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Livestock breeding has shifted during the past decade toward genomic selection. For

the estimation of breeding values in purebred breeding schemes, genomic best linear

unbiased prediction has become the method of choice. Systematic crossbreeding with

the aim to utilize heterosis and breed complementary effects is widely used in livestock

breeding, especially in pig and poultry breeding. The goal is to improve the performance

of the crossbred animals. Due to genotype-by-environment interactions, imperfect

linkage disequilibrium, and the existence of dominance and imprinting, purebred and

crossbred performances are not perfectly correlated. Hence, more complex genomic

models are required for crossbred populations. This study reviews and compares such

models. Compared to purebred genomic models, the reviewed models were of much

higher complexity due to the inclusion of dominance effects, breed-specific effects,

imprinting effects, and the joint evaluation of purebred and crossbred performance data.

With the model assessment work conducted until now, it is not possible to come to

a clear recommendation as to which existing method is most suitable for a specific

breeding program and a specific genetic trait architecture. Since it is expected that a

superior method includes all the different genetic effects in a single model, a dominance

model with imprinting and breed-specific SNP effects is proposed. Further progress

could be made by assuming realistic covariance structures between the genetic effects

of the different breeding lines, and by using larger marker panels and mixture distributions

for the SNP effects.

Keywords: genomic selection, genomic models, livestock, crossbreeding, heterosis

INTRODUCTION

The crossing of different lines or breeds is widely used in animal breeding with the main
aim to produce superior offspring. This superiority results from heterosis and from breed
complementary effects. Continuous and discontinuous crossbreeding schemes have been designed
and are implemented in various livestock species (Lopez-Villalobos et al., 2000; Samorè and
Fontanesi, 2016). In discontinuous schemes, crossbred animals are used solely for production and
are not selected as parents of the next generation. Breeding takes place in the parental breeds
and the breeding goal is usually to improve crossbred performance. The level of organization in
such a system is high and it is sometimes difficult to utilize by-products, such as male offspring of
mother lines. These schemes can be predominantly found in livestock species with a high female
reproduction rate such as pigs and poultry. In continuous breeding schemes, the female crossbreds
are used as parents to breed the next generation. These systems are sometimes implemented in
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livestock species with a low female reproduction rate such
as cattle. Since there are substantial non-additive effects for
reproduction traits in dairy cattle (Jiang et al., 2017), the aims of
crossbreeding in dairy cattle are to improve reproduction traits
and other functional traits by exploiting heterosis and imprinting
and by removing inbreeding depression (Sørensen et al., 2008;
Buckley et al., 2014).

A further form of crossbreeding is the upgrading of
low-performance breeds with high-yielding breeds. This
introgression of genes from high-yielding breeds increases
the production level in subsequent generations and reduces
inbreeding depression by increasing the genetic diversity of the
low-performance breed. This breeding system has frequently
been applied to local breeds, such as the German Vorderwald
cattle (Hartwig et al., 2014, 2015). However, if upgrading is
repeated over several generations, then the breed eventually
goes extinct because the native alleles are removed from its gene
pool. The formation of a synthetic breed can also be seen as
a special form of crossbreeding. A well-known example is the
establishment of the so-called Schwarzbuntes Milchrind in the
former East Germany (Freyer et al., 2008).

Livestock breeding has shifted toward genomic selection,
which is now frequently implemented in large pure breeds.
The core of the system that has been implemented in pure
breeds is a reference population that consists of genotyped and
phenotyped animals. The phenotypes are either the animal’s
own performance records, or deregressed conventional breeding
values. The reference population is needed for the prediction of
marker effects. The marker effects are then used for predicting
genomic breeding values of the genotyped selection candidates.
The reliability of genomic breeding values depends on the size of
the reference population, on the effective number of chromosome
segments, and on the method used for the prediction of marker
effects (Goddard, 2009).

Extensive research has been dedicated to develop statistical
models for the prediction of marker effects. These statistical
models include the SNP-BLUP model that assumes normally
distributed SNP effects, various Bayesian models that assume
more heavy-tailed distributions, as well as non-parametric
and semi-parametric models (Meuwissen et al., 2001; Gianola,
2013). More complex models assume different SNP variances,
depending on the type of control region the SNP belongs
to MacLeod et al. (2016). Some models avoid the prediction
of marker effects by building a genomic relationship matrix
based on SNP genotypes. The most prominent method based
on genomic relationships is GBLUP, which is an equivalent
model to SNP-BLUP (VanRaden, 2008; Goddard, 2009). The
genotyped selection candidates are included in the model, and
their genomic breeding values are calculated by utilizing their
genomic relationships with the reference population. GBLUP
assumes that all animals are genotyped, which is in general
not the case. Therefore, the genomic breeding values are
blended in a second step with pedigree-based breeding values to
obtain genomically enhanced breeding values on which selection
decisions are based. This two-step procedure can be avoided
with so-called single-step GBLUP models (ssGBLUP). They
were developed as extensions of GBLUP. Single-step models

include genotyped and non-genotyped animals simultaneously
(Legarra et al., 2009, 2014; Aguilar et al., 2010; Christensen
and Lund, 2010) and assume a particular covariance structure
for the breeding values that is computed from genomic and
pedigree-based relationships. Fernando et al. (2014) extended
the single step model toward non-normally distributed marker
effects. In purebred routine application mostly additive effects
are considered, with dominance being an integral part of the
estimated breeding values. Some genomic models were extended
toward accounting for dominance explicitly, but this increased
the realibilities of the breeding values only slightly (Su et al., 2012;
Wellmann and Bennewitz, 2012; Azevedo et al., 2015).

