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Background: Due to the affordability of whole-genome sequencing, the genetic
association design can now address rare diseases. However, some common statistical
association methods only consider homozygosity mapping and need several criteria,
such as sliding windows of a given size and statistical significance threshold setting,
such as P-value < 0.05 to achieve good power in rare disease association detection.

Methods: Our region-specific method, called expanded maximal segmental score
(eMSS), converts p-values into continuous scores based on the maximal segmental
score (MSS) (Lin et al., 2014) for detecting disease-associated segments. Our eMSS
considers the whole genome sequence data, not only regions of homozygosity in
candidate genes. Unlike sliding window methods of a given size, eMSS does not need
predetermined parameters, such as window size or minimum or maximum number
of SNPs in a segment. The performance of eMSS was evaluated by simulations and
real data analysis for autosomal recessive diseases multiple intestinal atresia (MIA) and
osteogenesis imperfecta (OI), where the number of cases is extremely small. For the
real data, the results by eMSS were compared with a state-of-the-art method, HDR-del
(Imai et al., 2016).

Results: Our simulation results show that eMSS had higher power as the number
of non-causal haplotype blocks decreased. The type I error for eMSS under
different scenarios was well controlled, p < 0.05. For our observed data, the bone
morphogenetic protein 1 (BMP1) gene on chromosome 8, the Violaxanthin de-
epoxidase-related chloroplast (VDR) gene on chromosome 12 associated with OI, and
the tetratricopeptide repeat domain 7A (TTC7A) gene on chromosome 2 associated with
MIA have previously been identified as harboring the relevant pathogenic mutations.

Conclusions: When compared to HDR-del, our eMSS is powerful in analyzing even
small numbers of recessive cases, and the results show that the method can further
reduce numbers of candidate variants to a very small set of susceptibility pathogenic
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variants underlying OI and MIA. When we conduct whole-genome sequence analysis,
eMSS used 3/5 the computation time of HDR-del. Without additional parameters
needing to be set in the segment detection, the computational burden for eMSS is
lower compared with that in other region-specific approaches.

Keywords: whole-genome sequencing, rare disease, autosomal recessive disease, maximal segmental score,
ALSPAC

INTRODUCTION

In thousands of patients with rare diseases, whole-genome
sequencing has been used to identify new causes of disease,
which can help us increase our understanding of biological
processes and improve clinical care. Because DNA sequencing
is affordable, the genetic association design can now address
diseases affecting fewer than 1,000 people. However, the statistical
association methods that have been used so far to detect disease-
related loci need several criteria to achieve good power in
association detection, especially when the number of individuals
with a rare disease is small. Compared to common diseases in
the general population, rare diseases are low-prevalence health
conditions that affect only a few individuals. Rare diseases
include rare cancers, genetic diseases, and degenerative diseases.
Among them, 80% of rare diseases are influenced by genetic
effects (Perez, 2010; Valdez et al., 2016; The Lancet Diabetes
Endocrinology, 2019). In situations in which the number of cases
is very small (say, <5), traditional detection methods, such as
logistic regression, may not be applicable, and non-parametric
methods usually have low power. New statistical methods need
to be developed to address such situations.

A single-marker association test may be inefficient when each
genetic marker contributes only a small amount of association
to a disease trait/phenotype. More powerful methods are region-
specific tests, which take into account information on the
heterogeneous genetic backgrounds of adjacent markers due to
differences in allele frequencies and marker characteristics (Lin
et al., 2012). Scan statistics with an exponential distribution of
marker positions have been used to identify causal chromosomal
regions using biological organization of single nucleotide
polymorphism (SNP) data (Sun et al., 2009). For high-density
association studies, the distribution assumption of scan statistics
needs to be verified. Most sliding window methods assume a fixed
or variable window size and then move windows along a sequence
to evaluate the combined effects of markers within each window
(Yang et al., 2006; Tang et al., 2009; Liu et al., 2011; Imai et al.,
2016; Imai-Okazaki et al., 2017). HDR (Imai et al., 2016) and
HDR-del (Imai-Okazaki et al., 2017) are two recently developed
sliding window methods based on the Hamming distance
for prioritizing variants in exome sequencing or deletions in
exome sequencing, respectively. They map homozygosity regions
longer than 1 Mb and calculate the “difference” between a
case and control individual using the Hamming distance ratio
(HDR) over all candidate exome sequences or deletions in
exome sequencing.

For set limits on window size, Lin et al. (2012) provide
a discrete scoring system, which is our previously developed

region-specific test method not restricted by window size.
These authors apply the concepts of a basic local alignment
search tool (BLAST) (Altschul et al., 1990) and the maximal
segmental score (MSS) method (Karlin and Altschul, 1990;
Karlin and Dembo, 1992) in genome-wide association studies
(GWAS). However, our previous study proposed using MSS
to replace the discrete scoring system (Lin et al., 2012) with
a continuous scoring system and apply it to detecting rare
and common variants (Lin et al., 2014). In our previous
MSS study, Lin et al. (2014) mentioned that it would be
more appropriate to use a more general continuous score
if a large case–control data set and effective computational
power were available.

