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Human malnutrition due to micronutrient deficiencies, particularly with regards to Zinc
(Zn) and Selenium (Se), affects millions of people around the world, and the enrichment
of staple foods through biofortification has been successfully used to fight hidden
hunger. Rice (Oryza sativa L.) is one of the staple foods most consumed in countries
with high levels of malnutrition. However, it is poor in micronutrients, which are often
removed during grain processing. In this study, we have analyzed the transcriptome of
rice flag leaves biofortified with Zn (900 g ha~'), Se (500 g ha~'), and Zn-Se. Flag
leaves play an important role in plant photosynthesis and provide sources of metal
remobilization for developing grains. A total of 3170 differentially expressed genes
(DEGs) were identified. The expression patterns and gene ontology of DEGs varied
among the three sets of biofortified plants and were limited to specific metabolic
pathways related to micronutrient mobilization and to the specific functions of Zn (i.e., its
enzymatic co-factor/coenzyme function in the biosynthesis of nitrogenous compounds,
carboxylic acids, organic acids, and amino acids) and Se (vitamin biosynthesis and ion
homeostasis). The success of this approach should be followed in future studies to
understand how landraces and other cultivars respond to biofortification.

Keywords: biofortification, flag leaves, rice, RNASeq, selenium, transcriptomics, zinc

INTRODUCTION

The 2030 Agenda of the United Nations brings forward 17 Sustainable Developing Goals
among which agriculture lies at the core. However, according to the last report of the
Food and Agriculture Organization (FAO et al,, 2019), more than 820 million people in the
world face hunger and undernourishment and, thus, poor health, particularly in Africa where
greater efforts should be made to achieve the Zero Hunger by 2030. Undernutrition and
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micronutrient deficiencies account for three million deaths each
year being more widespread problems than energy consumption
(Prentice et al., 2008).

Zinc (Zn) and selenium (Se) are essential mineral
nutrients (Fairweather-Tait et al., 2011). However, the
intake of these minerals is deficient for ca. 30% (Zn) and
15% (Se) of the world population (White and Broadley,
2011; Moreno et al, 2013). Zn deficiency affects growth
and the immune system, being especially severe for young
children and pregnant women (White and Broadley, 2011).
Se deficiency also weakens the immune system and has
been associated with cardiovascular diseases, cognitive
decline, cancer, and AIDS (Rayman, 2002; Jablonska and
Vinceti, 2015). Thus, providing adequate contents of these
minerals in food has become an important objective to
fight “hiden hunger” in vulnerable populations (Hirschi,
2009). In this context, a supplementary and diversified diet
is the most straight forward strategy to mitigate Zn and Se
deficiencies. However, such strategies have been inefficient
and uneffective to be implemented in developing countries
were livelihoods are strongly dependent on small-scale
agriculture (Hartikainen, 2005; Forsman et al, 2014). In
order to overcome this constraint, biofortification offers a
fast, reliable, and sustainable solution solution which has been
successfully achieved in several crops, such as rice, wheat,
and beans (White and Broadley, 2009, 2011; Li et al, 2018;
Ramalho et al., 2020).

Rice is one of the worlds most important staple crops
(FAO, 2016), constituting one of the most important sources
of energy and micronutrients for more than half of the world
population (Lucca et al., 2006; Muthayya et al., 2014). Both
whole and polished rice grains contain low concentrations
of Zn (6-28 mg kg’l) and Se (0.3 mg kg’l) (Walter
et al, 2008), and agronomic biofortification has been used
to increase these two minerals in the grain (Phattarakul
et al, 2012; Ram et al, 2016; Mangueze et al, 2018;
Lidon et al, 2017, 2019; Ramalho et al., 2020). Rice is
also a model cereal species, and its genome was the first
(among crops) to be fully sequenced in 2005 (Sasaki, 2005)
and fully unified in 2013 (Kawahara et al., 2013). This
crop has been thoroughly used to investigate the molecular
mechanisms underlying several biological processes related to
plant development, metabolism, and senescence from seedlings
to grains (Jackson, 2016; Qian et al., 2018; Wang et al,
2018). The role of flag leaves in photosynthesis and nutrient
mobilization to the grains has been highlighted by several
earlier reports (Zhou et al, 2007; Pang et al., 2009; Sperotto
et al, 2009; Tari et al, 2009; Xu et al, 2011). Thus,
the identification of the molecular mechanisms involved in
mineral transport from flag leaves to grains is of utmost
importance to understand the biochemical processes associated
with the absorption, translocation, and fixation of minerals,
such as Zn and Se.

High—throughput Omics technologies such as genomics,
transcriptomics, ~ proteomics, metabolomics, lipidomics, or
interactomics are nowadays widely used to understand biological
systems as a whole (Sauer et al., 2007). Such extensive and

integrated approaches allowed great advances in plant research,
namely the elucidation of biological processes, such as plant
development, plant-environment interactions, genomics-
assisted breeding, or the discovery of phytocompounds
with application in agriculture, medicine, and in a wide
range of industries (Kole et al, 2015; Sundell et al, 2015;
Bode et al, 2016; Niitzman et al., 2016). Transcriptome
analysis of rice flag leaves confirmed their importance in
grain filling, namely, in the biosynthesis and translocation of
photoassimilates and minerals to the seeds (Narayanan et al.,
2007; Sperotto et al., 2009).