To summarize, it seems that in practical purebred genomic
evaluations, GBLUP and ssGBLUP have and will become the
models of choice, and non-additive gene effects are usually
not an issue. The picture is however somewhat different if
data from crossbred animals in combination with the parental
purebred data is analyzed. The potential applications of genomic
models with non-additive genetic effects have been reviewed
by Varona et al. (2018). The main breeding goal is in this
case to improve the performance of the crossbred animals.
Due to genotype-by-environment interaction, imperfect LD, and
the existence of dominance, epistasis and imprinting, purebred
and crossbred performances (PP and CP, respectively) are not
perfectly correlated (e.g., Wei and van der Werf, 1995; Dekkers,
2007; Zumbach et al., 2007; Duenk et al., 2019). Wientjes
and Calus (2017) reviewed existing literature about purebred-
crossbred correlations in pigs. The average from 201 reported
correlation coefficients was 0.63 with 50% of the reported
coefficients being between 0.45 and 0.87. The purebred-crossbred
correlation affects the optimal design of the reference population
(van Grevenhof and van der Werf, 2015) and the choice of an
appropriate genomic model.

While genomic models are well-established for pure breeds,
much research has been conducted in the recent years to develop
genomicmodels for the analysis of crossbred data. The aim of this
study is to review genomic models for the prediction of crossbred
performance that were recently developed and were evaluated
either using simulated or real crossbred data.

GENOMIC MODELS

Genomic models for crossbred data are extensions of purebred
models. The extensions were made in several directions. Most
genomic models for the analysis of crossbred data are developed
for two-way crosses. A two-way crossX is created from a sire line
A and a dam line B, which are usually not inbred. The pure lines
have breeding values aA and aB for PP, and breeding values cA
and cB for CP. Typically, some animals are genotyped, whereas
others are not. The goal is to obtain accurate predictions of the
breeding values for CP by utilizing phenotypic information from
genotyped and ungenotyped purebred and crossbred animals. An
overview over the considered models is given in Table 1.

The SNP alleles are usually assumed to be biallelic, so they
may be coded as alleles 1 and 2. Most authors use centered allele
content matrices as proposed by VanRaden (2008). The centering
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TABLE 1 | Additive and dominance models for the prediction of crossbred

performance.

Data requirements

Phenotyped Genotyped

crossbreds crossbreds

Additive

Models

Parental Model x

BSAM/ASGM x x

Single step x (x)

Dominance

Models

Line-independent (x) (x) Provide more

accurate

breeding

values for CP

than additive

models

Line-dependent (x) (x)

Dominance + Imprinting x x

(x) not necessarily needed but can be utilized.

does not affect the predictions, but affects the model-based
reliabilities (Strandén and Christensen, 2011). We denote with

ZA
G = GA − 2PA

the centered allele content matrix for the genotyped animals from
lineA, whereby the allele content GA

im ∈ {0, 1, 2} of animal i from
line A is the number of copies of allele 2, animal i has at SNP m,
and PAim is the frequency of allele 2 of SNPm in lineA. Moreover,
we denote with

ZA
X = GA

X − PA

the centered allele origin matrix for alleles from cross X that
originate from line A. That is, GA

X im ∈ {0, 1} is the number of
copies of allele 2, crossbred animal i has obtained from sire line
A at SNPm. These matrices are needed to define genetic values of
purebred and crossbred animals. The vector with breeding values
for CP for animals from lineA has the representation

cA = ZA
G αA, (1)

where αA is the vector with allele substitution effects for CP. The
vector with breeding values for PP has the representation

aA = ZA
G α̃A, (2)

where α̃A is the vector with allele substitution effects for PP. The
equations for aB and cB are similarly.

Most genomic models for two-way crosses utilize, that the
vector aX with additive genetic values of the crossbred animals
can be decomposed into a contribution cA

X
that comes from sire

line A, and a contribution cB
X

that comes from dam line B.
That is,

aX = cA
X
+ cB

X
, (3)

where

cA
X

= ZA
X

αA, and cB
X

= ZB
X

αB .
(4)

The contribution cA
X

from line A can be further decomposed
into a contribution that comes from the breeding values cA for
CP, and into a vector mA

X
that contains the Mendelian sampling

terms of the transmitted gametes (Wei and van der Werf, 1994).
That is,

cA
X

= 0.5 ZXAcA +mA
X
, (5)

where matrix ZXA assigns animals from line A to their
crossbred offspring.