Autosomal recessive (AR) disorders usually occur in only
one generation, so genetic linkage analysis is unlikely to be
powerful. In previous AR studies, Imai et al. (2015, 2016) looked
for differences in homozygosity patterns, i.e., homozygosity
mapping (HM), around candidate variants between individual
cases and individual controls and expected these differences
in pathogenic variants to be greater than random candidate
variants. The HM method is a common method for mapping AR
diseases in consanguineous families. In most studies, applications
for multipoint linkage analysis is to identify genomic regions
associated with diseases (Seelow et al., 2009). However, these
studies are neither suitable for very large families nor to
accommodate tens of thousands of SNPs.

Here, we develop a novel region-specific method for the
whole sequence called eMSS; it expands our previous continuous
version of the MSS method (Lin et al., 2014) and is used to analyze
disease-related segments in AR diseases detected by unrelated
individuals. Our method expands previous HM methods from
a candidate gene approach to a whole-genome sequence and
works without sliding windows of a given size and additional
parameters, such as minimum or maximum numbers of SNPs
in a segment and minimum length of a segment. In this study,
we address performance of our new method by evaluating results
from simulations. We also compare sequence-variant segments
between affected individuals from a Québec data set (Imai
et al., 2015) and from a Pakistani data set (Kausar et al., 2018)
and control individuals from the Avon Longitudinal Study of
Parents and Children (ALSPAC) data sets (Boyd et al., 2013;
Fraser et al., 2013). That is, our method compares single (or
a few) affected individuals with a large number of control
individuals. For any two individuals, we want to measure the
discrepancy between their two variant arrays by a distance
measurement. In our study, we analyze AR diseases, i.e., multiple
intestinal atresia (MIA) and osteogenesis imperfecta (OI), in
which pathogenic variants had been identified. Our region-based
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method successfully detects disease-causing segments in our
simulation analysis and two AR disease data sets. The eMSS
is likely to be powerful even with a very small number of
observations and can further reduce variants to a very small set
of susceptibility pathogenic variants.

MATERIALS AND METHODS

In short, the proposed eMSS converts any sequence of marker-
wise testing results into a visualized MSS plot in which most
susceptibility regions of markers can easily be identified. It
comprises the following steps:

(1) To calculate marker-wise p-values on testing the difference
between case and control groups.

(2) To transform p-values into appropriate scores.
(3) To convert the sequence of scores into an MSS plot and

identify the region with maximal segmental score (MSS
region).

(4) For subsequences in the above MSS region, repeat step 3 to
search for the second MSS region, etc.

Calculating Marker-Wise p-Values
There are many ways for testing marker-specific differences
between case and control groups, and for our interest in
rare diseases with extremely small numbers of cases, we
use the following pairing scheme developed by Imai et al.
(2016) as an example.

For each individual, the genotypes at a given site are coded
G = 0 (REF/REF), 1 (REF/ALT or ALT/REF), or 2 (ALT/ALT).
Imai et al. (2016) then reassigned the case and control groups
into a “case–control” group and a “control–control group.”
The case–control group comprised all possible case–control
pairs, and the control–control group comprised all possible
pairs among the controls. In the situation of a single case
versus m controls, as illustrated in Imai et al. (2016), the
case–control group consists of m case–control pairs, and the
control–control group comprises m(m − 1)/2 control–control
pairs. For a prespecified region width, they calculate a Hamming
distance ratio (HDR) of the markers within it and obtain the
t statistics on the difference of HDR between case–control
and control–control groups. They show that the method is
efficient to identify disease-related markers for rare diseases
(Imai et al., 2015).

For illustration, we simplify the HDR method by considering
only the smallest width of region that contains only one marker.
Let (G1, G2)k represent the two genotypes in the kth pair of
individuals, where k ranges from 1 through m or m(m − 1)/2
for case–control or control–control pairs, respectively. The
dissimilarity between the two individuals in a pair is then
measured by the absolute difference, | G1−G2| . For example, for
a genotype pair of (1, 2) = (REF/ALT, ALT/ALT), the dissimilarity
is |1− 2| = 1.

If a variant is disease causing, the mean dissimilarity in case–
control pairs is expected to be greater than that in control–control

pairs, i.e., we use a one-sided, two-sample t statistic to test the
following hypothesis:

H0 : µcase − control = µcontrol − control

against

H1 : µcase − control > µcontrol − control

The motivation for our approach is that we expect a larger
“distance” between individual cases and individual controls
for DNA fragments containing pathogenic variants than for
random DNA fragments.

Scoring System of p-Values Based on
Fisher Transformation
To take into account the markers flanking each SNP, we develop
a scoring system based on our previous continuous version of
the MSS method. MSS was proposed by Karlin and Dembo
(1992) and was originally applied in BLAST (Altschul et al.,
1990), a widely used bioinformatics tool for protein or DNA
sequence alignment and searching. It considers a sequence
of discrete random variables Y1, . . ., Yn, which represent
the dissimilarity of n markers between the DNA sequences
of two individuals. As the simplest example, Y i = 1 if, at
marker i, both sequences carry the same genotype; otherwise,
Y i = −1. Note that a necessary condition for MSS to work is
E[Y i] < 0, i.e., Y i should more likely be negative than positive
in the sequence.

In our application, we replace the discrete Y i by a continuous
score, which is a monotone function of Pi (the p-value), where
Pi is obtained from a two-sample t-test on testing the difference
between the case–control and control–control groups at marker i
in the sequence.

