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In this report, we present a patient with brain alterations and dysmorphic features 
associated with chromosome duplication seen in 4p16.3 region and chromosomal deletion 
in a critical region responsible for Cri-du-chat syndrome (CdCS). Chromosomal microarray 
analysis (CMA) revealed a 41.1 Mb duplication encompassing the band region 4p16.3–p13, 
and a 14.7 Mb deletion located between the bands 5p15.33 and p15.1. The patient’s 
clinical findings overlap with previously reported cases of chromosome 4p duplication 
syndrome and CdCS. The patient’s symptoms are notably similar to those of CdCS 
patients as she presented with a weak, high-pitched voice and showed a similar 
pathogenicity observed in the brain MRI. These contiguous gene syndromes present with 
distinct clinical manifestations. However, the phenotypic and cytogenetic variability in 
affected individuals, such as the low frequency and the large genomic regions that can 
be  altered, make it challenging to identify candidate genes that contribute to the 
pathogenesis of these syndromes. Therefore, systems biology and CMA techniques were 
used to investigate the extent of chromosome rearrangement on critical regions in our 
patient’s phenotype. We identified the candidate genes PPARGC1A, CTBP1, TRIO, TERT, 
and CCT5 that are associated with the neuropsychomotor delay, microcephaly, and 
neurological alterations found in our patient. Through investigating pathways that associate 
with essential nodes in the protein interaction network, we discovered proteins involved 
in cellular differentiation and proliferation, as well as proteins involved in the formation and 
disposition of the cytoskeleton. The combination of our cytogenomic and bioinformatic 
analysis provided these possible explanations for the unique clinical phenotype, which 
has not yet been described in scientific literature.
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BACKGROUND

Cri-du-chat syndrome (CdCS; OMIM #123450) is a genetic condition caused by a deletion 
in the short arm of chromosome 5. The phenotype is characterized by a cat-like cry, microcephaly, 
facial dysmorphism, psychomotor delays, and intellectual disability (Nguyen et  al., 2015). 
Deletions, which occur at the end of the chromosome, as well as interstitial which result 
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after two breaks, compose 80–90% of CdCS cases (Cerruti 
Mainardi, 2006). Unbalanced parental translocation occurs in 
approximately 10–15% of patients (Perfumo et al., 2000; Cerruti 
Mainardi, 2006). In addition, complex rearrangements, such 
as mosaicism, de novo translocation, or ring chromosomes, 
account for less than 10% of the cases (Perfumo et  al., 2000). 
Wolf-Hirschhorn syndrome (WHS; OMIM #194190) is a 
contiguous gene deletion syndrome on the short arm of 
chromosome 4. It is characterized by facial dysmorphia, growth 
retardation, intellectual incapacity, and seizures (Zollino et al., 
2008). However, duplication of the WHS critical region is a 
rare chromosomal condition causing mild clinical phenotypes, 
such as speech delay, facial dysmorphia, seizures, and delayed 
neuro and psychomotor development (Patel et al., 1995; Hannes 
et  al., 2010; Carmany and Bawle, 2011; Cyr et  al., 2011). 
However, the phenotypic and cytogenetic variability in affected 
individuals, such as the low frequency and the large genomic 
regions that can be  altered, make it challenging to identify 
the candidate genes that contribute to the pathogenesis of 
these syndromes.

Here, we present an individual with duplication in the 4p16.3 
region and deletion in the 5p15.2 region. The altered chromosomal 
segments are located in the critical regions of WHS and CdCS, 
respectively. This study reports a case never highlighted before 
in the literature. Systems biology and CMA were used to 
investigate the impact of chromosome rearrangement on critical 
regions in our patient’s phenotype.