Different models have been developed for predicting CP,
which can broadly be classified into additive models and
dominance models. While some models predict the breeding
values for CP directly with Equation (5), others predict the vector
αA with allele substitution effects for CP. In the latter case, the
estimated breeding values ĉA for CP in line A are obtained by
substituting αA with the prediction α̂A in Equation (1).

Additive Models
Different additive models have been proposed in the literature.
Some models assume that the crossbred animals are genotyped,
whereas others do not. The general additive model for a two-
way cross is a trivariate model that has two equations for
the parental lines, and one equation for the cross. It has the
general representation

yA = XAbA + ZAuA + aA + EA

yB = XBbB + ZBuB + aB + EB

yX = XX bX + ZX uX + . . . + EX ,

where yA, yB , yX are vectors with phenotypic records of the
respective subpopulation, bA, bB , bX are vectors of fixed effects
with design matrices XA,XB ,XX , and uA, uB , uX are vectors
of non-genetic random effects with design matrices ZA,ZB ,ZX .
Finally, aA, aB are the breeding values for PP, and EA,EB ,EX are
the residual terms. The term “. . . ” in the third equation depends
on the respective model.

The first two model equations are needed because PP and
CP are genetically correlated (Wientjes and Calus, 2017), so
phenotypic records of purebred animals increase the reliabilities
of the breeding values for CP.

The Parental Additive Model
The parental additive model is based on Equations (2), (3), and
(5), and is suitable when the crossbred animals are not genotyped.
The model assumes that the Mendelian sampling terms are part
of the residuals, so the model equations become

yA = XAbA + ZAuA + aA + EA

yB = XBbB + ZBuB + aB + EB

yX = XX bX + ZX uX + 0.5 ZXAcA + 0.5 ZXBcB + EX ,

where aA = ZA
G α̃A, aB = ZB

G α̃B , cA = ZA
G αA, and

cB = ZA
G αA.
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The BSAM and ASGM Model
The model with breed-specific allele effects (BSAM) and the
model with breed-independent allele effects, which is also called
the across-breed SNP genotype model (ASGM) are based on
Equations (2–4), and require that the crossbred animals are
genotyped. While the ASGM model predicts one effect per SNP,
the BSAM model predicts one effect for the paternal allele, and
one for the maternal allele of the crossbred animals. Origin-
specific allele effects may occur e.g., due to a different LD pattern
between the marker and the QTL, different gene frequencies
at the QTL, imprinting effects, or the epistatic effects may be
different in the pure breeds. This results in different effects of the
marker alleles and thus affects the estimated breeding values.

The first two equations of the BSAM and ASGMmodel are as
above, whereas the third model equation becomes for the BSAM

yX = XX bX + ZX uX + ZA
XαA + ZB

XαB + EX .

An equivalent representation for the ASGMmodel is

yX = XX bX + ZX uX + aX + EX .

Ibánez-Escriche et al. (2009) predicted CP of the parental lines
from genotyped crossbred animals with BSAM and ASGM,
whereby the breed-specific allele substitution effects of the BSAM
model were a priori independent. The allele substitution effects
were estimated with BayesB, which is a method that assumes that
many of them are actually zero. An oligogene trait was simulated
with breed-independent QTL effects. Although the SNP effects
are expected to be breed-specific due to differences in LD between
markers and QTL, the authors found that the BSAM model
outperformed ASGM only if the number of markers was low,
the number of records for training was high, and if the parental
breeds were distantly related.

Lopes et al. (2017) used the BSAM model with normally
distributed SNP effects to predict breeding values for CP from
crossbred data, and compared the results with conventional
GBLUP. The model provided similar prediction accuracies as
conventional GBLUP for the traits litter size and gestation
length in pigs. It may be not superior to GBLUP because the
allele substitution effects of the different breeds were implicitly
assumed to be uncorrelated, which is an assumption that is not
likely to be fulfilled.

Sevillano et al. (2019) extended the BSAM and ASGM model
toward a three-way cross and distinguished SNP that showed
a strong trait association from all remaining SNP. For the trait
associated SNP breed-specific effects were estimated, whereas for
the remaining SNP one effect was estimated, regardless of the
allele origin. This model was compared with the BSAM model
and with the ASGM model for the trait daily gain by assuming
normally distributed SNP effects. Purebred as well as crossbred
data was used for training. The results showed a superiority of
their method only if the estimated genetic correlations between
PP and CP for the trait associated SNPs and the remaining SNPs
were unequal.

Vandenplas et al. (2017) derived equations for predicting the
reliability of genomic breeding values for CP for BSAM and
ASGM models and assumed normally distributed SNP effects.

The authors found that BSAM outperformed ASGM for a specific
parental line, if the effective number of chromosome segments in
the crossbred reference animals that originate from the parental
line is less than half the effective number of all chromosome
segments that are independently segregating.