To smooth the wiggly plot based on original p-values and
make the MSS plot more visually friendly, we employ the
Fisher transformation, −2ln(Pi), which transforms a uniformly
distributed p-value into a chi-square distribution with 2 degrees
of freedom. Furthermore, to allow for the MSS condition,
E[Y i] < 0, we use the left-censored Pi truncated by its 10th
percentile (denoted as Pc) to avoid infinity from extremely
small Pi, i.e.,

Pi =

{
Pc, if Pi ≤ Pc
Pi, if Pi > Pc

and define the score as
Yi = −2 ln (Pi)− Pf, i = 1,. . ., n markers,

where Pf is set to be f × (−
n∑

i=1
2lnPi)/n, with f > 1 to assure a

negative mean of Y i (E[Y i] < 0). The choice of f is analogous to
the rotation parameters in factor analyses, in which some f can
make the display of the MSS plot easier to identify susceptibility
regions of markers. In our applications, we found that f = 1.2–
1.5 has the best visualization. We illustrate it by simple examples
after the description of the MSS procedure.

The MSS procedure includes the following steps:
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(1) Calculating the partial sum of the sequence of marker scores

The single marker scores [Y1, . . ., Yn] are aggregated in a
sequential manner to form a sequence of partial sum scores [U0,
U1, . . ., Un], where U0 = 0 is the initial partial sum score, and

Um =
m∑
i=1

Yi, where m = 1, 2, . . ., n. Um is the partial sum up

to the mth marker in the sequence. The partial sum scores Um
as a function of the single marker scores Y i are increasing or
decreasing with i because Y i can be negative.

(2) Identifying ladder points and subsequences

Given a partial sum score sequence [U0, U1,
. . ., Un], ladder points are defined as J0 = 0, Jv =
minj

{
j : j ≥ Jv+1 + 1,Uj − UJv+1 < 0

}
, v = 1, 2, . . . , nl,

where nl = the number of ladder points (Karlin and Dembo,
1992). Figure 1 shows an example of 20 SNP markers labeled
ladder points (solid dots). As the calculation moves along the
markers, the ladder points are at the new low points of the partial
sum scores. Once the ladder points have been set along the
marker sequence, regions defined by two adjacent ladder points
form subsequences. As shown in Figure 1, there are eight ladder
points, forming eight subsequences. The ladder points are the
second, fourth to eighth, 18th, and 19th SNPs with low point
partial sums U2, U4 to U8, U18, and U19, respectively. Note
that a ladder point appears if the partial sum of a ladder point
is less than the partial sum of the previous ladder point. In our
study, the purpose of the ladder points is to form subsequences
along the marker sequence in each of the subsequences. We
can calculate the general segment score as shown in the next
section. Using ladder points can help us find the region with
the highest score, which may be the region associated with the
disease. This also helps reducing the data dimension inherent in
high-throughput data.

(3) Identifying the maximal segmental score

For each subsequence, the segmental score, Sv, is computed as
the difference between the largest partial sum of a subsequence
and the initial partial sum of the subsequence. The equation used
to obtain the segmental score is as follows:

Sv = max
Jv−1≤j<Jv

(
Uj − UJv−1

)
,

where Sv is a non-negative value defined as the difference between
the largest partial sum and the initial partial sum value within
the subsequence defined by two adjacent ladder points. In the
example (Figure 1), the Sv values for the eight subsequences are
(U2 − 0), 0, 0, 0, 0, 0, (U18 − U8), 0. A zero score denotes
no increase between two adjacent ladder points. The larger the
score, the more likely the target SNP is in the segment. The
maximum segmental score for the whole sequence is recognized
as eMSS = max [S1, S2, . . .]. In the example shown in Figure 1,
eMSS is given by (U18 − U8). The statistical significance of eMSS
is assessed by permutation as shown below.

(4) Permutation test

To test the null hypothesis of no disease genes, the p-value
of the eMSS is estimated by permutation. In order to derive
the null distribution of eMSS while preserving the genotype
data structure, we generate m replicates by randomly shuffling
the case–control status of all individuals and then carrying out
the above described steps each time. The observed eMSS is
then compared to the null distribution to derive the empirical
p-value, which is defined as the proportion of permuted eMSS
at least as large as the observed eMSS. A significance level of
0.05 was used here.

(5) Varying f for better visualization of MSS plots

The idea of MSS is to highlight the region between two
adjacent ladder points that represent the difference between the
two groups (case–control and control–control) in this region.
The segmental score is the maximum height in this region, and
the region with highest MSS is considered to be the most likely to
contain the disease-related markers than other regions. The ideal
situation is that the MSS region occurs with as few markers as
possible so that the disease-related genes can easily be identified.
If f is small, say f = 1, the region with MSS tends to be too
useless, i.e., the region is nearly half the whole sequence and is
not helpful for identifying the small number of target markers.
Supplementary Figure S8 illustrates an MSS plot under different
f. In Supplementary Figure S8A with f = 1, the region is nearly
half the whole sequence, which is not helpful for identifying
the small number of target markers. On the other hand, if f
is large, say f = 1.25, then the Y is are mostly negative, and
the MSS plot tends to be steeply decreasing either without any
positive segmental score or non-significant MSS (Supplementary
Figure S8B). An ideal plot is with large MSS within a narrow
region, i.e., large MSS with small W, where W is the number of
markers within the MSS region bounded by two adjacent ladder
points. We, therefore, consider the following strategy: equally
dividing 1 to 1.25 into 10 intervals, creating an MSS plot with
f = 1, 1.025, 1.05, . . ., 1.225, and 1.25, and choosing the one with
maximal MSS/W as the optimal plot. Supplementary Figure S8C
shows that f = 1.14 is optimal in the experimental data.

