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Proteins play primary roles in important biological processes such as catalysis,

physiological functions, and immune system functions. Thus, the research on how

proteins evolved has been a nuclear question in the field of evolutionary biology. General

models of protein evolution help to determine the baseline expectations for evolution of

sequences, and these models have been extensively useful in sequence analysis as well

as for the computer simulation of artificial sequence data sets. We have developed a

new method of simulating multi-domain protein evolution, including fusions of domains,

insertion, and deletion. It has been observed via the simulation test that the success

rates achieved by the proposed predictor are remarkably high. For the convenience

of the most experimental scientists, a user-friendly web server has been established

at http://jci-bioinfo.cn/domainevo, by which users can easily get their desired results

without having to go through the detailed mathematics. Through the simulation results

of this website, users can predict the evolution trend of the protein domain architecture.

Keywords: simulation, protein evolution, cellular automaton, multi-domain proteins, protein domain architecture

INTRODUCTION

Proteins are the biological macromolecular entities most close-knitly related to organismal
functions. Evolution in the sequences of proteins results in the way these proteins function, and
protein evolution is a critical component of organismal evolution and a valuable method for
generating useful molecules in the laboratory (Leconte et al., 2013). Therefore, the research on
protein evolution plays an elementary and central role in computational proteomics. Experimental
efforts to understand protein evolution have largely depended on the reconstruction of hypothetic
evolutionary intermediates or on experimental evolution over modest numbers of rounds of
evolution (Weinreich et al., 2006; Gumulya et al., 2012). Long evolutionary trajectory experiments
have met challenges in studying proteins but have been successfully executed only for whole
organisms and RNA. Directed evolution has been a powerful technique for generating tailor-made
enzymes for a wide range of biocatalytic applications (Zeymer and Hilvert, 2018), but it is both
time- andmoney-consuming to study protein evolution by conducting experiments alone.With the
rapid development of computational power, hidden Markov model based on statistics, phylogeny
model based on Bayesian statistics, and better prediction method of protein structure, the ability to
model evolutionary processes in proteins has improved.

Protein evolution is modeled firstly by considering the amino acid substitution process. Dayhoff
et al. (1978) proposed the most influential amino acid substitution model. This simple model
supposes that all sites in the protein sequence are independent of each other during protein
evolution, and that each site mutation depends on an amino acid replacement matrix. Since then,
many protein evolution models based on amino acid substitution matrices have been proposed,
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such as the JTT model (Jones et al., 1992), the mtREV model
(Adachi and Hasegawa, 1996), and theWAGmodel (Whelan and
Goldman, 2001). However, in most cases, the assumption that
“the proteins are independent of each other during evolution”
is not consistent with the fact that any amino acid residue
within the protein interacts with its neighboring amino acids.
Yang (1993) has designed an ingenious method that allows
variant sites in the amino acid sequence to have variant rates of
evolution. This method basically classifies amino acids according
to their physicochemical properties, making amino acids with
similar properties more likely to be replaced (Yang, 1993).
Protein evolution is driven by the sum of variant physiochemical
and genetic processes that usually results in strong purifying
selection to maintain biochemical functions. However, proteins
that are part of systems under arms race dynamics often evolve
at unparalleled rates that can produce atypical biochemical
properties (Wilburn et al., 2018).

Phylogenetic methods have been widely used to analyze the
evolutionary history of protein sequences. The simulation of
sequences is one means of investigating phylogenetic hypotheses
(Tuffery, 2002). There are many more powerful bioinformatics
tools for such simulations (Bakan et al., 2014). Sirakoulis et al.
(2003) used a cellular automaton (CA) model for the study
of DNA sequence evolution where DNA is modeled as a one-
dimensional (1D) CA with four states per cell which correspond
to four DNA bases. Moreover, they have developed genetic
algorithms in order to determine the rules of CA evolution
that simulate the DNA evolution course. Simulation models for
protein evolution based on CA have lagged far behind models
of DNA evolution because proteins are composed of 20 amino
acids, while DNA is composed of only four nucleotides. Many
authors developed different simulations of protein evolution, but
few of them are operated by non-expert users. They are either
very specific for certain needs or distributed as non-interactive
command-line programs or require a complex preparation of the
input data. This precludes these techniques being used by most
molecular biologists.