CASE PRESENTATION

A 5-day-old female was referred for investigation of 
congenital abnormalities such as imperforate anus and 
rectovaginal fistula, as well as atrial septal defect. Family 
history is noteworthy as it highlights consanguineous parents, 
and a brother who died with similar clinical presentation 
of imperforate anus, congenital heart defect, and clubfeet 
(Figure  1A). The pregnancy of the patient was uneventful, 
and the girl was born at home at the gestational age of 
36  weeks, weighing 2,160  g, and a total length of 39  cm. 
On her first physical examination in our center, she had 
a low weight (2,045  g), down slanting palpebral fissures, 
short palpebral fissures, ptosis, widely spaced eyes, thin 
upper lip, clubfeet, overlapping fingers, micrognathia, and 
a high-pitched cry. Neurological examination was extraordinary 
as there was hypertonia of extremities and an absence of 
the Moro reflex. At the age of 1 month, the patient suffered 
seizure episodes with eye deviation that were controlled 
with phenobarbital drugs. In the electroencephalogram, 
acute wave discharges with multifocal distribution were 
observed in both hemispheres with predominance over the 
left temporal region. The brainstem illustrated that there 
was auditory potential; however, the scan showed 
abnormalities within the visual region. A brain MRI 
performed at the age of 5  months showed a thin corpus 
callosum, white matter volume loss, pontine hypoplasia, 
and dysgenesis of the cerebellar vermis (Figures  1B,C). 

Despite this, myelination was in accordance with her age. 
After being subjected to surgical procedures which had 
no complications, she was discharged at the age of 5 months 
and 25  days. Although the patient had a tracheostomy 
and a nasoenteral tube, she was, clinically, in a 
stable condition.

Karyotyping identified typical patterns of GTG bands in 
the mother (46,XX), and paternal reciprocal translocation 
with breakpoints in 4p16.3 and 5p15.2 regions [46,XY,t(4;5)
(p16.3;p15.2)]. The proband was identified with 4p16.3–p13 
trisomy and 5p15.33–p15.2 monosomy [46,XX,der(5) t(4,5)
(p16.3;p15.2)pat]. Fluorescence in-situ hybridization (FISH) 
analysis confirmed three fluorescence signals for the 4p16.3 
band, and only one fluorescence signal in the 5p15.2 proband. 
CMA revealed duplication in chromosome 4 (41.1  Mb) 
encompassing the bands 4p16.3–p13. The approximate genomic 
position was defined in chr4:71552–41263831 (GRCh38/hg38), 
comprising 198 genes (Figure  2A). Chromosome 5 was 
outlined with a deletion of 14.7  Mb located between the 
bands 5p15.33 and p15.1. The genomic position was estimated 
in chr5:269963–15032936 (GRCh38/hg38), comprising 50 
genes (Figure  2B).

LABORATORY INVESTIGATIONS

Cytogenetic Studies
Karyotyping was performed on metaphase spreads prepared 
from peripheral blood samples. The chromosomal analysis 
was conducted through GTG banding at a 550-band resolution, 
and at least 100 cells were analyzed. FISH experiments were 
performed following standard techniques with commercially 
available locus-specific probes such as a dual-color commercial 
probe for the CdCS and WHSCR (Cytocell, UK). The CTNND2 
probe for 5p15.2 (red spectrum) contains a sequence 
homologous to the D5S2883 locus and covers approximately 
159 kb of this locus. The probe for the 4p16.3 (red spectrum) 
contained a sequence that was homologous to the D4S166 
locus and covered approximately 223  kb of this locus. At 
least 30 cells were analyzed per hybridization. The sample 
was mapped using CMA, using a 60-mer oligonucleotide-
based microarray with a theoretical resolution of 40  kb 
(8  ×  60  K, Agilent Technologies Inc., Santa Clara, CA, USA). 
The arrays were analyzed using a microarray scanner (G2600D) 
and feature extraction software (version 9.5.1, Agilent 
Technologies). The images were analyzed using Cytogenomics 
v2.0 and v2.7 with the statistical algorithm ADM-2 and a 
sensitivity threshold of 6.0.

Network Design
The protein-protein interaction (PPI) metasearch engine 
STRING 11.0 (http://string-db.org/) was used to create PPI 
networks based on deleted or duplicated genes located in the 
altered chromosomal regions. CMA, with a subsequent search 
in the UCSC genome browser of the human genome assembly 
(December 2013), retrieved 591 genes and predicted genes 
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belonging to the duplicate area, as well as 246 from the 
deleted region (Kent et  al., 1976; von Mering et  al., 2005). 
The parameters used in STRING were: (i) degree of confidence, 
0.400; (ii) 500 proteins in the first and second shell; and (iii) 
methods used were neighborhood, experiments, databases, 
and co-occurrence. The final PPI network was obtained 
through STRING and analyzed using Cytoscape 3.7.0 
(Shannon et  al., 2003).