RESULTS

Simulation
In our simulation study, we used the simulation software SNaP
(Nothnagel, 2002) to generate SNPs in a case–control association
study of one case and 32 controls. We considered the four factors
described below when generating genotype data.

(1) Number of haplotype blocks: Gabriel et al. (2002) found
that only two or three markers were sufficient to detect
regions as blocks. Based on this information, we considered
numbers of blocks at three levels: high density (H, 100
blocks, including 302 SNPs), moderate density (M, 36
blocks, including 110 SNPs), and low density (L, 15 blocks,
including 47 SNPs);

(2) Haplotype frequency: Gabriel et al. (2002) also observed
that most blocks contained only three to five haplotypes,
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FIGURE 1 | An example of partial sum scores for 20 SNPs. Ladder points in solid dots (2nd, 4th to 8th, 18th, and 19th SNP) forming eight segmental regions are the
markers with new record lows of the partial sum scores, which are lower than all scores on their left, respectively. The ladder points partition the curve into the
up-climbing intervals (e.g., [0 to 2nd], [2nd to 4th], and [8th to 18th]), which indicate the cluster of neighboring significant SNPs and the declining regions (the rest
insignificant intervals). Segmental score (Sv, green stars) is the vertical height of each interval, and the highest Sv is assumed to be the most susceptive region. In
eMSS, some minor number of insignificant SNPs within the susceptive region are tolerable, e.g., markers 12 and 13.

and these major haplotypes can provide 90% of the
information for a given block. Based on the above
information, we set two levels of haplotype frequencies:
extreme (E), that is, one of the major haplotypes has a
frequency ≥ 0.8, and non-extreme (nE), that is, one of
the major haplotypes has a frequency < 0.6. For the E
haplotype frequency pattern, we assumed that, of the three
haplotypes, the major haplotype has a frequency of 0.8 and
the other two haplotypes have a frequency of 0.1. For the nE
haplotype frequency pattern, we assumed that, of the three
haplotypes, the major haplotype has a frequency 0.6 and the
other two haplotypes have a frequency of 0.2.

(3) Allele frequency (AF): The allele frequency of a causal
variant at AF = 0.01 and AF = 0.001.

(4) Number of cases and controls: one case versus 32
controls, one case versus 50 controls, and three cases
versus 32 controls.

First, the simulation results showed that eMSS had higher
power and lower type I error in low-density haplotype blocks
(15 blocks, including 47 SNPs) than in high-density (100 blocks,

including 302 SNPs) haplotype blocks (77.8% vs. 96.2% in the
E haplotype frequency pattern, Table 1). The statistical power
to identify pathogenic regions decreased as the number of non-
causal haplotype blocks, i.e., non-causal SNPs, increased. Second,
eMSS had higher power in the E haplotype frequency pattern than
in the nE one. In the E haplotype frequency pattern, the power
was 96.2% for the L block and 79.7% for the H block (Table 1).
In the nE haplotype frequency pattern, the power was 93.4%
for the L block and 65.3% for the H block (Table 1). However,
for the H block and nE haplotype frequency pattern (the worst
scenario), eMSS found a 30.9% decrease in power, down to 65.3%.
Third, the allele frequency of a causal variant would not affect the
performance of eMSS. The power and type I error at AF = 0.01
and AF = 0.001 in eMSS was quite similar. Fourth, increasing
the number of controls would not increase the statistical power,
but increasing the number of cases would achieve the statistical
power to 86% for the H block and nE haplotype frequency pattern
(the worst scenario) (Supplementary Table S6).

HDR-del is a web-based method, and the parameters need
to be fine-tuned. The power and type 1 error for the first and
second hundred in our simulation are very similar, so we use
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the average of them in Table 1. HDR-del considers runs of
homozygosity (ROHs) longer than 1 Mb (Imai-Okazaki et al.,
2017). Thus, we only made power and type I error comparisons
under the scenario with high-density haplotype blocks (100
blocks, including 302 SNPs). It seems that eMSS had higher
power and lower type I error than HDR-del under the scenario
with high-density haplotype blocks [power (type I error) = 77.8%
(1.2%) for eMSS vs. 75% (8%) for HDR-del in the E haplotype
frequency pattern, Table 1].

Real Data Analyses—Québec
As a proof of concept for the study, we applied our approach to
MIA and OI patients for which the AR disease-related regions
had previously been detected and published (Bernard et al.,
2011; Tetreault et al., 2011; Srour et al., 2012; Fahiminiya et al.,
2015). For MIA, a pathogenic variant on chromosome 2 in
the tetratricopeptide repeat domain 7A (TTC7A) gene (Samuels
et al., 2013) was found in three affected individuals, i.e., patients
F1, F4, F6. For OI, a pathogenic variant on chromosome 8 in
the bone morphogenetic protein 1 (BMP1) gene (Fahiminiya
et al., 2015) was observed in an affected individual, i.e., patient
OI. patients F1, F4, F6, and OI are members of the French–
Canadian population of Québec, which has about 8,500 French
settlers who immigrated more than 300 years ago (Laberge et al.,
2005). Because of the limitations of data set ethical approval,
control individuals cannot be of the same ethnic background
as case individuals. Hence, we randomly selected 32 individuals
as control individuals from the ALSPAC Cohort Project (Boyd
et al., 2013; Fraser et al., 2013). All affected individuals had been
exome-sequenced at McGill University and the Genome Québec
Innovation Center, Montreal, Canada as detailed in publications
(Imai et al., 2015, 2016). In the ALSPAC study, researchers
sequenced 1927 individual exomes to 80× coverage and found
842,646 SNVs and 6067 indels. The ALSPAC study website
contains details of all data available through a fully searchable
data dictionary and variable search tool1.

