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Assessing conformation features in an accurate and rapid manner remains a challenge
in the dairy industry. While recent developments in computer vision has greatly improved
automated background removal, these methods have not been fully translated to
biological studies. Here, we present a composite method (DeepAPS) that combines
two readily available algorithms in order to create a precise mask for an animal
image. This method performs accurately when compared with manual classification
of proportion of coat color with an adjusted R2 = 0.926. Using the output mask,
we are able to automatically extract useful phenotypic information for 14 additional
morphological features. Using pedigree and image information from a web catalog
(www.semex.com), we estimated high heritabilities (ranging from h2 = 0.18–0.82),
indicating that meaningful biological information has been extracted automatically from
imaging data. This method can be applied to other datasets and requires only a
minimal number of image annotations (∼50) to train this partially supervised machine-
learning approach. DeepAPS allows for the rapid and accurate quantification of multiple
phenotypic measurements while minimizing study cost. The pipeline is available at
https://github.com/lauzingaretti/deepaps.

Keywords: image analysis, morphology, phenomics, image mask, deep learning, dairy cattle

INTRODUCTION

Breeding programs depend on large-scale, accurate phenotyping, which is also critical for genomic
dissection of complex traits. While the genome of an organism can be characterized, e.g., with
high density genotyping arrays, the “phenome” is much more complex and can never be fully
described, as it varies over time and changes with the environment (Houle et al., 2010). The
cost of genotyping continues to drop, but there is still a need for improvements in obtaining
high-performance phenotypes at a lower cost (Tardieu et al., 2017). In cattle, the number of
phenotypes recorded in traditional breeding schemes is relatively small, because its recording is
expensive. For instance, yearly milk yield is usually inferred by extrapolation using a few lactation
measurements, whereas actual milk production can now be measured individually and daily using
automated milking robots.
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In addition to milk yield, dairy cattle breeders are interested
in conformational traits. These metrics are not only relevant
aesthetically but can also have an important influence on
an animal’s breeding value. Body conformation is associated
with dairy performance (Guliński et al., 2005) and longevity,
which strongly contributes to lifetime milk production (Sawa
et al., 2013). Milk production is positively correlated with
udder size (Mingoas et al., 2017). The highest negative
economic impact for dairy farmers is caused by lameness
either due to leg malformations or injury (Sogstad et al., 2006;
Green et al., 2010). Extracting the detailed conformational
phenotypes which may impact progeny success are likewise
time consuming and costly to collect, and in the absence
of quantitative tools, farmers often evaluate morphometric
measurements qualitatively.

The emergence of modern sensor technologies, such as
Unmanned Aerial Vehicles (UAV) combined with simple digital
cameras (Kefauver et al., 2017), mass spectroscopy, robotics, and
hyper-spectral images (Fahlgren et al., 2015), among others, have
revolutionized breeding programs, mainly in plants, allowing
for non-invasive evaluation of multiple complex traits. Although
in animal breeding their application is more scarce, modern
livestock farming is beginning to benefit from access to these
inexpensive sensor tools. Now, it is possible to remotely monitor
behavior (Guzhva et al., 2016; Foris et al., 2019; Zehner et al.,
2019) and animal welfare (Beer et al., 2016), assess movement
(Chapinal et al., 2011), measure body confirmation (Van Hertem
et al., 2013; Song et al., 2018), quantify individual food intake
(Braun et al., 2014; Beer et al., 2016; Foris et al., 2019), maintain
an optimum environment (Chen and Chen, 2019), or decrease
instances of stillbirths (Palombi et al., 2013; Ouellet et al., 2016).
These automated measurements rely on temperature (Palombi
et al., 2013; Ouellet et al., 2016; Chen and Chen, 2019), pressure
(Braun et al., 2014; Beer et al., 2016), movement (Chapinal et al.,
2011), and visual (Van Hertem et al., 2013; Guzhva et al., 2016;
Song et al., 2018; Foris et al., 2019; Zehner et al., 2019) sensors.