In this study, we have analyzed the transcriptional changes in
flag leaves associated with the agronomic biofortification of rice
with Zn and/or Se using a next-generation RNAseq approach that
uses a high yield cultivar that is able to accumulate high levels of
Zn and Se when exposed to biofortification treatments through
foliar spraying (Mangueze et al., 2018).

MATERIALS AND METHODS

Plant Material and Biofortification

Experiments

Experiments were performed in the experimental fields of the
International Rice Research Institute (IRRI), located at the
Umbeluzi—Instituto de Investigagdo Agriria de Mogambique
(HIAM) in Boane, Mozambique (Lat 26° 3/3.75”S; Long
32°21'56.48"E; Alt 8.8 m), using one rice cultivar, Makassane,
containg 9.8 mg Kg~! Zn and 0 mg Kg~! Se in whole grains,
under control conditions (that is, without any biofortification
treatment with Zn or Se) (Mangueze et al., 2018). For the trials,
three blocks of 95 m? (15 x 5) each containing three biological
replicates were established. Biofortification experiments were
performed through single and combined foliar spraying of
Zn and Se, using a back sprayer, at the beginning of grain
filling, corresponding to Z51 stage in the Zadoks scale, i.e., at
an adequate stage to promote the translocation to the grain
(Cakmak, 2008; Cakmak et al., 2010). The following doses were
applied: (i) 900 g ha~! Zn (applied as zinc sulfate — ZnSOy
7H,0), (ii) 500 g ha~! Se (applied as sodium selenite - Na,O3Se),
and (iii) 900 g ha™! Zn together with- 500 g ha~! Se. The Zn and
Se doses as well as the use of Se-selenite (instead of Se-selenate)
were based on previous reports in rice by Phattarakul et al. (2012),
Lidon et al. (2019), and, especially, Mangueze et al. (2018), which
used the same cultivars and cropped area. Each element was
applied twice (using the same volume of the solution), with an
interval of 7 days to reach the desired concentration. Control
plants received only water.

The basal field fertilization was carried out with NPK
(12:24:12) using 100 kg ha=! 26 and 60 days after sowing. Foliar
fertilization was made using 50 kg ha=! of NPK (12:24:12) plus
50 kg ha~—! urea (46%) with a total of 200 kg ha=! for the
two applications.

For RNAseq analysis, flag leaves from three different plants
per treatment were harvested 15 days after spraying, stored
immediately in RNA Latter (Thermo Fisher Scientific), and
frozen once in the lab.
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RNA Whole Transcriptome Deep

Sequencing

Total RNA was extracted from 100 mg frozen material of each
biological replicate per treatment using the inuPREP extraction
Kit (Analytik Jena AG) following the manufacturer’s instructions.
RNA integrity and purity were first evaluated by visual inspection
of RNA bands through electrophoresis in a 1.5% agarose-TBE
gel containing GelRed Nucleic Acid Gel Stain (Biotium) and
then by an Agilent 2100 Bioanalyzer (Agilent). All samples
had an RNA integrity number (RIN) higher than 8.9. Library
preparation was performed with the TruSeq RNA Sample Prep
Kit v2 (Illumina) and RNA-Seq analyzes by Illumina NovaSeq
6000 of 2 x 100 bp pair-end reads (30 million reads per sample)
at Macrogen (South Korea).

Alignment and Analysis of lllumina Reads
Raw reads obtained by sequencing were quality-checked using
FastQC version 0.11.5 (Andrews, 2010). To reduce biases,
artifacts as low-quality reads, adaptor sequences, or contaminant
DNA were removed using Trimmomatic version 0.32 (Bolger
et al., 2014). HISAT2 version 2.0.5 was used for the mapping
of high-quality filtered reads against the reference genome (Os-
Nipponbare-Reference-IRGSP-1.0) downloaded from the Rice
Genome Annotation Project Database' (Kawahara et al., 2013).
Known genes and transcripts were assembled with StringTie
version 1.3.3b (Pertea et al., 2015, 2016) based on the reference
genome model. After assembly, the abundance of gene transcripts
was calculated for each sample and normalized as FPKM
(Fragments per Kilobase of transcript per Million Mapped reads)
using Cufflinks version 2.2.1 (Trapnell et al., 2010). The similarity
between samples was obtained through Pearson’s coefhicient of
the Log, (FPKM+1) value with a range of —1 < r < 1 (the closer
the value is to 1, the more similar the samples are) and graphically
depicted using a correlation matrix.