Additive Single Step Model
While BSAM has the disadvantage that all crossbred animals
have to be genotyped, the parental additive model has the
disadvantage, that the information provided by the Mendelian
sampling terms cannot be utilized for prediction. These problems
could be resolved by using a trivariate model of the form

yA = XAbA + ZAuA + aA + EA

yB = XBbB + ZBuB + aB + EB

yX = XX bX + ZX uX + cAX + cBX + EX

that includes both, genotyped and phenotyped animals.
Christensen et al. (2014) derived the joint covariance matrix AA

of cA
X
, cA, and aA by using the pedigree-based model of Wei and

van der Werf (1994) as a starting point. The authors derived the
covariance matrix AA from pedigree relationships, and replaced
it in a subsequent step by a covariance matrix HA that combines
pedigree and genotype information.

Xiang et al. (2016a) validated the model of Christensen et al.
(2014) in a two-way pig cross for the trait number of piglets
born. The authors found that the inclusion of crossbred genomic
information improved the model-based reliabilities for CP and
reduced to some extent the bias of prediction.

Tusell et al. (2016) used a single-step model for two-way
crossbred pigs and the sire line A, so the model reduced to a
bivariate model. The purebred animals were partly genotyped.
Since the crossbred animals were not genotyped, the third
equation in themodel of Christensen et al. (2014) was replaced by
a parental additive model equation, i.e., the Mendelian sampling
terms were part of the residual. This resulted in a model equation
of the form

yA = XAbA + ZAuA + aA + EA

yX = XX bX + ZX uX + 0.5 ZXAcA + 0.5 ZXBcB + EX .

The authors evaluated six growth and meat traits and found that
the genetic correlations between purebred and CP were larger
than 0.69 for all traits. The accuracies of the genomic breeding
values were higher than those obtained from univariate single-
step models that took either purebred or CP into account, and
also higher than those obtained with pedigree-based models.

Dominance Models
Crossbreeding utilizes heterosis and breed complementarity. A
widely accepted hypothesis is that heterosis arises predominantly
from dominance effects. An animal carries a dominance effect
only if it is heterozygous at a particular QTL. We denote with

ZX
H = HX −H

X

the centered indicator matrix for heterozygosity. That is, HX
im ∈

{0, 1} equals one, if animal i is heterozygous at SNP m, and H
X

im
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is the heterozygosity of SNP m in line X . The dominance model
assumes that the vector gX with genotypic values of the crossbred
animals has the representation

gX = µX 1+ ZX
G aX + ZX

H dX ,
(6)

where µX is the population mean, aX is the vector
with population-dependent additive effects, and dX is
vector with population-dependent dominance effects.
The genotypic values of purebred animals are defined
accordingly. The trivariate dominance model for a
two-way cross and the parental lines has therefore
the representation

yA = XAbA + ZAuA + ZA
G aA + ZA

H dA + EA (7)

yB = XBbB + ZBuB + ZB
Ga

B + ZB
Hd

B + EB

yX = XX bX + ZX uX + ZX
G aX + ZX

H dX + EX ,

which we call the dominance model with line-dependent effects.
The vector cA with breeding values for CP from breed A has the
representation given in Equation (1), but the vector with allele
substitution effects for CP is

αA = aX +
(

1− 2pB
)

◦ dX ,

where pB is vector with allele frequencies in the opposite line,
and the Hadamard product “◦′′ is the component-wise product.
The breeding values and allele substitution effects for line B are

defined accordingly. Predictions âX and d̂X of aX and dX are
needed to get predictions of the allele substitution effects for CP
in lineA with equation

α̂A = âX +
(

1− 2pB
)

◦ d̂X .

Some solvers are unable to account for the fact that E
(

dX
)

=

µX

d
1 6= 0 for most traits. As shown by Xiang et al. (2016b),

one may write dX = dX∗ + µX

d
1 such that E

(

dX∗
)

= 0.

Then, the term ZX
H dX in Equation (7) equals ZX

H 1µX

d
+ ZX

H dX∗ ,

where µX

d
is treated as an additional fixed effect. The same needs

to be done for the parental lines. We can write ZX
H 1µX

d
=

µX

d
M(ĥX − hX 1), where M is the number of SNPs, ĥX is the

vector with heterozygosities of the crossbred animals, and hX is
the average heterozygosity of the crossbred animals. Hence, the
value −µX

d
M quantifies the inbreeding depression per unit of

genomic inbreeding.
Vitezica et al. (2016) demonstrated how dominance models

with normally distributed SNP effects can be transformed into
equivalent dominance models with animal effects, whereby
different covariance matrices are needed for the additive
component and the dominance component of the animal effects.
That is, if all SNP effects are normally distributed, then the

SNP effects model can be replaced by the equivalent animal
effects model

yA = XAbA + ZAuA + ZA
H 1µA

d + ãA + d̃∗A + EA

yB = XBbB + ZBuB + ZB
H1µ

B

d + ãB + d̃∗B + EB

yX = XX bX + ZX uX + ZX
H 1µX

d + ãX + d̃∗X + EX

from which the SNP effects can be backsolved. Thereby, the

animal effects satisfy ãX = ZX
G aX , and d̃∗

X
= ZX

H dX∗ , and so
on. The joint covariance matrices of the animal effects are given
in Christensen et al. (2019).