As several remote monitoring schemes are based on digital
images or video, automated image analysis techniques are
urgently needed to quantify traits of interest (Zhang et al.,
2018). Applying image analysis to breeding programs is not
new, however many of these methods largely depend on
time consuming image-by-image processing facilitated by the
researcher (as in Hayes et al., 2010; Cortes et al., 2017;
Rosero et al., 2019). The few automated resources currently
implemented for cattle analyses require complicated set-ups and
costly equipment (Chapinal et al., 2011; Song et al., 2018). This is
not surprising as accurately quantifying phenotypic information
is one of the most challenging aspects in biology (Houle et al.,
2011; Boggess et al., 2013; Rahaman et al., 2015).

The availability of new algorithms based on machine learning
has revolutionized computer vision, impacting a wide range
of fields that rely on computers to analyze images, with the
potential to optimize herd care and improve animal and plant
breeding program outcomes (Song et al., 2018; Foris et al., 2019;
Zehner et al., 2019). These recent advances have led to precise
object detection and semantic segmentation in complex images
(Girshick et al., 2014; Han et al., 2018; Gu et al., 2018).

Here, we show how automatically parsed web-based
catalog datasets can be converted into useful information
by automatically inferring genetic parameters of several
morphological measurements in dairy cattle. We combined web
scraping, deep learning, and statistical techniques in order to
achieve our objective. The proposed methodology is a mixture
between a supervised deep learning approach, Mask R-CNN
(He et al., 2017) and an unsupervised algorithm (Kanezaki,
2018) which can achieve highly precise automatic image
segmentation. After removing the background, phenotypic
information, including coat color and body conformational traits
can be easily quantified. Lastly, we demonstrate the potential
applications of this method in other datasets. We assert that our
work could constitute a good proxy for using inexpensive and
non-invasive computer vision techniques into the dairy cattle
breeding programs.

MATERIALS AND METHODS

Image Collection
Images of bulls were collected through web-scraping using
the python library Beautiful Soup (Richardson, 2007). Images
from sire catalogs of six Artificial Insemination companies
were collected. We additionally automatically collected bull
images from one semen provider1 and those of identified
familial relationships (daughters, dams, granddams, and great
granddams) where possible. We downloaded a total of 1,819
images. These images ranged in size between 339–879 pixels and
257–672 pixels for width and height, respectively. The animals are
Holstein with patched black and white bodies, but some images
are red Holstein. Individuals ranged in color from all white, all
black, all brown, to a mixture of the colors. The images were
flipped so that all animals faced the right side of the image using
ImageMagick version 7.0.9-0 convert -flop function. The animals
are standing in front of dynamic backgrounds including forest,
field, snow, water, and straw. All images contained only one
animal, and sometimes contained a person or an arm.

Automated Segmentation
One of the most challenging tasks in computer vision is instance
segmentation, i.e., the identification of boundaries of objects at
the pixel level (Kanezaki, 2018), whereas object classification, i.e.,
to determine if an object belongs to certain class is relatively
simpler. R-CNN (Girshick et al., 2014), a deep learning approach,
as well as Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren
et al., 2015), or Mask R-CNN (He et al., 2017) are widely used
to solve this task. Although these methods are efficient, they
are not accurate enough for some purposes since the obtained
segmentation often removes parts of the object of interest or
contains parts of the background.

We applied a two-step procedure to automatically segment the
animal’s profile as accurately as possible. The composite method
begins by using Mask R-CNN (He et al., 2017), which has three
outputs for each candidate object in an input image (Figure 1A):