Differentially Expressed Gene Analysis
During data preprocessing, low quality transcripts were filtered.
Afterward, log2 transformation of FPKM+1 and quantile
normalization were performed. To identify the differentially
expressed genes (DEGs) from the dataset, an FDR adjusted
P-value of <0.05 was set and a fold change (FC) of >2 was
assigned. For significant lists, a hierarchical clustering analysis
was performed to group the similarity of transcripts and samples
by expression level of normalized values. Standardized expression
patterns were visualized as Z-scores in a heatmap generated by
hierarchical clustering (function hclust in R). The significant
DEGs found were mapped on the 12 chromosomes of rice using
the chromosome map tool in Oryzabase database (Yamazaki
et al,, 2010), and a map was drawn based on output generated.
Following Raza et al. (2019), all DEGs with a gene ontology (GO)
function related to cation ion binding/transport, heme binding,
Se, Zn ion binding/transport, metal ion binding, transport, and
homeostasis were filtered and considered as putative candidate
genes (CGs) associated with traits of interest in biofortification.

Uhttp://rice.plantbiology.msu.edu/

Functional Annotation, Enrichment and
Pathway Analysis

To assign functional categories to the DEGs, a gene-set
enrichment analysis was performed using the DAVID 6.7
database for annotation, visualization, and integrated discovery,
an online tool for the analysis of the relevant biological
annotation of gene lists>. The significant DEGs were annotated
for GO terms and categorized into biological process (BP),
molecular function (MF), and cellular component (CC).
For significant DEGs, a gene enrichment test was then
performed using the DAVID default background, representing
the corresponding genes with at least one annotation in the
analyzing categories in the enrichment calculation. P-value for
enrichment was calculated for each GO term represented and
corrected via Bonferroni family-wise error rate (FWER) method.
Only the GO terms exhibiting a corrected P-value of <0.05 were
considered to be significantly enriched for a given set of genes. To
investigate which DEGs were activated or suppressed in different
class of pathways, gene expression information was mapped using
the Kyoto Encyclopedia of Genes and Genomes, KEGG®. Pathway
images were generated using the online tool KEGG Mapper-
Colour Pathway”. Raw and processed RNA-sequencing data have
been deposited in NCBI.

RESULTS

Overall Transcriptome Profiling and
Mapping Statistics

In total, the 24 RNA libraries generated an average of 38 million
reads with a GC content of 53.28% (Table 1). An average of
1.64% of the reads were removed after being trimmed. The vast
majority (98.36%) of the total number of reads was mapped to
the reference rice genome demonstrating a high coverage over the
transcriptome. From these, an additional average of 7.55% reads
could not be mapped into the reference genome. Statistics of each
sample are provided in detail in Supplementary Table S1. After
trimming and cleaning, a total of 34 million reads were analyzed.
A high similarity was found between samples through Pearson’s
coefficient of the Log, (FPKM+-1) value (Figure 1).

Differentially Expressed Genes
We identified 3170 genes that were differentially expressed
between biofortified and control plants, of which only 224
were significantly different (FDR < 0.05) and had a FC
>2 (Figure 2). Hierarchical clustering analysis of all DEGs
showed no specific trends in expression convergence (Figure 3),
suggesting that biofortification with Se, Zn, and Se-Zn led to
different changes in DEGs.

Biofortification with Zn alone triggered a higher number of
DEGs (106) than in combination with Se (72) and even less
when only Se was used (46) (Figure 4A). DEGs were usually

Zhttps://david.ncifcrf.gov/home.jsp
*http://www.genome.jp/kegg/
“http://www.genome.jp/kegg/tool/map_pathway3.html
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TABLE 1 | Overview of RNA-Seq data of rice cultivar Makassane (Mak) in control conditions (Ctr) and under different treatments of Selenium (Se500: 500 g ha~') and
Zinc (Zn900: 900 g ha~") or with these two elements together (Zn-Se).

Genotype Setup Total reads GC (%) Processed Mapped Unmapped

Mak Ctr 36,821,836 54.03 36,205,938 (98.32%) 33,869,031 (93.55%) 2,336,906 (6.45%)
Mak Se500 34,451,820 52.81 33,907,595 (98.42%) 30,784,505 (90.79%) 3,123,090 (9.21%)
Mak Zn900 39,822,173 52.91 39,162,976 (98.36%) 36,396,575 (92.94%) 2,766,401 (7.06%)
Mak Zn-Se 41,069,693 53.35 40,394,978 (98.42%) 37,382,433 (92.54%) 3,012,544 (7.46%)
Average 38,041,381 53.28 37,417,872 (98.36%) 34,508,136 (92.45%) 2,809,735 (7.55%)

Numbers indicate the average of the three biological replicates concerning the total number of reads after trimming (total reads), GC content (GC%), number of cleaned
reads after trimming (processed), number of reads mapped to the reference (mapped), and number of reads that failed to aligned (unmapped). Statistics of each sample

are provided in detail in Supplementary Table S1.
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upregulated in the Zn-biofortified and the Zn-Se-biofortified
pool (61 and 54%, respectively), while Se-biofortified flag-leaves
expressed an equal number of up- and downregulated DEGs
(23%) (Figure 4B and Supplementary Tables S2-S4).