The SNP effects in Equation (7) were assumed to be line-
dependent, which may be the case because the LD between
SNP and QTL differs between lines. This may be neglected if
the marker panel is sufficiently large. In this case, the SNP
effects can assumed to be line-independent, and we obtain the
simplified model

yA = XAbA + ZAuA + ZA
G a+ ZA

H d + EA

yB = XBbB + ZBuB + ZB
Ga+ ZB

Hd + EB

yX = XX bX + ZX uX + ZX
G a+ ZX

H d + EX ,

which we call the dominance model with line-
independent effects.

Vitezica et al. (2013) emphasized that two different
parameterizations of the dominance model exist. The first
parameterization, which is given by Equation (6), is suitable
for two-way crosses, and includes the additive and dominant
SNP effects. In contrast, the second parameterization includes
the allele substitution effects and the dominance deviations
of the SNP. Both parameterizations are equivalent, but their
interpretation is different.

Model Evaluation
Zeng et al. (2013) compared a Bayesian dominance model with
the corresponding BSAM model and the corresponding ASGM
model. A BayesCπ type method was used to estimate the marker
effects, so the prior assumption was that the SNP effects are
either zero, or come from a normal distribution. The comparison
was done for a simulated two-way crossbreeding program. A
number of 20 generations of selection was simulated with the
aim to improve CP in both parental lines. The marker effects
were estimated only once in generation one from crossbred
animals and used in all subsequent generations. The simulated
traits showed a different degree of dominance variance, ranging
from “large” to “realistic,” or null. The dominance model was
superior to the BSAM model and to the ASGM model. This
superiority depended on the fraction of dominance and thus
heterosis in the data, but even for situations where no dominance
was simulated, the accuracy of the dominance model was similar
to the additive model, indicating the robustness of the model. It
can tentatively be concluded, that the use of a dominance model
is in general advisable, even if dominance is not an important
source of trait variability.

Xiang et al. (2016b) used a dominance model with line-
dependent effects for a two-way cross and the parental breeds.
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The SNP effects were normally distributed, and the additive
and dominance effects of the three different populations were
correlated. The authors found that the increased predictive ability
of the dominance model arose solely from capturing inbreeding
depression. This suggests that dominance effects of individual
QTL have not been captured. The reason may be that a 60K SNP
panel is not sufficient for achieving high LD betweenmarkers and
QTL, and that the normality assumption is unlikely to be fulfilled.

Esfandyari et al. (2016) compared a Bayesian dominance
model with the corresponding Bayesian ASGM model at the
example of litter size in a two-way pig cross, whereby BayesC of
Habier et al. (2011) was used for prediction. Training was on the
parental lines. The prediction accuracies for PP and CP obtained
with the dominance model were both higher than those for PP
obtained with the ASGMmodel.

Implications for Breeding Programs
All additive models for predicting CP rely on phenotypic data
collected from crossbred animals. This can be problematic
in situations where the crossbred animals are not individually
identified and thus such data collection pipeline is not
implemented. This is likely the case on many farms housing
crossbred animals. While additive models require phenotypes
from crossbred animals, this is not the case for dominance
models because the breeding values for CP can be derived
from additive and dominance effects that are predicted in the
pure breed, and from the allele frequencies in the opposite
breed. Esfandyari et al. (2015a) proposed therefore to use
dominance models for selecting purebred animals for CP based
on purebred phenotypic and genotypic information only. They
did a simulation study and estimated the marker effects with
Bayesian LASSO (Park and Casella, 2008; los Campos et al.,
2009). The results showed that the gain in CP was higher when
the purebreds were selected for CPs, which demonstrated the
feasibility of themethod even when no crossbred data is available.
Moreover, combining several related lines into a single reference
population increased the prediction accuracy. However, as shown
by Esfandyari et al. (2015b), training on crossbred animals leads
to a higher selection response than training on purebred animals.
A likely explanation is, that the level of heterozygosity was higher
than in the purebred data.

Although genomic selection for CP is a promising strategy to
increase selection response for CP in the short andmedium term,
Esfandyari et al. (2018) found that genomic selection for CP leads
eventually to lower CP in the long term than genomic selection
on PP. This hold regardless of whether training was on purebred
or crossbred animals.

Dominance Model With Imprinting
Dominance effects, as well as additive effects may depend on
the breed of origin, which may be due to imprinting or breed
complementarity. It could therefore be advantageous to account
for imprinting explicitly. A dominance model with imprinting
needs to distinguish between the paternal and the maternal allele.
If an animal has received allele A1 from line A and allele A2

from line B, then we denote its genotype as A1A2. The centered

indicator matrix for genotype A1A2 is given by

WA1A2
X

= HA1A2
X

−H
A1A2

X ,

where HA1A2
X im ∈ {0, 1} equals one, if animal i from cross X has

genotype A1A2 at SNPm, andH
A1A2

X im is the proportion of animals
from cross X that have this genotype at SNPm.