GO and Centralities Analysis
The Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and Reactome libraries were searched 

using the ClueGO Cytoscape plugin (Bindea et  al., 2009). 
Significant GO predictions were selected based on a p  ≤  0.05, 
with the Bonferroni family-wise false discovery rate (FDR)  
test. Node degree and betweenness centralities were measured 
to identify hub-bottleneck (H-B) nodes from the PPI  
network using the Cytoscape plugin and CentiScaPe 3.2.1 
(Scardoni et  al., 2009).

Molecular Pathway Reconstruction
The PathLinker Cytoscape plugin was used to identify and 
reconstruct possible signaling pathways of interest from our 
PPI network (Murali et  al., 2017). PathLinker computes the 

A

B C

FIGURE 1 | (A) Patient’s pedigree. A recessive trait was initially suspected on the basis of the parental consanguinity with recurrence in the offspring. The 
proband’s father (individual III.3) was a carrier of a balanced chromosomal translocation. (B) Transverse FLAIR image. Notice the white matter volume loss (asterisk). 
(C) Sagittal T1 weighted image showing thin corpus callosum (arrowhead) and pontine hypoplasia with dysgenesis of the cerebellar vermis (arrow).

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Corrêa et al. Trisomy 4p16.3 and Monosomy 5p15.2

Frontiers in Genetics | www.frontiersin.org 4 June 2020 | Volume 11 | Article 561

k shortest paths that connect any source to any target in 
the network, and subsequently generates a subnetwork. 
It also creates a table with a rank of the shortest  
paths (Murali et  al., 2018). The deleted gene network in 
the Cri-du-chat region (CdCR-Net) was used as a background, 
and the H-B CCT5, TERT, and TRIO were used as a  
source and targets for paths calculations. The parameters 
used in PathLinker were: (i) k: 50 (number of paths the 
user seeks); (ii) edge penalty: 1; and (iii) edge weight: weight 
probabilities, whereby it considers the edge weights as 
multiplicative, which result in the k highest cost paths 
(Murali et  al., 2017).

DISCUSSION

Here, we  have presented a patient with brain alterations and 
dysmorphic features resulting from chromosomal deletion 
in the critical region related to CdCS and duplication in 
the critical region related to WHS. The patient’s clinical 
findings overlap with previously reported cases of both 4p 
duplication syndrome and CdCS (Table  1). Overall, the 
patients presentation is notably similar to CdCS patients as 
she presented with a weak, high-pitched voice and also 

showed similar pathogenicity observed in the brain MRI. 
Furthermore, the patient’s anorectal malformations are also 
similar to what can be  observed in certain cases of CdCS 
(Marcelis et  al., 2011). Nevertheless, she presents with some 
features that are common to both conditions discussed, or 
those more frequently described in patients with abnormalities 
of the critical region of WHS.

To identify possible candidates that could help explain 
this scenario, a centrality analysis was carried out to identify 
H-B. These proteins represent nodes with high degree and 
betweenness scores, which are frequently related to the control 
of information flow between groups of proteins with central 
functions in a biological network (Hahn and Kern, 2005; 
Scardoni et  al., 2009).

Two H-B were identified in the WHR-Net (Supplementary 
Figure S1A). The H-B PPARGC1A is a transcriptional 
coactivator of a subset of genes related to oxidative 
phosphorylation, which regulate glucose and lipid metabolism, 
mitochondrial biogenesis, and muscle fiber development 
(Terada et  al., 2002; Tunstall et  al., 2002; Puigserver and 
Spiegelman, 2003; Finck et  al., 2006). As expected, and 
through the enrichment analysis, PPARGC1A was found to 
be associated with the regulation of progesterone synthesized 
in the biosynthetic pathway (Supplementary Figure S1B). 