Proteins are composed of domains, recurrent protein
fragments with distinct structure and function, and proteins can
be classed as single-domain proteins or multi-domain proteins
(Chothia, 1992; Riley and Labedan, 1997). The structural domain
databases SCOP and CATH were gathered based on identifying
recurring elements in experimentally determined protein three-
dimensional (3D) structures (Dawson et al., 2016; Chandonia
et al., 2017). In Pfam databases, conserved regains are identified
from sequence analysis and background knowledge to make
multiple sequence alignments (El-Gebali et al., 2019). Domain
definitions form different databased only partially overlap;
however, the choice of database appears to have little effect on
modeling the evolution of protein domain architectures (Apic
et al., 2001). Domain architecture generally refers to the domains
in a protein and their order, reported in N- to C-terminal
direction along the amino acid chain. The mechanisms for
domain architecture change can be classed into new domain,
fission, and fusion (Fong et al., 2007). The multi-domain
architectures usually evolve from existing architectures because
few multi-domain architectures contain all new domain. Fusion

class would be partitioned into three sub-cases as fusion of new
domains, fusion of parent architectures, and fusion of parent
architecture and new domain. Snel et al. (2000) summarized
that domain fusions are more common that domain fissions,
and the result was subsequently supported by a larger study
by Kummerfeld and Teichmann (2005). Buljan and Bateman
observed that domain architecture changes primarily take place
at the protein termini and it can be explained from that
terminal changes to the architecture are less likely to disturb
overall protein structure (Buljan and Bateman, 2009), and similar
results have been found in several other studies (Buljan et al.,
2010). Zhang et al. (2012) and Sharma and Pandey (2016)
studied the role of gene duplication in plants protein domain
architecture evolution. More recently, Wiedenhoeft et al. (2011)
used a network construct named as plexus to reconstruct
domain architecture history. Stolzer et al. (2015) present another
method for domain architecture history inference, made available
through the Notung software.

Multi-domain proteins have evolved by insertions or deletions
of distinct protein domains. We have a general understanding of
the mechanisms of protein domain architecture evolution based
on the aforementioned models. Here we introduce a new protein
evolution simulation model to simulate the evolution of protein
domains by 1D CA. In the model, the HMMER (Prakash et al.,
2017) and Pfam databases are united in the process for annotating
the protein domains, and it can be easily to simulate the evolution
of the domain architecture in the multi-domain protein family.
Furthermore, the model may obtain new domain architecture
which may be the potential protein evolution.

METHODS AND IMPLEMENTATION

Data Preprocessing
After receiving the protein sequence file P (P =

{p1, p2, p3, . . . , pn}, where p1, p2, p3, . . . , pn represent the protein
sequence in the file) in FASTA format, the system annotates
the protein domain of each protein sequence pi based on the
HMMER and Pfam databases, and each protein pi generates a
corresponding annotation file fi. By analyzing the annotation file
fi, the domain information of protein pi can be screened out and
expressed as a multi-domain sequence:

pi = {di,1, di,2, di,3, . . . , di,k} (1)

where di,1, di,2, di,3, . . . , di,k represent the homologous domain
of the protein pi, k is the number of domains in protein pi.
According to the ACC (the average posterior probability of
the aligned target sequence residues) value of each domain, we
determine the position of these domains in the protein sequence
or the order of domains in the sequence. The protein pi is
expressed as an ordered multi-domain sequence pi

′ based on the
context of these domains:

pi
′ = di,1

′, di,2
′, di,3

′, . . . , di,k
′ (2)

Frontiers in Genetics | www.frontiersin.org 2 June 2020 | Volume 11 | Article 515

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xiao et al. Protein Evolution Simulation

The protein sequence file P is expressed as a set of multi-domain
sequences as file P′:

P′ =











p1
′

p2
′

...
pn

′











=











d1,1
′, d1,2

′, . . . , d1,w
′

d2,1
′, d2,2

′, . . . , d2,u
′

...
dn,1

′, dn,2
′, . . . , dn,l

′











(3)

wherew is the number of domains in protein p1
′, u is the number

of domains in protein p2
′, and so forth. Therefore, a considerate

protein sequence file P in FASTA format is processed by the
above methods to form the training data set P′ for the proposed
evolutionary simulation model.