1www.semex.com
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a class label (say “cow”), bounding box offset or region of interest
(RoI), and the object mask consisting of an approximate layout
of a spatial object. As in the original Mask R-CNN, we used the
annotated image database common objects in context (COCO;
Lin et al., 2014)2 to train the algorithm, and select the class codes
for cow. In short, Mask R-CNN is a deep learning algorithm
that consists of two steps: first, it proposes regions within the
image that may contain objects of interest and, second, generates
a mask for every detected object. The latter step consists of a
binary classification of pixels, either a pixel belongs to the object
or to the background. For more details about this method readers
can consult, e.g., https://towardsdatascience.com/computer-
vision-instance-segmentation-with-mask-r-cnn-7983502fcad1,
https://engineering.matterport.com/splash-of-color-instance-
segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
or should refer to He et al. (2017). Figure 1B shows the applied
mask predicted by Mask R-CNN, this mask removes the majority
of the background, but also removes parts of the cow’s body
making it necessary for the development of our two-step
composite method. We used the implementation of Mask
R-CNN in https://github.com/matterport/Mask_RCNN.

After the RoI and class labels are extracted, we select only the
RoI for our desired object (i.e., the bull or cow). This allows us
to remove some of the background and obtain a smaller, less
noisy image. As explained above, the Mask R-CNN segmentation
was not accurate enough for our purposes (Figure 1B).
Therefore, we passed the RoI and predicted mask to a modified
version of the unsupervised image segmentation algorithm from
Kanezaki (2018). We used the code available at https://github.
com/kanezaki/pytorch-unsupervised-segmentation. The original
algorithm relies on separating pixels from each other and
grouping them into distinct clusters based on color and texture.
The underlying assumptions of this model are that: (1) pixels
of similar features should be clustered together, (2) spatially
continuous pixels should be clustered together, and (3) the
number of clusters should be large. This is achieved by applying
a linear classifier which groups pixels into different clusters based
on their features. The difference between the original algorithm
and ours is we do not try to maximize the total number of
clusters, but instead we merely improve upon the mask generated
by Mask R-CNN based on pixel identity. This makes more
effective the algorithm to run, since the algorithm applied to
the whole original image was not completely satisfactory. This
proceeds by self-training the network through back propagation,
by alternating between two stages: (1) forward super pixel
refinement, and (2) backward gradient descent. Much like any
supervised approach this is achieved by calculating the cross-
entropy loss between network and cluster labels, then back
propagating the error rates used to update the convolutional filter
parameters. Backpropagation is a popular and clever method
used in deep learning. It allows computing the gradient of the loss
function very efficiently by using the chain rule for derivatives,
which greatly simplifies optimization in complex models.

After refinement through the unsupervised algorithm, we
obtained a relatively precise mask for our input image

2http://cocodataset.org

FIGURE 1 | Example input and outputs. (A) Original input image. (B) Mask
R-CNN applied mask. (C) DeepAPS raw output. (D) Final output of DeepAPS
after all applied filters. (E) Final DeepAPS mask applied to input image.
(F) Outline extraction of original input image. (G) Extracted landmark
coordinates. (H) Manual color segmentation. Image from Semex.

(Figure 1C). However, the unsupervised clustering still can
confound the foreground and the background. We then apply an
additional filter to the mask, median blur function from OpenCV
(Bradski, 2000), removing small islands that have been mislabeled
during the clustering step (Figure 1D). We lastly apply the mask
by coloring all pixels predicted to be in the background by a solid
color (Figure 1E).

To extract the proportion of and average color(s) from
each cluster, we apply k-means using the scikit-learn library
(Pedregosa et al., 2011). To measure anatomical features,
we extract only the outline of the desired object from
the mask (Figure 1F) using the edge detection algorithm
developed by Canny (1986) and implemented in OpenCV
(Bradski, 2000). After extracting the edge, we apply one
more filter to remove any islands that may remain using the
remove_small_objects function from the morphology package
available from scikit-learn (Pedregosa et al., 2011). Now that
the input image has been reduced down to just the object
outline, we can take advantage of common conformational
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FIGURE 2 | Example input and outputs. (A) Original input image. (B) Mask R-CNN applied mask. (C) DeepAPS raw output. (D) Final output of DeepAPS after all
applied filters.

features of the underlying data, and extract pixel coordinates.
For example, we extracted the coordinate of the pixel closest
to the bottom left corner which corresponds to the back
foot of the cow. We proceeded in this way to extract 13
coordinates from each animal (Figure 1G). We then calculate the
distance in pixels between various points, effectively extracting
body confirmations automatically. The 14 conformational
traits are described in Supplementary Figure S1. Code
for the whole pipeline is available at https://github.com/
lauzingaretti/deepaps.