Results obtained by our eMSS analysis show that we were
able to identify the OI disease variants to be in the top three of
sequence segments ranked on chromosome 8 (Table 2) and MIA
disease variants on chromosome 2 (Table 2). For OI analysis,
there were 5,628 SNPs was used to run eMSS on chromosome
8 for the intersection of two sets ALSPAC and OI. In the
data set of one OI and 32 ALSPAC controls, the length of the
segment ranked 2 detected by our eMSS method was 3,475 kb
on chromosome 8 (294 SNPs spanning 3,475 KB, P = 0.015). In
refinement analysis (i.e., eMSS refinement in Table 2), eMSS was
rerun using only the causal region from the first time (i.e., 294
SNP spanning 3,475 KB) in hope of further narrowing down the
region size. The result from the second run showed that the final
causal region included 10 SNPs spanning 30.145 KB (P = 0.015,
Table 2 and Supplementary Figure S1). The sequence segment
(chr8: 22,022,749–22,052,894 bp) comprised the following gene:
BMP1. That segment ranked 1 (best) on chromosome 8 for OI
associated analysis using the ALSPAC data set.

1http://www.bristol.ac.uk/alspac/researchers/our-data/
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For MIA analysis, there were 3,484 SNPs on chromosome 2
for the intersection of two sets ALSPAC and three MIA cases
(patients F1, F4, and F6). In the data set of three MIA cases and
32 ALSPAC controls, the length of the most significant sequence
segment detected by the eMSS method was 29,759 kb (386
SNPs, P = 0.002). In the eMSS refinement, the sequence segment
extended over 143 kb on chromosome 2 (9 SNPs, P = 0.002)
(Table 2 and Supplementary Figure S2). This sequence segment
comprised the following genes: multiple coagulation factor
deficiency 2 (MCFD2) and tetratricopeptide repeat domain 7A
(TTC7A). Using the ALSPAC data set, that segment ranks first
on chromosome 2 of the MIA correlation analysis.

As the OI study works with one affected individual versus
32 control individuals, the three individuals in MIA (patients
F1, F4, and F6) were also considered separately in our study.
The most significant sequence segment detected by the eMSS
method in all three MIA cases considered together, the sequence
segment (29,759 kb; 385 SNPs, P = 0.002 in all three MIA
cases considered together) was also detected by patients F1
(26,430 kb; 744 SNPs; P = 0.015), F4 (16,419 kb; 378 SNPs;
P = 0.015), and F6 (39,887 kb; 872 SNPs; P = 0.015),
separately. In the eMSS refinement for the patient F1, the
sequence segment ranged over 4 kb on chromosome 2 (4 SNPs,
P = 0.030) (Table 2 and Supplementary Figure S3). Thus,
patients F1, F4, and F6 detect the same pathogenic region for
MIA with patient F1 furnishing the shortest region (Table 2 and
Supplementary Figures S4, S5).

Mutations had been identified (1) in the BMP1 gene on
chromosome 8 associated with recessive OI and (2) in the
TTC7A gene on chromosome 2 associated with recessive MIA
(Bernard et al., 2011; Tetreault et al., 2011; Fahiminiya et al.,
2015). Thus, we showed significantly larger distances between
case individuals and control individuals for pathogenic variants
than random variants. Furthermore, we successfully narrowed
down the segment detected in our OI- and MIA-associated
analysis. Supplementary Table S1 shows the three top-ranked
susceptibility regions across 22 chromosomes used in our
eMSS calculations.

To compare the ability of detecting susceptibility regions
between our eMSS method and other region-specific methods,
we applied the HDR-del (Imai-Okazaki et al., 2017) approach
using the same vcf files for case and control individuals as in
our eMSS method. HDR-del defines ROH as a sequence of
homozygous variants bounded by one or more single-nucleotide
heterozygous variants. HDR-del considers ROHs longer than
1 Mb (Imai-Okazaki et al., 2017). As shown in Supplementary
Table S3, out of 213–375 candidate variants, HDR-del considered
ROHs at least 1 Mb long and succeeded in detecting the
pathogenic regions in OI (chr8:21,471,941–23,622,382, rank = 32,
p = 0.0303) and F6 (chr2: 45,171,842–52,799,698, rank = 7,
p = 0.0303) patients. When considering ROHs of length between
±1.5 Mb of the lengths of the pathogenic regions, out of 4–
345 candidate variants, HDR-del successfully narrowed down
pathogenic variants to be ranked 2 (for F6) through 26 (for OI)

TABLE 2 | Ranking of known pathogenic variants of the Québec data set used in our eMSS method.