The dominance model with imprinting assumes that the
vector gX with genotypic values of the crossbred animals has
the representation

gX = µX 1+
(

W21
X +W22

X

)

aXA +
(

W12
X +W22

X

)

aXB

+ W21
X dXA +W12

X dXB , (8)

where µX is the population mean, vectors aX
A

and aX
B

contain
breed-of-origin dependent additive effects, and vectors dX

A
and

dX
B

contain breed-of-origin dependent dominance effects. The
model equation for the crossbred animals becomes

yX = XX bX + ZX uX +
(

W21
X +W22

X

)

aXA

+
(

W12
X +W22

X

)

aXB +W21
X dXA +W12

X dXB + EX . (9)

If imprinting in the parental lines is neglected, then the model
equations for the parental lines remain as in Equation (7). The
vector with allele substitution effects for CP of line A is in
this case

αA = aX
A
+

(

1− pB
)

◦ dX
A
− pB ◦ dX

B
, (10)

where pB is the vector with allele frequencies in the opposite line.
The proof is given in the Supplementary Material. When the
SNP effects in the cross do not depend on the breed of origin, then
the model simplifies, and becomes identical to the dominance
model with line-dependent effects.

Nishio and Satoh (2015) proposed two alternative
parameterizations for models with dominance and imprinting
and fitted them by assuming normally distributed SNP effects.
Their first model includes an additive effect, a dominance
effect, and an imprinting effect for the heterozygous genotype,
while their second model includes a paternal and a maternal
gametic effect, and a dominance effect. The models provided in
a simulation study more accurate estimates of genotypic values
than GBLUP. While the models of Nishio and Satoh (2015) have
the advantage that only 3 effects are needed in the equivalent
SNP model for modeling the contribution of each SNP to the
genotypic value of an animal, the model in Equation (9) has the
advantage that more rigorous prior assumptions can be made for
the joint distribution of the effects. That is, if the paternal lines
are closely related, then the additive effects aX

A
and aX

B
could

assumed to be a priori highly correlated, as well as the dominance
effects dX

A
and dX

B
. However, the parameterization does not allow

to predict the vectors aX
A
, aX

B
, dX

A
and dX

B
individually.

Esfandyari et al. (2015b) compared in a simulation study
a Bayesian dominance model with imprinting with the
corresponding dominance model with line-independent effects,
but used a different parameterization. The model considered
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imprinting because it included a separate effect for each phased
genotype. Compared to the model proposed above, it has the
disadvantage that the effects have no direct interpretation as
additive and dominance effects. The genetic effects of the parental
breeds were a priori independent. Even though the authors did
not simulate imprinting, they found that the dominance model
with imprinting was superior, if the reference population was
sufficiently large, and if both lines were not closely related. The
reason may be that the LD between markers and QTL was
different in the cross and in the parental lines, so the additive
effects and dominance effects were population-dependent.

DISCUSSION

In this paper, genomic models for the analysis of discontinuous
crossbred data were reviewed. Compared to purebred genomic
models, the reviewed models were of much higher complexity
due to the inclusion of dominance effects, breed-specific effects,
imprinting effects, and the use of PP and/or CP data. In the
following some additional aspects regarding the distribution of
the SNP effects and the model choice are considered.

Distribution of SNP Effects
The normal distribution is the most common assumption about
the distribution of SNP effects. Such models have the advantage,
that they have an equivalent representation as animal models
with genomic covariance matrices for which fast solvers exist,
such as DMU (Madsen et al., 2010), WOMBAT (Meyer, 2007),
ASReml (Gilmour et al., 2009), blupf90 (Misztal, 1999), orMiX99
(Vuori et al., 2006). Although the assumption of a normal
distribution is not likely to be fulfilled when large marker panels
are used, the experience with purebred data suggest that the
reliabilities of the breeding values are only slightly worse than
those obtained with non-normally distributed marker effects.
However, the situation in crossbreeding is different because the
parental lines are commonly distantly related, and it may be
envisaged to evaluate all lines simultaneously in order to increase
the reliabilities of the breeding values. This requires that all QTL
are in high LD with at least one marker, which implies the
necessity to use a large marker panel. However, if the marker
panel is large, then only few markers are needed to capture
the effect of any QTL. Consequently, the true effects of most
markers are actually zero. The model for genomic selection
should account for this and assume as a prior distribution for
the SNP effects a mixture of two distributions. One component
provides the distribution for markers that are in strong LD with
a QTL, and the other one is actually zero. In this case, a random-
variable γm is commonly introduced, which indicates whether
the effects of an SNP m are different from zero. Well-known
examples are BayesB (Meuwissen et al., 2001), BayesC (Habier
et al., 2011), and BayesR (Erbe et al., 2012). Such algorithms
are usually implemented with MCMC algorithms, which results
in long computation times. However, alternative and faster
implementations are available for some models (e.g., Meuwissen,
2009; Shepherd et al., 2010).

For models with additive and dominance effects, an important
aspect is, whether these effects are a priori independent or not.
It may be advantageous to assume that all effects of a particular
SNP m are of the same order of magnitude. This is possible
if all effects of a particular SNP m have conditionally on the
common covariance matrix γmσ 2

m6 a normal distribution, where
σ 2
m ∼ Inv-χ2(v, s) and 6 is an appropriately chosen covariance

matrix. For the dominance model with line-dependent effects,
this means that

(aAm , aBm, a
X
m , dAm , dBm, d

X
m )|σ 2

m, γm ∼ N
(

0, γmσ 2
m6

)

.