Inspired by incorporating the dipeptide position-specific
propensity into the general pseudo nucleotide composition
(Xiao et al., 2016), here we develop a new method to
simulate the protein evolution process by domain position-
specific propensity.

If g domain classes appeared in the training data set P′,
we added two termination symbols “X-start” and “X-end” in
the front and the back of the pi

′, there are (g 2 + g ×

2) couple: X-startD1, X-startD2,. . . , D1D1 (where domain D1

and domain D1 are connected together), D1D2, D1D3,. . . ,
DgDg , D1X. -ending,. . . , DgX-ending. Thus, for the training
data set P′, its profile (or detailed information) of the domain
position-specific propensity can be summarized by the following
two matrices:

F2B =











X–start D1

X–start D2

...

D1D1

D2D1

...

D1D2

D2D2

...

· · ·

· · ·

· · ·

D1Dg

D2Dg

...

D1 X–end

D2 X–end
...

X–start Dg DgD1 DgD2 · · · DgDg Dg X–end











(4)

B2F =











X–startD1
′

X–startD2
′

D1
′D1

′

D2
′D1

′

D1
′D2

′

D2
′D2

′

· · ·

· · ·

D1
′Dg

′

D2
′Dg

′

D1
′X–end

D2
′X–end

...

X–startDg
′

...

Dg
′D1

′

...

Dg
′D2

′

· · ·

· · ·

...

Dg
′Dg

′

...

Dg
′X–end











(5)

where F2B
(

fromfronttoback
)

is matrix of evolution prior
probability from front to back and B2F(from back to front)
is the matrix of evolution prior probability from back to
front. In the matrix F2B, DiDj (1 ≤ i ≤ g, 1 ≤

j ≤ g) is the occurrence frequency of domain Di attached
to Dj, and Dj behind Di. In the matrix B2F, Di

′Dj
′ is the

occurrence frequency of domain Di attached to Dj, and Di is
followed by Dj.

Simulation Model of Domain Evolution in
Proteins Based on Cellular Automaton
Let us give a brief introduction to CA. A CA is a dynamical
system in which space, time, and the states are discrete. Each
cell, defined by a point in a regular spatial lattice, can be any
one of a finite number of states that are updated according to
a local rule (Schwartz et al., 1967; Chopard and Droz, 1998). In
1D CA, the lattice consists of identical cells, i-m, . . . , i-3, i-2, i-
1, i, i+1, i+2, i+3, . . . , i+m, and the corresponding states of

these cells are Ci−m, · · · ,Ci−2,Ci−1,Ci, Ci+1,Ci+2, · · · , Ci+m.
The symbol i is the center of initial sequence with length equals
to 2m + 1. The state of the ith cell takes value from a predefined
discrete set: Ci ∈

{

c1, c2, · · · , cQ
}

, where c1, c2, · · · , cQ are the
elements of the set. The CA evolves in discrete time steps,
and its evolution is manifested by the change of its cell states
with time. The state of each cell is affected by the states of its
neighboring cells. The neighborhood is defined as N (i, r) =

{Ci−r , · · · ,Ci−1,Ci, Ci+1, · · · ,Ci+r}, where r is the size of the
neighborhood. If r = 1, the neighborhood of the ith cell consists
of the same cell and its left and right immediate neighbors
N (i, 1) = {Ci−1,Ci,Ci+1}. The state of the ith cell at time step
t+1 is affected by the states of its neighbors at the previous time
step t, Ct+1

i = F
(

Ct
i−r , · · · ,C

t
i−1,C

t
i ,C

t
i+1, · · · ,C

t
i+r

)

. F is the
CA evolution rule (Sirakoulis et al., 2003). Figure 1 shows the
evolution of a 1D CA. the horizontal axis is space, and the vertical
axis is time. Each column represents the state of cell at various
time steps.