eMSS eMSS refinement

Patient Disease Chr Num Position m Rank P-value Position m P-value Gene

OI OI 8 5,628 20,884,737–24,359,279 294 2 0.015 22,022,749–22,052,894
(30.145 kb)

10 0.015 BMP1

F1 MIA 2 8,465 45,205,547–71,635,931 744 2 0.015 47,251,634–47,256,618
(4.984 kb)

4 0.030 TTC7A

F4 MIA 2 7,380 39,108,773–55,528,514 378 1 0.015 47,133,330–47,273,668
(140.358 kb)

11 0.015 MCFD2, TTC7A

F6 MIA 2 7,562 45,171,842–85,059,227 872 1 0.015 47,133,330–47,273,668
(140.358 kb)

8 0.015 MCFD2, TTC7A

F1 + F4 + F6 MIA 2 3,484 38,916,906–68,676,008 386 1 0.002 47,133,330–47,277,043
(143.713 kb)

9 0.002 MCFD2, TTC7A

OI, osteogenesis imperfecta; MIA, multiple intestinal atresia; Chr, chromosome; num, number of variants for the intersection of two sets ALSPAC and affected family; rank,
order of segmental score among sequence segments on chromosome 2 and 8, respectively; m, number of variants in the eMSS region.

TABLE 3 | Ranking of known pathogenic variants of the Pakistani data set to the OI disease used in our eMSS method.

eMSS eMSS refinement

Patient Chr Num Position m Rank P-value Position m P-value Gene

III-5 12 2,229 31,545,381–52,470,979 196 2 0.015 48,272,895–48,883,020
(610.125 kb)

8 0.015 VDR, SENP1, ASB8,
H1FNT

III-15 12 2,022 47,178,307–52,713,088 146 2 0.015 48,272,895–48,884,535
(611.640 kb)

9 0.015 VDR, SENP1, ASB8,
H1FNT

OI, osteogenesis imperfecta; Chr, chromosome; num, number of variants for the intersection of two sets ALSPAC and affected family; rank, order of segmental score
among sequence segments on chromosome 2 and 8, respectively; m, number of variants in the eMSS region.
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(Supplementary Table S3). When considering ROHs of length
between±0.5 Mb of the lengths of the pathogenic regions, out of
2–110 candidate variants, HDR-del successfully narrowed down
pathogenic variants to be ranked 1 (for F6) through 7 (for OI)
(Supplementary Table S3).

Except that eMSS flags shorter causal chromosomal regions,
eMSS succeeded in detecting a pathogenic region for OI and MIA
(F1, F4, and F6). However, we have fine-tuned the parameter
settings, such as window size, but HDR-del only succeeded in
detecting OI and F6.

Authentic Data Analyses—Pakistani
We also applied eMSS to other real data from Chinute, Pakistan
(Kausar et al., 2018). Blood samples were drawn from two related
individuals (patients III-5 and III-15) in the same family (Kausar
et al., 2018) with a reported VDR mutation responsible for OI.

Because the OI cases are from the same family, our study
considered two OI cases (patients III-5 and III-15) separately
versus 32 control individuals from the ALSPAC (Boyd et al.,
2013; Fraser et al., 2013) data set. For OI analysis, there were
around 2,000 SNPs (2,229 for patient III-5 and 2,022 for patient
III-15, Table 3) on chromosome 12 for the intersection of two
sets ALSPAC and OI. The significant sequence segment was
detected by patient III-5 (20,925 kb; 196 SNPs; P = 0.015,
Table 3), and patient III-15 (5,534 kb; 146 SNPs; P = 0.015,
Table 3), separately. In the eMSS refinement for patient III-5,
the sequence segment ranged over 610 kb on chromosome 12
(8 SNPs, P = 0.015, Table 3 and Supplementary Figure S6),
and the sequence segment ranged over 611 kb on chromosome
12 (9 SNPs, P = 0.015, Table 3 and Supplementary Figure S7)
for patient III-15. Thus, patients III-5 and III-15 detect the
same pathogenic region for OI with patient III-5 furnishing
the shortest region (Table 3 and Supplementary Figures S6,
S7). Mutations had been identified in the VDR gene on
chromosome 12 associated with recessive OI (Bernard et al., 2011;
Tetreault et al., 2011; Fahiminiya et al., 2015). Furthermore, we
successfully narrowed down the segment detected in our OI-
associated analysis. Supplementary Table S2 shows the three
top-ranked susceptibility regions across 22 chromosomes used in
our eMSS calculations.

We also applied the HDR-del (Imai-Okazaki et al., 2017)
approach using the same vcf files for case and control individuals
as in our eMSS method to compare the ability of identifying
susceptibility regions between eMSS and other region-specific
methods. As shown in Supplementary Table S4, out of 103–
122 candidate variants, HDR-del considered ROHs at least 7 Mb
long and succeeded in detecting the pathogenic regions in
patient III-5 (chr12: 34,175,508–52,404,618, rank = 5, p = 0.0303,
Supplementary Table S4) and patient III-15 (chr12: 45,410,075–
52,602,013, rank = 16, p = 0.0303, Supplementary Table S4).
When considering ROHs of lengths between ±1.5 Mb of
the lengths of the pathogenic regions, out of 2–11 candidate
variants, HDR-del successfully narrowed down pathogenic
variants to be ranked 1 (for patient III-5 and patient III-15)
(Supplementary Table S4). When considering ROHs of lengths
between ±0.5 Mb of the lengths of the pathogenic regions, out
of 2–4 candidate variants, HDR-del successfully narrowed down

pathogenic variants to be ranked 1 (for patient III-5 and III-15)
(Supplementary Table S4).