The type of DEGs and the level of FC also varied between the
three biofortified pools. For instance, distribution trends in terms
of FC ranged from ca. —10 to 54 for DEGs in the Se-biofortified
pool (Supplementary Table S2). Two genes were found to be
highly enriched with FC 4-5 times higher than for the remaining
genes: ataxin-2 C-terminal region family protein (Os03g0180300)
and a CBL-interacting protein kinase 16 (Os09g0418000).

Meanwhile, GFA2 (Os06g0116800) and a hypothetical protein
(Os03g0180300) were the top downregulated genes. From
those 46 genes, 7 were putative CGs associated with traits of
interest in Se-biofortification: Biotin synthase (Os08g0540100),
Similar to inducible alpha-dioxygenase (Os12g0448900),
Queuine tRNA-ribosyltransferase (0s09g0469900), Thiazole
biosynthetic enzyme 17! (0s07g0529600), Cytochrome P450
(0s02g0221900), Zinc finger (Os01g0667700), and Protein
phosphatase 2C domain (Os05g0358500).

In comparison, FC of DEGs
Zn-biofortified plants

of
to 61

from flag leaves
varied between ca. —13
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FIGURE 2 | Scatter plots of expression levels between control and the average normalized value of the Zn-biofortified pool (A) between control and Se-biofortified
pool (B) and between control and Zn-Se-biofortified pool (C). Transcripts levels significantly above control levels are upregulated in response to biofortification while
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considered significant under |FC| > 2 (orange dots) and under [FC| > 2 and P < 0.05 (red dots).
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(Supplementary Table S3). Top downregulated included a
Resistance protein candidate (Os05g0318700) and a Photosystem
I protein-like (Os07g0148900) encoding genes, while a 2-
oxoglutarate dehydrogenase E2 subunit gene (Os04g0394200)
was found to be highly upregulated, with an FC six times
higher than the remaining DEGs. From those 106 genes, eight
were considered putative CGs associated with traits of interest
in Zn-biofortification: NifU-like protein (Os01g0662600),
WD-40 repeat containing protein (0s02g0791800), Laccase-
6 (Os01g0850550), Ribose-phosphate pyrophosphokinase
3 (0s01g0723600), C-type lectin domain (Os01g0104000),
Homodimeric diiron-carboxylate protein (Os04g0600300),
Queuine  tRNA-ribosyltransferase ~ (0s09g0469900), and
Cytochrome P450 (0s02g0173100).

In the set of plants biofortified with the two elements (Zn-Se),
FC of DEGs varied between ca. -13 to 27 (Supplementary
Table S4). A DRE binding protein 2 (Os01g0733801)
was found to be the top downregulated gene, while a
cystathionine gamma-synthase (CGS) (Os03g0376100) and
an UDP-glucuronosyl/UDP-glucosyltransferase (UGT) family
protein genes (Os01g0736100) were the top upregulated
genes under Zn-Se biofortification. From those 72 genes,
eight could be CGs associated with traits of interest in Zn-
biofortification: Adaptin ear-binding coat-associated protein
2 (0Os10g0476000), Endoribonuclease Dicer homolog 2a
(0s03g0583900), Thioredoxin family Trp26 (Os01g0559000),
Cytochrome family protein (Osl11g0151400), Syntaxin 6
(Os08g0244100), Cytochrome P450 (0Os02g0173100), Queuine
tRNA-ribosyltransferase ~ (0s09g0469900), and  Secretory
carrier membrane protein (Os04g0597000). Interestingly, one
gene (Os03g0103300) from the Se-Zn biofortified pool was
a quantitative trait loci (QLT) G-3-1 protein, targeted for
low-temperature germinability (Supplementary Table S4).

Only six DEGs were shared between the three biofortified
pools: Eukaryotic initiation factors 3 (Os04g0112300) and
4 (0Os04g0112300), Cytochrome P450 (Os02g0173100 and
0s502g0221900), UDP-glucuronosyl/UGT (Os01g0736100), and
Queuine tRNA-ribosyltransferase (0s09g0469900). Additionally,

an Ethylene response factor 2 gene (Os07g0617000) and
two Hypothetical proteins (Os01g0358300 and Os07g0536966)
were commonly upregulated in the Zn- and in the Se-
biofortified pool (Supplementary Tables S2, S3). Genes encoding
a Prolin-rich protein (Os04g0612500) and a Chitinase-like
protein (Os09g0494200) (both downregulated) were found to be
commonly expressed between the Zn- and the Zn-Se- biofortified
pool (Figure 4B and Supplementary Tables S3, S4).

