly
reduce computational burden to a feasible level, and the analysis
results seemed more reliable than the results from a parametric
approach because they were not affected by a specific assumption
of a null distribution. Interestingly, we found that the number
of tests conducted in the ENPP process was much smaller than
the number in the final evaluation of the 46 SNP features to
obtain precise p-values. In the pruning process of real GWAS
data, about 1.2× 107 permutations were needed, while in parallel,
the full permutation analysis required about 1.4× 109 iterations.
Since the pruning process and the full permutation process
are performed on each feature independently, they can easily
be parallelized. We believe that parallelism has a large impact
on the full permutation process because the full permutation
process seems to take much more computing time than the
pruning process in our real data analysis. Therefore, with the
help of parallel computing, our ENPP approach can easily handle,
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without computational burden, larger data sets such as human
methylation data with 2× 107 CpG site features.

Our EPNN algorithm is also flexible for pruning processes.
Researchers can modify padj and pprun as they want. In this
study, we set padj = pprun, with padj from a Bonferroni correction,
and conducted 100,000 ENPP permutations. These settings
could be interpreted with the number of expected significant
features and the number of tests of the features, considering that
summation of the actual significance level, calculated for Cprun,
from the first round to the 100,000th round is 2.66 × 10−3,
and it admits 0.05/(2.66×10−3) ≈ 18 truly significant features
at the Bonferroni threshold. In other words, if there are 18 or
fewer significant features, at p = 1.52×10−7, we can control
the probability of falsely pruning any significant features under
0.05. This assumption of the number of the significant features
is reasonable, considering that only a few features may satisfy
Bonferroni cutoff in general and that our analysis results in
both parametric and permutation approaches found only four or
five SNPs, respectively. In addition, researchers may sometimes
be interested not only in features for a specific Bonferroni
significance level but also in a p-value distribution of whole
features. For this purpose, ENPP can be applied after some
number of unpruned permutation rounds, such as 100, so that
more precise p-values can be obtained, even for non-significant
features, and the results can be used in false discovery rate (FDR)
approaches (Benjamini and Hochberg, 1995) or in combining
p-value approaches for some group-wise testing such as gene-
or pathway-wise significance tests (Subramanian et al., 2005).
Our ENPP approach will help many researchers achieve precise
p-values in a feasible time, even for datasets with a large number
of features. A brief R script for performing ENPP is provided for
SNPs at http://statgen.snu.ac.kr/software/ENPP. This will enable
more accurate decisions based on the statistical results.
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