Although eMSS and HDR-del both successfully detected the
causal chromosomal regions of III-5 and III-15, the precision of
the two methods to determine the causal regions was not similar.
In the eMSS refinement, the candidate causal region flagged in
the eMSS can keep shrinking this region.

DISCUSSION

Our eMSS method converts p-values into continuous scores
and does not need to set segment sizes. The eMSS has several
advantages over existing HDR-based and MSS-based methods
(Lian et al., 2008; Lin et al., 2012, 2014; Imai et al., 2015, 2016;
Imai-Okazaki et al., 2017): (1) Our eMSS considers the whole
genome, not only regions of homozygosity in candidate genes. (2)
Most HDR-based and MSS-based approaches work with sliding
windows of a given size and additional parameters, such as
a minimum or maximum number of SNPs in a segment and
minimum length of a segment, and our approach does not require
such parameters. (3) Most MSS approaches have thresholds for
statistical significance setting. These settings may or may not
be optimal. (4) Since no additional parameters are set in the
segment detection, eMSS reduces the computational burden of
the region-specific approaches.

We drive the selection of ladder points by matching amino
acid sequences based on similarity scores (such as BLAST)
(Altschul et al., 1990; Karlin and Altschul, 1990; Karlin and
Dembo, 1992). In our study, the purpose of ladder points is to
form subsequences along the input marker sequence so that we
can calculate eMSS in each of the smaller regions. Using ladder
points helps us find the region with the highest score, which may
be the associated region to identify the disease. This also helps to
reduce the data dimensionality inherent in high-throughput data
caused by sequence data.

In our simulation study, we also replace Pi in Y i from a two-
sample t-test to a simple t-test for a difference in case and control
means. For a single case individual, by subtracting case value
from each control, the case–control group has a mean equal to the
difference between the control mean and the case. However, for
the control–control group, since the subtractor and subtrahend
are in random order, the mean of this group is not necessarily
zero; therefore, the HDR t statistic does not wind down to a
one-sample t-test. Actually our simulation had shown that the
one-sample t-test has much lower power due to the small sample
size. From our simulation result, in the L block and E haplotype
frequency pattern, we found that eMSS with the Pi obtained from
a one-sample t-test had much lower power (55.1%) compared to
96.2% from a two-sample t-test. Similarly, in the worst scenario
(i.e., H block and nE haplotype frequency pattern), eMSS with the
Pi obtained from a one-sample t-test showed a 59.8% decrease
in power down to 5.5%. Moreover, eMSS with the Pi obtained
from a one-sample t-test gave a slightly higher type I error.
Especially at H block and nE haplotype frequency pattern, eMSS
with the Pi obtained from a one-sample t-test had 11.5% type I
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error compared to 3.0% with the Pi obtained from a two-sample
t-test (Table 1).

Here, we demonstrate that, by applying eMSS, we can detect
the same pathogenic genes as those shown by Imai et al. (2015)
and Kausar et al. (2018). However, HDR-del (Imai-Okazaki et al.,
2017) also detected the same genes in our two patients, thus also
confirming our approach. Our eMSS method does not require
any prior assumptions or parameters. In contrast, HDR-del
defined an ROH as a sequence of homozygous variants bounded
by one or more single-nucleotide heterozygous variants (Imai-
Okazaki et al., 2017), which requires the following prerequisite
parameters, such as ROH distance and pathogenic regions.
Furthermore, the range of pathogenic regions detected by our
eMSS (ranged from 4 to 143 kb) are much shorter than those
detected by HDR-del (ranged from 2.04 Mb through 11.17 Mb)
in the Québec data set analysis. Of course, functional analysis
is the ultimate proof, but it has not been available in our
study. However, we are relieved that our eMSS method can
reduce variants to very small segments of potential pathogenic
variations. Our approach is very useful for clinicians who search
out disease-causing genes for their case individuals and also for
scientists who are trying to identify pathogenic variants through
functional analysis. In our Québec and Pakistani data set analyses,
we used ALSPAC as our control individuals. From ALSPAC as
control individuals, the BMP1 gene on chromosome 8 associated
with OI, the VDR gene on chromosome 12 associated with OI,
and the TTC7A gene on chromosome 2 associated with MIA
could be successfully detected by eMSS (Tables 2, 3). It is also
suitable for detecting associated segments with both common
and rare variants.

Osteogenesis imperfecta is a genetic disease characterized by
low bone mass, increased bone fragility, and recurrent fractures
(Marini et al., 2017). Autosomal recessive OI patients are
extremely rare, of which OI type XIII can be attributed to BMP1
gene mutations. BMP1was first identified in 2012 (Asharani et al.,
2012) as the disease-related gene of OI type XIII (OMIM 614856)
in families with progressively deforming bones. The OI type IV
is a clinical entity with autosomal dominant inheritance in type
1 collagen genes; collagen, type I, alpha 2 (COL1A2), and more
rarely, collagen, type I, alpha 1 (COL1A1) point mutation or
small deletion and short stature. Ayça et al. (2015) recalls the
role of the VDR anomalies in the development of the diseases
occurring with hereditary osteoporosis. The pathogenic region in
BMP1 and VDR can be detected successfully in our OI analysis.
Our eMSS can analyze rare disease one-case studies and is
very useful for detecting pathogenic regions related to specific
disease subtypes.