In this study, the non-uniform 1DCAwas used to simulate the
domain evolution in proteins. The square arrays are a very basic
data structure in computers, and it was rational to use a square
lattice in ourmodel. If protein pq in the training data set P

′ has the
most domains, and the number of domains is m, then the spatial
dimension of the 1D CA in the model is 1×(2m+1) and the time
step in CA evolution is set as m. The model was a (g+3)-state
model in which each cell in the lattice was one of the following
(g+3) states: (1) g domain classes appeared in the training data
set P′; (2) evolution termination symbols “X-start”; (3) evolution
termination symbols “X-end”; (4) an empty state “∅′′. The state
of the cell at time tcan be expressed as Ct

j . The upper index in the

state symbol denotes the time step, and the lower index denotes
the cell j. When the CA is initialized (t = 0), the state of the cell
C0
i in the middle of the CA is set to the ancestral domain Y , and

the state of the other cells is set to the empty state ∅, as shown in
Figure 2. The state Ct+1

j of the cell at time t + 1 is determined by

the state Ct
i of the cell at time t and the state Ct

j−1and Ct
j+1 of its

neighbor cells at time t.
The evolution rules of the proposed CA model can be

expressed as follows (Figure 3):

Rule A: Inheritance. If the state of cell Ct
j is domain E(E 6= ∅),

it means that the cell has evolved into domain E, so this cell

FIGURE 1 | The evolution of a one-dimensional cellular automaton (CA).
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FIGURE 2 | Schematic drawing to show the initial state of one-dimensional cellular automaton (CA) and the course of evolution. Each site of this lattice is called cell.

The value of domain is the state of the cell.

FIGURE 3 | The evolution of cellular automaton (CA). The state of each cell is affected by the states of its neighboring cells.

Ct
j will inherit the domain at the next time, which means that

the state of Ct+1
j is E.

Rule B: Rules of evolution from front to back. If the state of
cells Ct

j and Ct
j+1 is the empty domain ∅, and the state of cell

Ct
j−1 is domain F (F 6= ∅), the state Ct+1

j will be obtained

by the Roulette wheel selection algorithm. According to the
matrix F2B (from front to back evolution prior probability
matrix), we know that the probability of all domains to appear
behind domain F. It is not true that the domain of the biggest
probability certainly appears behind domain F in natural
evolution course. Hence, we determined the state Ct+1

j into

one domain form all domains that appear behind domain
F probability is not zero based on Roulette wheel selection
algorithm. The probability of selecting a domain G is the
same as the probability of domain F appearing after domain
G in matrix F2B.
Rule C: Rules of evolution from back to front. If the state
of cells Ct

j−1 and Ct
j is the empty state ∅, and the state

of cell Ct
j+1 is domain V (V 6= ∅), then the state Ct+1

j

will be obtained by the Roulette wheel selection algorithm.
The selected course is similar to Rule B except that the
matrix B2F (from back to front evolution prior probability
matrix) was used instead of the matrix F2B. The probability
of selecting a domain H being selected is the same as the
probability of domain H appearing before domain V in
matrix B2F.

Rule D: Return inanimateness. If the states of cells Ct
j−1, C

t
j ,

and Ct
j+1 are all equal to the empty state ∅, the state Ct+1

j will

remain the empty state ∅.

Proteins in a family descend from a common ancestor and
have similar 3D structures, functions, and sequence similarity.
Thus, the model assumes that all of the evolved proteins contain
ancestral domains Y(Y ∈ {D1,D2,D3, . . . ,Dg , X-start, X-end}),
and where the common domains in the P′ are considered to
be the hypothetical ancestral domain. By running the model
once, a new protein will be simulated, and the evolved protein
is represented by an ordered sequence of multi-domains.

As shown in Figure 4, when the CA is initialized (t = 0), the
state of the cell C0

i in the middle of the CA is set to the ancestral
domain Y , and the state of the other cells is set to the empty
state ∅.