Manual Segmentation
To check how accurate the automated segmentation was,
we manually segmented N = 481 images that were not
of Semex origin. We used Kanezaki’s demo.py program
(2018) in python3.6 (van Rossum, 1995) using default
parameters. The output images were opened in the

image processing software GIMP3, and the background
was manually changed from the colored cluster to
white (Figure 1H). To extract the color clusters, we
calculated the proportion of color clusters in each image
by using k-means as above, and manually matched each
color cluster to the original picture and removed the
proportion of background.

Genetic Parameters
To calculate heritabilities for the measured phenotypes, we
extracted pedigree information and constructed a relationship
matrix for each bull whenever possible. This was done by
automatic web scraping in the sire catalog website, where we
identified bull id, any relative type (i.e., daughter, dam, granddam,
and great granddam), and their images. From the list of bull and

3https://www.gimp.org/

Frontiers in Genetics | www.frontiersin.org 4 May 2020 | Volume 11 | Article 513

https://github.com/lauzingaretti/deepaps
https://github.com/lauzingaretti/deepaps
https://www.gimp.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00513 May 19, 2020 Time: 19:6 # 5

Nye et al. DeepAPS: An Authomatic Phenotyping Approach

FIGURE 3 | (A) Correlation (adjusted R2 = 0.926) between manual and automated color segmentation of 481 images. (B) Example input image. (C) Applied
DeepAPS output mask. (D) Manual color segmentation. Image from Semex.

relatives’ ids, we computed the standard numerator relationship
matrix, which contains the genetic relationships assuming an
infinitesimal model. Bayesian estimates of heritability were
calculated with the R 3.5.2. (R Core Team, 2013) package BGLR
(Perez and de los Campos, 2014) using default priors. One
thousand Gibbs iterations were performed. Our sample sizes
were N = 1,338 for proportion of white and N = 1,062 for
morphological characteristics. The difference in sample size is
due to removing any image with a missing coordinate.

Application to Other Datasets
To assess the applicability to other datasets, we chose
two other objects that had been annotated in the COCO
database (Lin et al., 2014), horse and giraffe, as well as two
objects that had not been annotated, butterfly and duck.
We downloaded 50 images from the internet that had the
license set to “labeled for non-commercial reuse” for horse
and giraffe and 100 images for butterfly and duck. For the
unannotated objects we annotated 50 of the images using
VGG Image Annotator (VIA; Dutta and Zissermann, 2019).
These annotations were used to train a model in Mask

R-CNN using the starting weights of the COCO database
(Lin et al., 2014). The model was trained for 20 epochs and
default parameters. Using either the COCO or custom model,
DeepAPS was applied and the composite mask was visually
assessed for accuracy.

RESULTS

We first visually compared the masks generated by the three
methods that were applied to our entire dataset of 1,819
images (Figure 2A). When we used the supervised algorithm
Mask R-CNN and applied the mask to the input images
(Figure 2B), we observed in all cases parts of the cow body
were removed along with the background (i.e., tail, nose,
ear, and hoof). These masks are not satisfactorily precise
to extract morphological measurements. The unsupervised
segmentation by back propagation (Figure 2C) often
separates the precise border between cow and background,
but that this method on its own is not automated. Each
output image would still need to be processed separately
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FIGURE 4 | (A) posterior h2 distribution of the white coat color, (B) posterior
h2 distribution of the gait, (C) posterior h2 distribution of the chest depth, (D)
posterior h2 distribution of the back height, (E) posterior h2 distribution of the
back deviation, (F) posterior h2 distribution of the front height, (G) posterior h2

distribution of the back leg height, (H) posterior h2 distribution of the front leg
height, (I) posterior h2 distribution of the cow length, (J) posterior h2

distribution of the face length, (K) posterior h2 distribution of the head length,
(L) posterior h2 distribution of the head width, (M) posterior h2 distribution of
the neck width, (N) posterior h2 distribution of the triangle body area, (O)
posterior h2 distribution of the polygon body area.