For MIA, our data set involved three case individuals (F1,
F4, and F6). We compared the results from consideration of
three MIA case individuals together and the consideration of
three MIA case individuals separately; we found the latter
consideration in the refinement could efficiently narrow down
the segment size (Table 2 and Supplementary Figures S1–S5).
Therefore, our eMSS method is more efficient when there is lower
variation in the analyzed data set.

In our Québec authentic data analysis, we combined 22
chromosomes in sequence data to detect segments potentially

containing pathogenic variants via our eMSS method, but the
most important sequence segment ranging from 20,884,737 to
25,042,515 bp on chromosome 8 cannot be detected in our OI
analysis. One of the possible reasons is that gene density varies
greatly among the chromosomes (Lander et al., 2001; Venter
et al., 2001; Payseur and Nachman, 2002). For example, sequence
data suggest that chromosome 19 has an average of 23 genes
per Mb, and chromosome 4 has averages only six genes per Mb
(Venter et al., 2001; Payseur and Nachman, 2002). If we used the
one-of-a-kind Pf settings to detect associated segments across 22
chromosomes in a sequence, pathogenic variation information
might be diluted. Hence, we suggest that researchers use our
eMSS method separately by chromosomes.

CONCLUSION

eMSS is based on association statistics (or p-values) not limited
to a particular test. On the other hand, an appeal of p-value–
based methods is that raw data is often not required. The eMSS
avoids predefined thresholds or window sizes in identification
of tentative association regions. On the contrary, HDR-del is
limited to a particular test and parameter settings to achieve
better detecting performance for causal regions.

HomozygosityMapper (Pippucci et al., 2014) provides
an online intuitive graphical interface that allows users to
interactively analyze NGS data for homozygosity mapping.
HomozygosityMapper is a sliding-window approach;
we need to set the length of the window size before
performing mapping. Generally, long ROH can be detected
(ROH > 1.5 Mb) by HomozygosityMapper (Pippucci et al.,
2014). HomozygosityMapper is better for longer sequences
(Pippucci et al., 2014). Thus, we only made power comparison
under the scenario with high-density haplotype blocks (100
blocks, including 302 SNPs, Supplementary Table S7). The
results show that HomozygosityMapper had lower power than
that obtained from eMSS and HDR-del (power = 77.8% for
eMSS, it’s 75% for HDR-del and 44% for HomozygosityMapper
in the E haplotype frequency pattern given AF = 0.001 shown
in Table 1 and Supplementary Table S7). In this study,
genotypes were simulated as 00, 01, and 11 under the VCF
format. HomozygosityMapper screens all samples for blocks of
homozygous genotypes in contiguous markers; that is, 00 and 11
are both considered to be homozygous (Pippucci et al., 2014).
That might be one of the reasons that HomozygosityMapper
had lower power than eMSS and HDR-del and high type I error
in our simulation study. HDR-del is the other homozygosity
mapping method, which prioritizes pathogenic chromosomal
deletions based on Hamming distance in exome sequencing.
HDR-del is also a sliding window approach, which can
narrow down true disease-related chromosomal deletion
regions by setting the window size. However, our eMSS
method expands previous homozygous mapping from the
candidate gene approach to the whole-genome sequence
and can detect disease-related segments without setting a
window size. Moreover, we found that the segments found
by eMSS are much shorter than those found by HDR-del
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(Table 3 and Supplementary Table S2) in our authentic
data analyses.

In Pakistani previously published results, Kausar et al. (2018)
report that a Wnt family member 1 (WNT1) mutation is
responsible for OI. However, there was only one SNP located in
the WNT1 on chromosome 12 for the intersection of two sets
ALSPAC and Pakistani in our authentic data set analysis. Hence,
eMSS cannot find significant segments located in the WNT1 in
our study. That is one of the limitations of using public data.

A limitation of our study is that eMSS requires control
individuals in addition to a single or a few case individuals in
our authentic data analyses. We used 32 control individuals as
a compromise between cost and efficiency, which proved to be
adequate for the given data. Applied to our case individuals and
corresponding control individuals, the eMSS method narrowed
down the length of the pathogenic sequence segment more than
the previous region-specific method (Lin et al., 2014). Although
based on few observations, these results are encouraging and
demonstrate the potential of our approach. We implemented our
program in R and make it available for free. It is easy to use and
does not require expertise in computer science. The OI analysis
contains one case and 32 controls; our eMSS performs whole-
genome sequence analysis without a sliding window, thereby
overcoming the computational burden of a genome scan due
to the sliding window-based method. When we conduct whole-
genome sequence analysis with Intel(R) Xeon(R) CPU E3-1230
V2 at 3.30 GHz (24 GB RAM), the computing time of the eMSS
analysis was 6 min. On the other hand, HDR-del took 10 min.
Hence, eMSS used 3/5 the computation time of HDR-del analysis.
Our approach is computationally more efficient than HDR-based
methods (Imai et al., 2016; Imai-Okazaki et al., 2017). As far as we
know, there are no other pieces of software comparable to ours.
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