When t = 1, the state of C1
i is determined by the state of

C0
i−1,C

0
i and C0

i+1. Since the state of C
0
i is the domain Y(Y 6= ∅),

then C1
i will be domain Y according to rule A inherit the state

of C0
i ; the state of C

1
i−1 is determined by the state of C0

i−2,C
0
i−1

and C0
i . Because the state of C

0
i−1 is the empty domain ∅ and the

state of C0
i is the domain Y , the state of C1

i−1 should be selected
by the roulette method according to rule C and the matrix B2F
to obtain the domain E. The state of C1

i+1 is determined by the

state of C0
i ,C

0
i+1 and C0

i+2 with the reason that the state of C0
i is

the domain Y and the state of C0
i+1 is the domain ∅. According to

rule B, the state of C1
i+1should be selected by the roulette method
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on the basis of the matrix F2B to obtain the domain F after the
domain Y . Keep the rule D in mind, the state of the other cells
is the empty domain ∅ because the state of the other cells at the
previous moment and the states of their neighbors are the empty
domain ∅.

When t = 2, the states of C2
i−1,C

2
i , and C2

i+1 are determined

by the states of C1
i−1,C

1
i ,C

1
i+1 and their neighbors with the

reason that the states of C1
i−1,C

1
i and C1

i+1 are not domain ∅.

According to the rule A, C2
i−1,C

2
i , and C

2
i+1 will inherit the states,

respectively, C1
i−1,C

1
i , and C1

i+1 with domains E, Y and domain

F; the state of C2
i−2 is determined by the state of C1

i−3,C
1
i−2, and

C1
i−1 at the previous time. Because the states of C1

i−3 and C
1
i−2 are

the domain ∅ and the state of C1
i−1 is the domain E, according to

rule C, the state of C2
i−2 will be selected by the roulette method

according to the matrix B2F to obtain the domain G in front
of the domain E; the state of C2

i+2 is determined by the state

of C1
i+1,C

1
i+2, and C1

i+3. Because the states of C
1
i+2 and C1

i+3 are

the domain ∅ and the state of C1
i+1 is the domain F, the state of

C2
i+2will be selected by the roulette method according to rule B

and the matrix F2B to obtain the domain H after the domain F.
According to rule D, the state of the other cells is the domain ∅ on
the basis of that the state of the other cells and the states of their
neighbors are the domain ∅.

When t = k(k < m), the cells with the state of termination
symbols X-start and X-end are evolved in the cell space, and the
simulated evolution of the protein comes to an end. The state of
the cell space at time k is taken as an ordered sequence of multi-
domain, removing the cells with the empty state ∅. The simulated
multi-domain sequence of protein A is expressed as:

{ X–start , ... , I , G ,E ,Y , F , H , ... , X–end }

( E , F , G , H , I , Y ∈ {D1,D2,D3, . . . ,Dg}) (6)

As shown in Figure 5, when t = m, if termination symbols X-
start and X-end have not evolved in the cell space, the simulated
evolution of the protein also comes to an end. The state of the

FIGURE 4 | An example to show how the model simulated the domain evolution. The model evolved the termination symbols X-start and X-end in advance at time k,

so the protein stopped the evolution at time k.

FIGURE 5 | An example to show how to put a termination to domain evolution. When the model is at time m, the termination symbols X-start and X-end have not yet

evolved. Since the maximum time step of the cellular automaton is m, the protein stops evolution at time m.
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cell space at time m is taken as an ordered sequence of multi-
domain, removing the cells with the empty state ∅ and adding
two termination symbols to the left and right ends of the cell
space. The simulated multi-domain sequence of protein B is
expressed as:

{ X–start , L, K, ..., I, G, E, Y , F, H, V , ...,K,M,X–end }

(E, F, G, H, I, J, K, L, M, V ,Y ∈ {D1,D2,D3, . . . ,Dg})
(7)

USER INTERFACE

In order to facilitate the use of researchers, we have developed a
web server, where users can directly submit protein sequence files
and select various parameters for protein evolution simulation.
The system will send the results to the user’s e-mail address. The
graphical user interface of the website is shown in Figure 6.

Input File
The user uploads a protein sequence file in FASTA format by
clicking the button “Submit Sequence.”