in order to match which body parts were grouped into
each color cluster. DeepAPS (Figure 2D) across our input
dataset produces a more accurate mask than Mask R-CNN
and a fully automated mask, which the unsupervised
approach fails to do.

In order to assess how accurately we were able to extract the
true coat color percentage from each image, we compared manual
and automated color segmentation. Our test set consists of 481
manually annotated images. After removing the background,
we clustered each bull into one- or two-color components and
extracted the percentage of dark and light colors in the coats. The
automated method reports a highly accurate color segmentation
with an adjusted R2 = 0.926 (Figure 3A) when compared to
manual segmentation (Figures 3B–D). The images that fall out as
outliers belong to one of two groups, the majority of the outliers
have small image sizes (less than 400 × 400 pixels), and therefore
the quality was not sufficient to accurately separate the body into
two color classes, the second group were bulls with a two-toned
body color, in which the legs were of a different color than the
body. In these cases, the algorithm has difficulty in separating the
dark-colored legs from the dark background.

Because the mask recovered after using this composite
method is so precise, we could extract coordinates of 13 points
located around the outline of the cow body (Figure 1G and
Supplementary Figure S1) which allowed for measurements of
14 body conformation distances (see Supplementary Figure S2
for phenotypic distributions). Next, we estimated heritability

FIGURE 5 | Application of DeepAPS method to four additional datasets.
(A) Horses and (B) Giraffes trained using the COCO database. (C) Butterflies
and (D) Ducks trained using 50 custom annotations.

using 1,338 images of related animals, in which we had partial
information about great granddam, granddam, dam, bull, and
daughter relationships. Our relationship matrix consists of
689 families, with an average of 2.6 individuals per family.
Figure 4 shows the 15 posterior distributions of the heritability
calculations and lists average values. Coat color proportion has
the highest calculated heritability h2 = 0.82, followed by body area
(triangle) h2 = 0.43, body area (polygon) h2 = 0.38, and cow body
length h2 = 0.34. These values are similar to previously published
results (Hayes et al., 2010; Pritchard et al., 2013). These high
heritability measurements indicate foremost that the meaningful
genetic information can be quickly and easily extracted from
imaging and pedigree data available online.

To assess whether this method is robust to the type and
quality of the underlying data, we downloaded images from
the internet of horse, giraffe, butterfly, and duck. These images
were randomly collected, and we had no control over quality,
size, lighting, or background. We also wanted to test how many
input annotations are required to produce a robust mask using
DeepAPS. Because the two-step method uses back propagation
in order to refine the predicted mask generated from the machine
learning algorithm, we hypothesized that fewer annotations
would be needed. Therefore, we annotated 50 images for the
butterfly and duck datasets, as they were not pre-annotated in the
COCO database. We found that overall, our composite method
preforms accurately (Figure 5). The masks generated from the
thousands of annotations from the COCO dataset were precise
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(Figures 5A,B), while those based on only 50 annotations were
still far more accurate than using any currently available method
(Figures 5C,D). These results together indicate this method is
robust to input data and can still preform reliably despite being
trained by few instances, making it a promising tool for automatic
morphological analyses.