It can be shown that in this case, all effects of SNP m would
have for γm = 1 a t-distribution with v degrees of freedom, and
are for γm = 0 equal to zero. Moreover, the magnitude of the
effect size would be similar for all effects of a given SNPm, which
reduces the proportion of overdominant SNP. Developing a fast
algorithm for such a model is an area for future research.

Model Choice
The most suitable model for a breeding program depends
on the achievable accuracies for the breeding values of the
selection candidates, and on the available data. Among the
additive models, the parental model provided the least accurate
predictions for CP, which is because the Mendelian sampling
terms are part of the residual and can therefore not be utilized
for prediction. It has, however, the advantage that the crossbred
animals do not need to be genotyped and may therefore be
suitable for animals with low economic value.

The BSAM and ASGM models provided similar results in
most cases. The BSAM model, however, needs the trace of the
alleles from the purebred parent breed to the crossbred end
product, which is a source of potential errors. This might even
be more a problem when more complex crossbred structures
are involved, e.g., three- or four-way crossbred data. Vandenplas
et al. (2016) and Sevillano et al. (2016) developed a statistical
pipeline for this purpose and applied it to a three-way crossbred
pig data set.

The reviewed papers suggest that the dominance models
provide more accurate genomic breeding values for CP than
the additive models. Although Xiang et al. (2016b) showed that
this gain in accuracy results in the case of normally distributed
SNP effects almost solely from capturing inbreeding depression,
this may be not the case when large marker panels and
appropriate Bayesian models are used for evaluation. Dominance
models have the additional advantage that breeding values for
crossbred performance can be obtained from purebred animals,
so phenotyping and genotyping crossbred individuals may not
be necessary. However, as shown by Esfandyari et al. (2015b),
the accuracy of the breeding values can be increased when
phenotyped and genotyped crossbred individuals are included in
the reference population.

Three different dominance models have been applied to
crossbred data, which are the dominance model with line-
independent effects, the dominance model with line-dependent
effects, and the dominance model with imprinting. The
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dominance model with line-dependent effects is likely to be
inferior to the model with line-independent effects if the SNP
effects of the different lines are falsely assumed to be statistically
independent, the reference population is small, and the lines are
closely related. This could be avoided by specifying a covariance
between the SNP effects of the different lines.

When imprinting is relevant, then a dominance model with
imprinting is of interest. For example, Jiang et al. (2017) found
that there is substantial imprinting for reproduction traits in
dairy cattle. The application of imprinting models requires
that the crossbred animals are genotyped and that the alleles
are traced from the parental lines to the crossbred animals.
Unfortunately, to the best of our knowledge, these models
are not well-analyzed yet. More research should be done in
this area, which includes to analyze all models with common
data sets.

CONCLUSION

Genomic models for crossbred data are of much higher
complexity thanmodels for purebred data, which results from the
inclusion of dominance effects, breed-specific effects, imprinting
effects, and from the joint evaluation of PP and CP. Although
much research has already been done to develop genomic
models for crossbred data, it can be expected that further
progress can be made by developing statistical models that
include all the different genetic effects in a single model, assume
realistic covariance structures between the genetic effects of
different breeding lines, use large marker panels, and assume
realistic distributions for the SNP effects. The comparisons
made in the reviewed papers are not sufficiently comprehensive
to come to a clear recommendation as to which existing
method is most suitable for a specific breeding program and
a specific genetic trait architecture. Some papers suggested

a superiority of dominance models. In the reviewed papers,
the focus was on discontinuous crossbreeding schemes. This
was because, to our best knowledge, no genomic models have
been published that are specifically designed for continuous
crossbreeding schemes.

AUTHOR CONTRIBUTIONS

RW did the formal model comparison. JS, RW, and JB wrote the
paper. DH contributed to the writing. All authors contributed to
the article and approved the submitted version.

FUNDING

This work was financially supported by the German Federal
Ministry of Food and Agriculture (BMEL) through the
Federal Office for Agriculture and Food (BLE), grant number
2817ERA10D. The project has received funding from the
European Union’s Horizon 2020 Research and Innovation
Program under grant agreement no. 696231 - ReDiverse
(Biodiversity within and between European RedDairy Breeds). JS
was partly supported by the H.Wilhelm Schaumann Foundation,
Hamburg, Germany, which is gratefully acknowledged.

ACKNOWLEDGMENTS

The manuscript has benefitted from the critical and helpful
comments of the reviewers.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00568/full#supplementary-material

REFERENCES

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., and Lawlor, T. J.

(2010). Hot topic: a unified approach to utilize phenotypic, full pedigree, and

genomic information for genetic evaluation of Holstein final score. J. Dairy Sci.