Ancestral Domain
The ancestral domains are the initial state of the cell in the
middle of the CA space. The model uses this parameter as a
common ancestor of the protein. Once this parameter is filled in,
all evolved proteins will contain this domain.

E-Value
The E-value is a parameter used in the HMMER software;
it is the expected number of false positives (non-homologous

sequences) that scored this well or better. The E-value is a
measure of statistical significance. The lower the E-value, the
more significant the hit. Changing the value of E-value will cause
the same protein to compare different domain architectures, and
the default value is “1e-37.”

Evo-Num
The number of times of model simulation.

Top-Num
The model analyzes automatically the evolved proteins and sends
the top top-num frequency of the domain architectures to users.

After submitting the protein sequence file and parameters,
the system will compare the uploaded protein sequences based
on HMMER. By setting the value of the E-value, each protein
will generate a homology domain information file. The domain
of each protein is then extracted and sorted according to the
position of the domain in the protein sequence, such that each
protein can be represented as a multi-domain sequence.

Next, the sliding window processing is performed on each
multi-domain sequence (the sliding window size is 2), the matrix
of probability from back to front and the matrix of probability
from front to back are obtained by counting the frequency of the
domain in pairs.

In the evolution process of the CA, the next time state of
the cell is obtained according to the CA evolution rule. When
evolution is terminated, the system removes the domain ∅ and
generates a complete multi-domain protein. The user can control
the number of proteins that the system simulates by adjusting the
size of Evo-num.

FIGURE 6 | A semi-screenshot to show the top page of the cellular automaton (CA) model web server at http://jci-bioinfo.cn/domainevo.
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After the evolution of the protein, the system calculates the
frequency of each domain architecture based on the multi-
domain protein of the original file and the multi-domain protein
obtained by the proposed simulation model, sorts the frequency
from large to small, and saves it as two files in comma-
separated values (CSV) format. Since there are many protein
domain architectures obtained by simulation, users can adjust
the value of Top-num to preserve the domain architectures with
high frequency.

Finally, the system will send the results to the user’s e-mail
address. The contents of the e-mail are the parameters selected
by the user, and in the attachment, there are two data files in
CSV format. The CA model can be described by the flowchart
in Figure 7.

SIMULATING THE EVOLUTION OF
RHOGEF DOMAIN IN HOMO SAPIENS

PROTEINS

Materials
To evaluate the performance of the model, we used a number
of multi-domain proteins associated with the conserved protein
family “RhoGEF” to validate the validity of the model. The
keyword “RhoGEF” was used to find the protein of the conserved
protein family RhoGEF from the NCBI database. We selected

the species Homo sapiens to download a multi-sequence file
containing 1,597 proteins and used it as a protein sequence file
P. In addition to the above methods, researchers can also build
data sets by the following methods. The Conservative Domain
Database (CDD, https://www.ncbi.nlm.nih.gov/cdd/) collects a
large number of protein domains and domain families (Marchler-
Bauer et al., 2016). Researchers can search for a conserved protein
domain family in the CDD website and then click the “related
protein” on the domain family description page to link to the
NCBI website to download the related proteins.

Model Performance Evaluation Under
Various Parameters
After submitting the protein sequence file, we tested various
parameters that may affect the evolution of protein simulation.
The protein sequence file P is processed into a training data set P′

of the evolutionary simulation model:

P′ =











p1
′

p2
′

...
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′
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...
...

d1597,1
′ d1597,2

′

...
...

. . . d1597,l
′











(8)

Pevo represents a multi-domain sequence file from the simulation
of protein evolution in this model.

FIGURE 7 | Data flow diagram of the model. Different types of data are represented by different background colors.
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(9)

where Devo
n (1 ≤ n ≤ Evo_num) represents the simulation of the

evolution of domain architectures of whole proteins (DAWPs),
x is the number of domain in simulation protein Devo

1 , y is the
number of domain in simulation protein Devo

2 , and so forth.
Protein domains are represented by devo

j,k
.