DEGs were unevenly distributed among the 12 rice
chromosomes being predominant on chromosome 1 (with
32 DEGs), chromosome 3 (with 23 DEGs), and chromosome
4 (with 22 DEGs; Supplementary Figure S1). Few DEGs
could be mapped on chromosomes 11 (3 DEGs, none from
Se-biofortification) and 10 (5 DEGs) and on chromosome 12
(7 DEGs). DEGs from biofortification with Se, Zn, and Se-Zn
were predominantly mapped on chromosome 1 (7 DEGs),
chromosomes 1 and 4 (13 DEGs), and chromosome 1 (10
DEGs), respectively.

Gene Ontology Annotation of DEGs

Gene ontology categories from the list of significant DEGs were
overall upregulated (although at different levels) except for “metal
ion binding” in the Zn-biofortified pool (Figure 5). GO categories
also showed opposite profiles in the three biofortified pools,
which corroborates the differential gene regulations (Figure 5).
BP such as “vitamin metabolic process” and “vitamin biosynthetic
process” were enriched in the Se-biofortified pool while “nitrogen
compound biosynthetic process,” “carboxylic acid biosynthetic
process,” “organic acid biosynthetic process,” “cellular amino
acid biosynthetic process,” and “chitin metabolic process” were
the in the Zn-biofortified pool. In contrast, BP categories such
as “carbohydrate catabolic process,” “lipid localization,” and
“lipid transport” were enriched after Zn-Se biofortification. MF
such as “cation binding,” “ion binding,” and “transition metal
ion binding” were enriched after Se-biofortification. Categories
as “metal ion binding” “cofactor binding and “coenzyme
binding” were enriched after Zn-biofortification, the two latter
categories also enriched after biofortification with the two
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elements together (Figure 5). Cellular components (CC) such as
“cytoplasmic membrane-bounded vesicle,” “cytoplasmic vesicle,”
and “ubiquitin ligase complex” were only enriched after Zn-Se
biofortification (Figure 5).

Effect of Biofortification on Biological

Pathways
Photosynthesis was the only biological pathway involving
downregulation of gene expression and only in the

biofortification with Zn. Five different genes, all involving
Photosystem I (PsaD, PsaE, PsaF, PsaG, and PsaH),
were significantly downregulated after Zn-biofortification

(P < 0.01; Figure 6). By contrast, four different biological
pathways involving upregulated DEGs were significantly

enriched after biofortification: the citrate cycle (TCA
cycle) from the carbohydrate metabolism and the
RNA degradation pathway (respectively, P < 0.001

and P < 0.05), while the vitamin metabolic pathway
involving the production of thiamine and biotin were
enriched after Se-biofortification (P < 0.01 in both
pathways; Figure 7).

Six different upregulated genes were found to be enriched in
the tricarboxylic acid (TCA) cycle: one isocitrate dehydrogenase
(1.1.1.42), two 2-oxoglutarate dehydrogenase E1 component
(1.2.4.2), 2-oxoglutarate dehydrogenase E1 component (2.3.1.61),
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and two 2-oxoglutarate/2-oxoacid ferredoxin oxidoreductase
subunit alpha (1.2.7.11 and 1.2.7.3; Figure 8). Three genes
associated with the pathway of RNA degradation were also
found after biofortification with Zn: ATP-dependent RNA
helicase DDX6/DHH1 (DDXG6), enhancer of mRNA-decapping
protein 3 (EDC3), and enhancer of mRNA-decapping protein
4 (EDC4) (Supplementary Figure S2). In comparison,

the thiamine metabolism pathway was enriched after
Se-biofortification involving the upregulation of nucleoside-
triphosphatase  (3.6.1.15), thiamine-monophosphate kinase
(2.7.4.16), and adenylate kinase (2.7.4.3), while the biotin
metabolism pathway was enriched after Se-biofortification
directly through the upregulation of biotin synthase (2.8.1.6)
(Supplementary Figure S3).
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DISCUSSION

Rice is both a model plant species and one of the most
important staple foods worldwide. It is, however, a poor source
of micronutrients, such as Zn and Se, whose deficiency has

several impacts on human health and child growth, particularly
in developing countries. To compensate nutrient-poor staples,
genetic and agronomic biofortification strategies have been
widely used to fight hidden hunger (Kondwakwenda et al.,
2018; Neeraja et al., 2018; Hefferon, 2019; Zhou et al.,, 2019).
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FIGURE 8 | Significant differentially expressed genes (DEGs) involved in the TCA cycle of Zn-biofortified rice cultivar Mak (P < 0.001). Genes significantly upregulated
by Zn biofortification are shown in yellow boxes. White boxes indicate non-responsive genes.