A

B

FIGURE 2 | (A) Cytogenomic profile of the region of chromosome 4 duplication. Segment duplicated highlighted in blue rectangle. UCSC-Genome Browser-
Dec.2013 (GRCh38/hg38) – genomic position/search term: chr4:71552-41263831 – track: GENCODE V29. (B) Cytogenomic profile of the deleted region of 
chromosome 5. Segment deleted highlighted in red rectangle. UCSC-Genome Browser-Dec.2013 (GRCh38/hg38) – genomic position/search term: chr5:269963-
15032936 – track: GENCODE V29. Orange squares are genes considered H-B.
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The deregulation of transcription and mitochondrial function 
caused by PPARGC1A is associated with conditions such 
as amyotrophic lateral sclerosis, Parkinson’s disease, 
Alzheimer’s disease, and Huntington’s disease (Weydt et  al., 
2006; Eschbach et  al., 2013; Jesse et  al., 2017). Additionally, 
the second H-B, CTBP1 plays a role in the regulation of 
gene expression during embryonic development, as well as 
participation in axial patterning and cellular proliferation 
and differentiation (Hildebrand and Soriano, 2002; Van 
Hateren et  al., 2006). A de novo heterozygous missense 
mutation in the CTBP1 (R331W) causes hypotonia, 
developmental delay, ataxia, and intellectual disability (Beck 
et  al., 2016, 2019). As heterozygous null variants of CTBP1 
are commonly found in unaffected individuals, gain of 
function rather than loss of function mechanisms are more 
likely to be  associated with these clinical findings (Beck 
et al., 2019). Moreover, PPARGC1A and CTBP1 are duplicated 
in the 4p region in the patients with neuropsychomotor 
delay, intellectual disability, and speech delay (Figure  2A; 
Cotter et al., 2001; Paskulin et al., 2009; Carmany and Bawle, 
2011). Consequently, topological analysis indicates that the 
increased dosage of the PPARGC1A and CTBP1 genes may 
have contributed to the neuropsychomotor delay and 
neurological alterations found in our patient (Table  1).

TRIO, TERT, and CCT5 were identified as H-B in the 
CdCR-Net (Supplementary Figure S2A). TRIO has functions 
in cell migration and morphogenesis during cerebellum 
development, including neurite and axon outgrowth 

(Briancon-Marjollet et al., 2008; Peng et al., 2010; Tao et al., 2019). 
Trio knockout causes reduction in the extension of granule 
neurons from the cerebellum and severe ataxia in mice 
(Peng et al., 2010). Furthermore, the TRIO haploinsufficiency 
in mice increases anxiety; impairs sociability and motor 
coordination, disrupts learning capacity and spatial memory, 
and decreases brain and neuron size (Zong et  al., 2015; 
Katrancha et  al., 2019). In this sense, the hemizygosity 
of TRIO may have contributed to the clinical findings in 
our patient at the age of 5  months, such as the thin 
corpus callosum, white matter volume loss, pontine 
hypoplasia, and dysgenesis of the cerebellar vermis 
(Figures  1B,C).

Moreover, damages in spatial memory are associated with 
TERT as its knockout in the hippocampus of adult mice 
impairs spatial memory processes during neural development 
(Zhou et  al., 2017). The deficiency of TERT may also result 
in microvascular dysfunction in mice (Ait-Aissa et al., 2018). 
Furthermore, we found that TERT was associated with the 
negative regulation of apoptotic processes of endothelial 
cells in GO analysis (Supplementary Figure S2B). In addition, 
TERT shows interaction with CCT5  in the Y2H library 
screen (Wang et  al., 2013). The H-B CCT5 is involved in 
cilia morphogenesis and survival of sensory neurons 
(Posokhova et  al., 2011). Mutations in this gene may cause 
neurodegenerative diseases, such as spastic paraplegia and 
sensory neuropathy (Bouhouche et  al., 2006; Pavel et  al., 
2016; Pereira et  al., 2017). Additionally, TERT and CCT5, 
located in the critical region of CdCS, are associated with 
microcephaly and intellectual disability, reported in patients 
from several other studies (Figure  2B; Cerruti Mainardi, 
2006). In this sense, deletion of TERT and CCT5 genes 
could be  involved with psychomotor retardation and 
microcephaly as presented in the present case (Table  1).