In order to examine the performance of a predictor in
simulating domain evolution of proteins, Hit-Acc (DAWP),
goodness of fit between the simulation proteins and nature
protein in P′, used in this literature based on counting the type

and number of the DAWPs. Hit-Acc (TAPD), goodness of fit
between the triplet domain architectures in P′ and Pevo, Hit-
Acc (QAPD), goodness of fit between the quadruple domain
architectures in P′ and Pevo as supplementary.

Hit–Acc (DAWP) =

∑Evo_num
i=1 f evo

(

Devo
i

)

Evo_num
× 100 (10)

f evo
(

Devo
i

)

=

{

1, if Devo
i appeared in P′

0, otherwise
(11)

Hit–Acc (TAPD) =

∑m
i=1 θ evo (ti)

∑k
i=1 θ evo

(

tevoi

)

× 100 (12)











T′ =
{

t1
′, t2

′, . . . , te
′
}

Tevo =
{

tevo1 , tevo2 , . . . , tevo
f

}

T = T′ ∩ Tevo = {t1, t2, . . . , tr}

(13)

where T′ is the set of triplet domain architectures in P′, Tevo is
the set of triplet domain architectures in Pevo, ∩ represents the
symbol for “intersection” in the set theory, θ evo (ti) represents the
count hits of triplet domain architectures ti in P

evo, and θ evo
(

tevoi

)

represents the hits of triplet domain architectures tevoi in Pevo.

Hit–Acc (QAPD) =

∑m
i=1 ϕevo

(

qi
)

∑k
i=1 ϕevo

(

qevoi

)

× 100 (14)







Q′ =
{

q1
′, q2

′, . . . , qh
′
}

Qevo =
{

qevo1 , qevo2 , . . . , qevoa

}

Q = Q′ ∩Qevo =
{

q1, q2, . . . , qs
}

(15)

where Q′ is the set of quadruple domain architectures in P′, Qevo

is the set of quadruple domain architectures in Pevo, ϕevo
(

qi
)

represents the hits of quadruple domain architectures qi in
Pevo, and ϕevo

(

qevoi

)

represents the hits of quadruple domain
architectures qevoi appearing in Pevo.

In the process of testing system performance, we used
HMMER to perform multi-domain sequence alignment on
Homo sapiens’ protein family RhoGEF, and set the value of E-
values from 1e-1 to 1e-50, so that the protein domain information
file corresponding to E-values would be generated, and 50
simulation training data sets would be obtained after processing
the file. The smaller the value of E-value, the higher the accuracy
of the aligned homology domain. Changing the value of E-value
will cause the same protein match different domain architectures
when the value of E-value is 1e-1. A total of 228 domains
existed in the simulation data set P, and the number of types
of protein domain architectures was 326. When the value of E-
value is 1e-37, there are 43 domains in the simulation data set P,
the number of types of protein domain architecture is 55, and
the most complex protein domain architecture is {′I-set′, ′V-
set′, ′Ig′, ′Ig′, ′Ig′, ′Izumo-Ig′, ′Ig′, ′Ig′, ′Pkinase′, ′Pkinase′}.
The 10 most frequent protein domains are shown in Table 1.

The model uses RhoGEF, X. -start, and X-end as ancestral
protein domains to simulate each training set, and each training
set simulates 50,000 proteins represented by multiple domain
sequences. In order to eliminate the impact of individual results
on the model evaluation, we repeated the simulation of each
parameter combination 50 times and then calculated the average
value of Hit-Acc. as the evaluation of the model; the obtned
results are shown in Figures 8–10.

When the ancestral protein domain is RhoGEF, the Hit-
Acc (TAPD). and Hit-Acc (DAWP) reach the maximum; when
the E-value is 1e − 43, theHit-Acc (TAPD) is 90.27%, the Hit-
Acc (DAWP) is 89.59%. When the ancestral protein domain is
X-start or X-end, the test results are basically the same as the
ancestral protein domain RhoGEF. The Hit-Acc (TAPD) and
Hit-Acc (DAWP) reach the maximum when the E-value is 1e-
37, the Hit-Acc (TAPD) is 91.01%, and the Hit-Acc (DAWP)
is 88.26%. These test results show that the model has good
simulation characteristics and robustness. The model can also
get better results in most cases by using X-start and X-end as
the ancestral protein domain for simulated evolution. The reason
is that this model uses HMMER for automated annotation of

TABLE 1 | The 10 most frequent protein domains when E-values are 1e-1 and

1e-37, respectively.