DISCUSSION

In recent decades, there have been vast improvements in
molecular and statistical methods applied to animal and plant
breeding. While modern livestock studies typically involve the
analysis of entire genomes and/or vast number of polymorphic
sites (Börner et al., 2012; Wiggans et al., 2017; Yin and König,
2019), high throughput phenotyping is lagging, especially in
animal breeding. Often, phenotypic variation is explored today
in the same manner as it was done decades ago, using simple
quantifications such as length, number, categorical classifications,
etc (Houle et al., 2010, 2011; Cole et al., 2011). Phenomics is
extremely important in breeding programs in particular, as the
desired outcome is a change in a phenotype. As phenotypes
are formed by a complex process involving multiple genes, is
dependent on the environment, and dynamic overtime, collecting
multiple descriptive statistics can make relating genotype to
phenotype more feasible and, importantly, more meaningful.

Images are among the easiest to collect data and are
underutilized. Here we combine two of the state-of-the-art
image analysis tools, the supervised Mask R-CNN (He et al.,
2017) and unsupervised segmentation (Kanezaki, 2018) in order
to automatically extract phenotypic measurements accurately.
Not only can we create a precision mask but can cluster and
segment the underlying colors and automatically measure body
confirmation. Accurate image segmentation remains the most
challenging part of computer vision. The ability of DeepAPS to
separate the animal from multiple background types at the pixel
level out preforms, for our purposes, the available algorithms
currently published (Kanezaki, 2018; He et al., 2017).

The validity and speed of this method allows for multiple
quantitative morphological traits to be implemented in breeding
programs. Despite the success of ongoing dairy breeding
programs (Wiggans et al., 2017), including more and accurately
quantified measurements has the potential to result in further
improvements (Goddard, 2009; Gonzalez-Recio et al., 2014).
Furthermore, this method uses standard side-view stud images
which are inexpensive to generate and store. Our presented
method eliminates the high cost of phenotype collection while
maintaining quality and can contribute to lowering the cost of
conformational measurement collections.

Our analyses were performed on images scrubbed from
the internet. As such, we had no control over backgrounds,
lighting, image size, or quality. Despite the dynamic input data
on which we tested DeepAPS, we were able to produce high
quality masks and phenotypic measurements in most cases
(Figure 4). Furthermore, the heritability rates we calculated
from over 1,000 images of related individuals broadly agree with
published results, indicating that our method accurately captures

underlying information. Hayes et al., 2010) estimated heritability
of coat color percentage by manual quantification and reported a
heritability of h2 = 0.74 in N = 327 bulls; remarkably, we found
similar estimates (h2 = 0.81), even if our pedigree information
was quite incomplete. The reported heritability of back leg height
is nearly identical to previous reports (h2 = 0.22 vs. 0.21; Pritchard
et al., 2013). Nevertheless, estimates of two other reported
conformational heritabilities were somewhat lower: chest depth
h2 = 0.28 vs. 0.37 and height h2 = 0.27 vs. 0.42 (Pritchard et al.,
2013); perhaps because actual metrics analyzed here are not
exactly those used in previous studies and because we cannot
obtain absolute values (e.g., height in meters), since there is not a
common scale across images. In all, this proof of concept shows
how genetic parameters could be estimated using solely data
that are already available on the web. For practical applications,
more accurate estimates suitable for breeding programs could be
obtained, e.g., combining SNP genotyping data with automatic
image analyses from larger datasets.

While imaging data is fast and simple to collect as well as
inexpensive to store, the most burdensome stage of image analysis
is the generation of image annotations. We found that this
method is able to leverage the publicly available COCO database
and apply it to new and different problem sets. Allowing for the
creation of an accurate object mask based only on a training set of
50 instances (Figure 5), which is remarkably low for any machine
learning approach.

This method has the potential to allow for imaging data to
be easily and quickly applied to high-throughput studies, which
can be highly useful and improve extant breeding programs. We
provide a combined deep learning algorithm that results in highly
accurate segmentation of animal profiles, which is necessary
for further processing in applications related to conformational
measurements. Nevertheless, we are well aware that much
work remains to be done in the area. For instance, software
to accurately quantify a number of additional conformational
features, such as udder metrics or movement, using different
angle pictures or videos should be developed. Software should
also be optimized for speed and be able to analyze high-
resolution pictures.
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