To investigate the importance of the H-B from CdCR-Net 
and their associated pathways (Figure  3A), we  identified 
TRIO, GNG2, PRKACA, TUBA1A, and CCT5 as having 
the highest path score (Figure  3B). These proteins are 
involved in signaling mechanisms, including differentiation 
and proliferation, as well as roles in the formation and 
disposition of the cytoskeleton (Yajima et  al., 2012; Tseng 
et  al., 2017). In the latter case, TRIO, TUBA1A, and CCT5 
play roles in the folding of actin and tubulin; reorganization; 
and assembly of the cytoskeleton during migration, growth, 
and differentiation of neurons (Seipel et  al., 1999; Tian 
et  al., 2010; Tracy et  al., 2014). Genes that contribute to 
a common disorder tend to share core bioprocesses 
(Figure  3C; Goh et  al., 2007). For instance, the chaperonin 
complex, CCT, which is also formed by the subunit CCT5, 
facilitates the formation of the heterodimeric form of the 
G-protein gamma subunits, similar to the GNG2 protein 
(Lukov et  al., 2005). The formation of tubulin folding 
intermediates is also produced by CCT, in which unfolded 
actins and tubulins, such as TUBA1A are transferred to 
cytosolic chaperonin CCT (Frydman et al., 1992; McCormack 
et  al., 2001). Interestingly, mutations or loss function of 
TRIO, TUBA1A, and CCT5 is associated with intellectual 

TABLE 1 | Comparison of the clinical manifestations of this patient, and 
previously reported patients with Cri-du-chat syndrome and Trisomy 4p 
syndrome.

Clinical 
manifestations

This patient Cri-du-chat 
patients (Honjo, 
2018; Mainardi, 

2001)*

Trisomy 4p patients 
(Patel et al., 1995; 

Dallapiccola, 
1977)*,**

Imperforate anus Present − −
Preterm birth Present + +
Micrognathia Present ++ +
Low birth weight Present + +
Psychomotor 
retardation Present ++ ++
Downslanting 
palpebral fissures Present ++ ++
Widely spaced 
eyes Present ++ +
Abnormalities of 
the fingers Present ++ ++
Prominent heels Present − ++
Weak, high-
pitched voice Present ++ −
Growth deficiency Present ++ ++
Seizures Present + +
Microcephaly Present ++ ++
Pontine hypoplasia Present ++ −

++, presence of the manifestation in 50% or more of the patients; +, presence of the 
manifestation in more than 10%, but less than 50% of the patients; −, not frequently 
reported. *Based on overall reported frequencies in patients with variable chromosomal 
breakpoints. **Most previously reported trisomy 4p patients also have other 
chromosomal imbalances and variable breakpoints.
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disability, defects in dendritic branching, synapse function, 
sensory neuropathy, and microcephaly in humans (Bouhouche 
et  al., 2006; Morris-Rosendahl et  al., 2008; Kumar et  al., 
2010; Ba et al., 2016; Pavel et al., 2016; Pengelly et al., 2016; 
Belvindrah et  al., 2017).

Essential human genes are expected to encode central 
proteins, such as the H-B genes, and be expressed in different 
tissues (Goh et  al., 2007; Loscalzo and Barabasi, 2011).  

The haploinsufficiency of the H-B genes observed in our 
PPI-network could affect pathways related to the cilia 
morphogenesis, dendritic branching, and synapse function, 
including neurite and axon outgrowth, which consequently 
could have led to the neurodevelopment delay and 
microcephaly observed in our patient. In addition, the 
identification of CTBP1, PPARGC1A, CCT5, TERT, and 
TRIO with different approaches brought new insights on 

A

C

B

FIGURE 3 | (A) Signaling pathway identified between H-B (TRIO, CCT5, and TERT), using the Pathlinker plugin. (B) Pathway better ranked by path score between 
50 possible pathways. (C) Enrichment analysis in proteins present in the pathway (TRIO, GNG2, PRKACA, TUBA1A, and CCT5).
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the pathogenesis involved in these rare chromosomal 
rearrangements, such as those presented here, in a case 
never reported before.
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