E-value : 1e-1 E-value : 1e-37

Domain Frequency Probability (%) Domain Frequency Probability (%)

PH 2,776 20.07 RhoGEF 619 15.10

RhoGEF 1,440 10.41 Ig 243 5.93

SH3 1,091 7.89 PH 172 4.20

IQ 473 3.42 SH3 129 3.15

Ig 379 2.74 Pkinase 115 2.80

PDZ 314 2.27 RhoGEF67 73 1.78

C1 207 1.50 RGS-like 55 1.34

FYVE 204 1.47 RasGEF 52 1.27

EF-hand 190 1.37 I-set 49 1.20

Pkinase 187 1.35 V-set 48 1.17
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protein domains. The smaller the E-values, the fewer domains
are annotated. Some proteins will not annotate the ancestral
domain because the set E-value is too small. For example, if the
E-value is 1e-1, 1,440 proteins are annotated with the RhoGEF
domain; if the E-value is 1e-37, only 619 proteins are annotated
with the RhoGEF domain. In order to solve this problem, the
model added X-start and X-end to the left and right ends of each
protein when composing the protein simulation training data
set. If the model uses X-start or X-end as the ancestral protein
domain, each protein domain architecture could be simulated,
which also allows the system to simulate more protein domain
architectures that appear in the original file. This also means
that if the user does not know the ancestor domain of the
submitted protein sequence file, X-start or X-end can be used as
the ancestral domain for protein simulation. It can be seen from
the results that the model can effectively simulate the DAWPs
under various parameters. It also simulated existing triplet and

quadruplet domain architectures successfully. Analysis on the
results shows that the model not only has good stability but also
has strong robustness.

Although the proposed model simulating the evolution of
protein domain architectures only by fusion operation, the
obtained results do contain the results of insertion, deletion,
and mutation operations. For example, given that the simulation
starts with “RhoGEF,” if one result is “RhoGEF-PH-PH-C2” and
another is “RhoGEF-PH-C2,” then we can assume that the later
one is the result of the fore in which the “PH” was deleted. The
operations are shown in Figure 11.

Moreover, statistical analysis by the triplet and quadruple
domain architectures derived from the evolution of the model
shows that only a few domains contain a large number of
immediate neighbors, and most of the domains contain only a
small number of immediate neighbors, the frequency distribution
of each domain neighbor in accordance with a power law (Qian

FIGURE 8 | Results of the selection of RhoGEF as an ancestral protein domain.

FIGURE 9 | Results of the selection of X-start as an ancestral protein domain.
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et al., 2001). Although we used domain pair probability matrices
to simulate the protein domain architecture, statistical results
show that some triplets and quadruped domains are highly
repetitive and appear in many sequences. In a statistical sense,
these triplet and quadruple protein domain architectures are
often over-expressed and highly abundant, which is consistent
with the supra-domains concept (Vogel et al., 2004). This further
illustrates the effectiveness of this model in simulating the
evolution of protein domain architecture.

CONCLUSIONS

The goal of this work was to provide a tool that can
reveal how domain architectures have evolved in protein
sequences. This tool is very important in analyzing orthologous

relationships between proteins in different organisms. CA has
been applied in many fundamental issues in biology. Some
works have already been devoted to providing a framework for
simulation evolution of protein and DNA sequences. In this
work, 1D probabilistic CA is used to simulate the evolution
of protein domain. This model simulates the fission, fusion,
deletion, and insertion of the natural evolution processes by
randomly appointing transitional rules. This is the reason that
our model is more in line with the natural characteristics
of protein evolution. Through this website, users can know
the domain architecture distribution of the submitted protein
sequence and can also view the evolution results of the
model to predict the evolution direction of the protein
sequence file with the emergence of new and frequent protein
domain architecture.

FIGURE 10 | Results of the selection of X-end as an ancestral protein domain.

FIGURE 11 | Examples of fission, fusion, deletion, and insertion in the evolution of the model.
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