While genetic biofortification approaches are powerful tools for
cereals (including rice) biofortification, the extended time frame
and resources needed for conventional breeding as well as the
economic, ethic, and legal issues associated with genetically
modified crops are among the main limiting factors, and, in
both cases, mineral availability is largely dependent on the
soil properties (Cakmak, 2008). On the other hand, agronomic
biofortification constitute a useful and reliable short-term
strategy, complementary to conventional breeding (Cakmak,
2008; White and Broadley, 2009, 2011; Ramalho et al., 2020).
However, the transcriptional basis of the biofortification
process at the leaf level is still poorly understood (Sperotto
et al., 2013; Neeraja et al, 2018; Tang et al, 2018). In this
context, we have analyzed the transcriptome of rice flag leaves
to gain insight about their contribution to mineral mobilization
to grains. For that we have used a rice cultivar (Makassane)
with high-yield (6-7 tonnes per hectare), high grain quality, and
resistance to the two major rice diseases (bacterial leaf blight
and blast) that has been bred by the IRRI and adapted to the
irrigated agro-ecological conditions of Mozambique, Southern

Africa (Singh et al, 2013), that have a good perspective for
future commercialization. Although a certain degree of Zn-Se
antagonism has been referred in some rice cultivars, in this
specific genotype co-application of Zn and Se did not interfere
with Zn accumulation while also promoting Se accumulation in
grains (Mangueze et al., 2018).

Transcriptome analysis of flag leaves from rice plants
biofortified with Zinc (Zn; 900 g Zn ha=1), Selenium (Se; 500 g
Se ha™!), and both minerals (Zn-Se; 900 g Zn ha~! and 500 g
Se ha™!) identified a total of 34 million reads, which is in line
with the results obtained from other transcriptome studies on
biofortified rice (Neeraja et al., 2018), wheat (Mishra et al., 2019),
and maize (Yi et al., 2019). The number of DEGs was ca. 3000,
which is also in agreement with other transcriptome projects
in rice, where ca. 1000-3000 DEGs have been reported (e.g.,
Li et al, 2018; Cao et al.,, 2019; Chen et al., 2019; Sun et al,
2019). The response of the rice transcriptome is quite variable,
depending on the organ, cultivar, and environmental conditions.
For instance, in panicles of two Indian landraces (Chittimutyalu,
CTT and Kala Jeera Joha, KJJ) and one improved variety (BPT
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5204), with differential ability to uptake zinc, the total number
of DEGs varied from ca. 1400 (BPT 5204) to ca. 2200 in CTT
and KJJ, of which ca. 450-800 with significant FC (Neeraja et al.,
2018). On the other hand, in roots of a Chinese rice cultivar
(Nipponbare) subjected to Cadmium (Cd) stress ca. 1200 DEGs
were identified, 226 with significant FC at low and 1162 at
high Cd concentrations, 10 pM and 100 wM, respectively (He
et al,, 2015). In our study, the rice biofortification of cultivar
Makassane triggered a relatively low number of DEGs (224)
with significant FC. Such a low number might be anchored
in the following arguments: (i) molecular changes associated
with the biofortification processes are narrow and limited to
specific pathways; and/or (ii) slight (statistically non-significant)
changes in gene expression are enough to trigger the pathways
involved in mineral absorption and translocation; and/or (iii)
post-transcriptionally regulated events.

The number of significant DEGs was higher in flag leaves
of Zn-biofortified plants (106) than those from Se- and Zn-
Se-biofortified plants (72 and 46, respectively) (Figure 4).
Differences in DEGs were extensive to FC (—10 to 54 for Se, —13
to 61 for Zn, and —13 to 27 for Zn-Se) as well as to the gene
classes (Supplementary Tables S2-S4). These differences are in
line with the reported variation of the rice transcriptome referred
above (He et al., 2015; Neeraja et al., 2018) and might be also
related to the fact the mineral concentrations used for spraying
were higher for Zn than for Se, triggering greater changes related
to more demanding changes during Zn accumulation.

Gene ontology analysis of DEGs showed also different profiles
of the three sets of biofortified samples, corroborating the
expression patterns of the individual set of DEGs (Figure 5).
Thus, while, in the case of Se biofortification, vitamin
biosynthesis and metabolism were among the main BP, in the
case of Zn, the main BP included biosynthesis of nitrogen
compounds, carboxylic acids, organic acids, amino acids, as well
as chitin metabolism. Additionally, in the case of the combined
Zn and Se application, the BP associated with carbohydrate
metabolism and lipid dynamics were also enriched. Such distinct
GO profiles are likely related to the specific roles of Se and Zn
in plant functioning as well as with specificities of Zn and Se
biofortification processes, even considering a certain antagonism
extent between these two minerals as regards their accumulation
potential (Boldrin et al., 2012; Mangueze et al., 2018). This
hypothesis is supported by the classification based on the MF,
i.e., ion homeostasis in Se-biofortified flag leaves, probably related
to the role of this mineral in controlling oxidative stress, the
coenzyme/cofactor function of Zn in Zn-biofortified flag leaves,
and a rather diverse set of GOs in the double biofortified flag
leaves (Sunde, 2018). Nevertheless, the three biofortification
processes have in common alterations in cell metabolism inherent
of the mineral mobilization and their specific cellular functions
(Gargetal, 2018).

Among the top DEGs, two genes encoding an ataxin-2 and a
CBL (Calcineurin B-like)-interacting protein kinase (CIPK) were
the most abundant in Se-biofortified flag leaves. Ataxin-2 is a
CID (CTC-interacting domains) protein highly conserved among
eukaryotes (Jiménez-Lopez and Guzman, 2014). Although the
functional characterization of ataxins in plants has not yet

been fully addressed, key and evolutionary conserved roles of
this group of proteins have been proposed, namely, in post-
transcriptional regulatory assembly in many biological processes,
including, growth, development, and environmental responses
(Jiménez-Lopez et al., 2015; Ostrowski et al., 2017). Thus, it is
possible that Se-biofortification in rice is highly regulated post-
transcriptionally through Ataxin-2, explaining the low number
of DEGs identified in this pool of samples. On the other hand,
the activation of the plant-specific CBL-CIPK complex is likely
related to the induction of a plant stress signaling cascade
(Ligaba-Osena et al., 2017; Zhang et al., 2018; Aslam et al., 2019;
Liu et al., 2019) necessary to mobilize Se. In fact, although its role
in plants remains controversial, Se is known to act in mechanisms
of plant protection against a variety of abiotic stresses, such as
cold, drought, desiccation, and metal stress (Gupta and Gupta,
2017). Furthermore, several studies have also found that CBL-
CIPK pathways work as regulators in nutrient transport systems,
namely, Nat (Shi et al., 2002), K+ (Xu et al,, 2006), Mg? ™ (Tang
etal, 2015),and NO3;~ (Ho et al., 2009).

With Se biofortification, the induction of vitamin metabolic
pathways related to the production of the thiamine and biotin
were enriched (Figure 7), the first involving the transcriptional
activation of genes encoding a nucleoside-triphosphatase, a
thiamine-monophosphate kinase, and an adenylate kinase and
the second the upregulation of a biotin synthase (Supplementary
Figure S3). Consequently, biofortification with Se might
reinforce thiamine presence in rice, which is usually very poor,
ranging from 0.053 to 3 mg per 100 g of grain. These values
become even lower with the elimination of the aleurone layer
(where thiamine is predominantly stored) in polished rice as well
in cooked rice (Minhas et al., 2018).

With regards to the flag leaves from Zn-biofortified plants,
the most abundant transcript corresponded to a gene enconding
a 2-oxoglutarate (2-OG) dehydrogenase (2-ODD), the largest
family of non-heme oxidizing enzymes (Kawai et al., 2014),
with a key function in the TCA cycle that uses 2-OG as
an obligatory substrate (Scheible et al., 2000). This will link
the TCA cycle (and thus ATP production) to amino acid,
glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis
(Aratjo et al, 2014). Taking into account the wide Zn roles
in plants, which include the composition of proteins and
other macromolecules, its action as a functional, structural,
or regulatory cofactor of a large number of enzymes, and
its role in gene expression control (Brown et al., 1993), the
huge activation of 2-ODD might be related to the enhanced
cell metabolic activity induced by Zn biofortification. Such
large accumulation of 2-ODD transcripts is also in line with
the GO analysis and its involvement in several biosynthetic
pathways (Aradjo et al., 2014; Farrow and Facchini, 2014;
Wang et al., 2019).

In line with the GO analysis and with the proposed roles
for Zn in plant cells, the analysis of the impact of Zn
biofortification in biological pathways confirms the relation with
the TCA cycle and carbohydrate metabolism but also with
RNA degradation, highlighting its role in cell metabolism and
control of gene expression (Brown et al, 1993). The genes
encoding enzymes from the TCA cycle included an isocitrate
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dehydrogenase, three 2-oxoglutarate dehydrogenases, and two 2-
oxoglutarate/2-oxoacid ferredoxin oxidoreductases involved in
plant defense against stress (Aradjo et al., 2014; Yu et al., 2018).
The genes associated with RNA degradation included an ATP-
dependent RNA helicase (DDX6), and two enhancers of mRNA-
decapping proteins 3 and 4 (EDC3 and EDC4), factors regulating
mRNA turnover in plants probably involved in developmental
processes (Goeres et al,, 2007) as well as in stress responses
(Kawa and Testerink, 2017).

On the other hand, a Photosystem I (PSI) gene was
among the top downregulated DEGs. A deeper analysis of
biological pathways indicates that Zn biofortification resulted
in a downregulation of several photosynthesis-related genes,
namely, those related with PSI (PsaD, PsaE, PsaF, PsaG, and
PsaH; Figure 6). Nevertheless, this downregulation of PSI related
genes is likely linked to metabolic adjustments needed for Zn
mobilization, since in our experiments Zn biofortification did not
negatively affect plant growth and yield (our lab, unpublished
data), and because a positive impact on photosynthesis has
been frequently reported in Zn fertilized/biofortified cereals (e.g.,
Lidon et al., 2015, 2017; Liu et al., 2016; Chattha et al., 2017). This
is in agreement with the fact that most Zn is taken up by active
transport and that the energy demanded by this process is largely
supported by photosynthesis (Nakandalage et al., 2016).

In double biofortified plants (Zn and Se), genes enconding
a CGS and an UDP-glucuronosyl/UGT were transcriptionally
activated. These genes are usually involved in amino acid
(methionine) (Zhao et al., 2018) and flavonoid (Yin et al., 2017)
biosynthesis, suggesting the activation of these two pathways
during double biofortification conditions. CGS is specifically
associated with perturbation of the folates pool that serve as
donors and acceptors in one-carbon (C1) transfer reactions,
which are essential in major metabolic pathways, such as amino
acids, nucleic acids, and vitamin B5 (Loizeau et al.,, 2017).
Crops that are able to de novo synthesize folates serve as
an excellent dietary source, which is not the case of most
staple crops, such as rice, potato, and maize (Gorelova et al,
2017). Thus, biofortification with Zn-Se could have a positive
impact regarding the enhancement of folate content, further
improving the nutritional value of rice, a result that should
be tackled in future studies. One DEG (Os03g0103300) from
the Se-Zn biofortification was a QLTG-3-1 protein targeted
for low-temperature germinability detected on chromosome 3
(Supplementary Table S4), emphasizing the importance of this
gene for further molecular characterization of biofortification
traits. Improvement of cold tolerance at the germination
stage is a major determinant for rice cultivation in tropical
or subtropical areas causing severe reductions in the final
yield and in crop productivity (Jiang et al., 2017). Further
identification of major QTLs associated with the molecular
basis of micronutrient uptake/homeostasis (Swamy et al., 2016;
Raza et al, 2019) will facilitate the identification of genes
of interest and its exploration for breeding Se and Zn rich
rice varieties. Six common DEGs were shared between the
three biofortified pools, interestingly with similar FC trends
in Se and Zn biofortified flag leaves and opposite expression
patterns in the Zn-Se pool (Supplementary Tables S2-S4).

Among them, eukaryotic initiation factor (eIEF) 3 and elEF
4 were, respectively, down- and upregulated in the Se (FC
—6.528 and 6.860) and Zn (FC —6.452 and 6.813) set, and
up- and downregulated in the Zn-Se set (FC 2.378 and
—2.869). elEFs are large protein complexes that participate in
translation initiation (Yahalom et al., 2008). As referred above,
rice biofortification significantly activate a specific and limited
set of DEGs, and, thus, it is expected that the set of genes
involved in translation is also limited. This is supported by the
expression patterns of a queuine tRNA-ribosyltransferase, i.e.,
negative FC of —2.077 in Se, —2.245 in Zn and —2.303 in
Zn-Se, involved in the biosynthesis of tRNA subunits (Zallot
et al, 2014) and known to be inhibited by Zn (Schomburg
and Schomburg, 2010). The expression pattern of a Cytochrome
P450 (CYP) gene followed also the same trend of the eIEF
genes, i.e., FC of 6.860 in Se, 6.813 in Zn and —2.869 in Zn-Se,
highlighting its importance in monooxygenation/hydroxylation
reactions in biochemical pathways (Wei and Chen, 2018)
of Se and Zn biofortified plants. The fact that an ethylene
response factor 2 was commonly upregulated in the Zn-
and in the Se-biofortified pool (Supplementary Tables S2,
$3) may imply that Zn and Se are sensed by the plant as
a stress condition, leading to ethylene production, which is
similar to what happens in Fe-biofortification (dos Santos
et al, 2017). DEGs were randomly distributed among the
12 rice chromosomes being predominant on chromosomes 1,
3, and 4, while few could be mapped on chromosomes 10,
11, and 12. Although more genomic studies are necessary
to understand the molecular basis of biofortification across
rice chromosomes, a meta-analysis of rice QTLs associated
with iron and zinc in grains have already identified 48 meta-
QTLs (MQTL) randomly distributed across rice chromosomes,
though they are predominant on chromosome 7 (27 QTLs)
and scarcely mapped on chromosome 11 (8 QTLs; Raza et al.,
2019). Several genes/transcripts (e.g., OsATM3, OsDMASI,
OsFRO2, OsNAS1-3, OsVIT2, OsYSL16, OsZIP3, and OsZIP7)
are physically located within or near these MQTL regions and are,
as found here, involved in binding, oxidation reduction process,
metabolic process, regulation of transcription, and transport
(Raza et al., 2019).

CONCLUSION

In conclusion, we have in this work settled the foundations to
understand genomic changes in the flag leaves of rice plants
biofortified with the single and combined use of Zn and Se,
which are mainly based on the activation of a limited number
of metabolic pathways related to micronutrient mobilization
and to the specific functions of Zn (i.e., its enzymatic co-
factor/coenzyme function in the biosynthesis of nitrogenous
compounds, carboxylic acids, organic acids and amino acids) and
Se (vitamin biosynthesis and ion homeostasis). The success of
this approach should be followed in future studies to understand
how landraces and other rice cultivars respond to biofortification.
For that, we are currently analyzing the transcriptome of
a biofortified rice landrace and integrating agronomic and
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molecular analyzes to further study the transcriptional patterns of
putatively key biofortification genes during grain development.
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