93, 743–752. doi: 10.3168/jds.2009-2730

Azevedo, C. F., de Resende, M. D. V., E Silva, F. F., Viana, J. M. S., Valente, M. S. F.,

Resende, M. F. R., et al. (2015). Ridge, lasso and bayesian additive-dominance

genomic models. BMC Genet. 16:105. doi: 10.1186/s12863-015-0264-2

Buckley, F., Lopez-Villalobos, N., and Heins, B. J. (2014). Crossbreeding:

implications for dairy cow fertility and survival. Anim. Int. J. Anim. Biosci.

8(Suppl. 1), 122–133. doi: 10.1017/S1751731114000901

Christensen, O. F., and Lund, M. S. (2010). Genomic prediction when some

animals are not genotyped. Genet. Sel. Evol. 42:2. doi: 10.1186/1297-9686-42-2

Christensen, O. F., Madsen, P., Nielsen, B., and Su, G. (2014). Genomic

evaluation of both purebred and crossbred performances. Genet. Sel. Evol.

46:23. doi: 10.1186/1297-9686-46-23

Christensen, O. F., Nielsen, B., Su, G., Xiang, T., Madsen, P., Ostersen, T., et al.

(2019). A bivariate genomic model with additive, dominance and inbreeding

depression effects for sire line and three-way crossbred pigs. Genet. Sel. Evol.

51:45. doi: 10.1186/s12711-019-0486-2

Dekkers, J. C. M. (2007). Marker-assisted selection for commercial crossbred

performance. J. Anim. Sci. 85, 2104–2114. doi: 10.2527/jas.2006-683

Duenk, P., Calus, M. P. L., Wientjes, Y. C. J., Breen, V. P., Henshall, J. M., Hawken,

R., et al. (2019). Estimating the purebred-crossbred genetic correlation of body

weight in broiler chickens with pedigree or genomic relationships. Genet. Sel.

Evol. 51:6. doi: 10.1186/s12711-019-0447-9

Erbe, M., Hayes, B. J., Matukumalli, L. K., Goswami, S., Bowman, P. J., Reich,

C. M., et al. (2012). Improving accuracy of genomic predictions within

and between dairy cattle breeds with imputed high-density single nucleotide

polymorphism panels. J. Dairy Sci. 95, 4114–4129. doi: 10.3168/jds.201

1-5019

Esfandyari, H., Berg, P., and Sørensen, A. C. (2018). Balanced selection on

purebred and crossbred performance increases gain in crossbreds. Genet. Sel.

Evol. 50:8. doi: 10.1186/s12711-018-0379-9

Esfandyari, H., Bijma, P., Henryon, M., Christensen, O. F., and Sørensen, A.

C. (2016). Genomic prediction of crossbred performance based on purebred

landrace and yorkshire data using a dominance model. Genet. Sel. Evol. 48:40.

doi: 10.1186/s12711-016-0220-2

Esfandyari, H., Sørensen, A. C., and Bijma, P. (2015a). Maximizing crossbred

performance through purebred genomic selection. Genet. Sel. Evol. 47:16.

doi: 10.1186/s12711-015-0099-3

Esfandyari, H., Sørensen, A. C., and Bijma, P. (2015b). A crossbred

reference population can improve the response to genomic selection for

crossbred performance. Genet. Sel. Evol. 47:76. doi: 10.1186/s12711-015-0

155-z

Frontiers in Genetics | www.frontiersin.org 8 June 2020 | Volume 11 | Article 568

https://www.frontiersin.org/articles/10.3389/fgene.2020.00568/full#supplementary-material
https://doi.org/10.3168/jds.2009-2730
https://doi.org/10.1186/s12863-015-0264-2
https://doi.org/10.1017/S1751731114000901
https://doi.org/10.1186/1297-9686-42-2
https://doi.org/10.1186/1297-9686-46-23
https://doi.org/10.1186/s12711-019-0486-2
https://doi.org/10.2527/jas.2006-683
https://doi.org/10.1186/s12711-019-0447-9
https://doi.org/10.3168/jds.2011-5019
https://doi.org/10.1186/s12711-018-0379-9
https://doi.org/10.1186/s12711-016-0220-2
https://doi.org/10.1186/s12711-015-0099-3
https://doi.org/10.1186/s12711-015-0155-z
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Stock et al. Genomic Models for Crossbred Data

Fernando, R. L., Dekkers, J. C., and Garrick, D. J. (2014). A class of

bayesian methods to combine large numbers of genotyped and non-

genotyped animals for whole-genome analyses. Genet. Sel. Evol. 46:50.

doi: 10.1186/1297-9686-46-50

Freyer, G., König, S., Fischer, B., Bergfeld, U., and Cassell, B. G. (2008). Invited

review: crossbreeding in dairy cattle from a German perspective of the past and

today. J. Dairy Sci. 91, 3725–3743. doi: 10.3168/jds.2008-1287

Gianola, D. (2013). Priors in whole-genome regression: the bayesian alphabet

returns. Genetics 194, 573–596. doi: 10.1534/genetics.113.151753

Gilmour, A. R., Gogel, B. J., Cullis, B. R., and Thompson, R. (2009). AS-Reml User

Guide. Release 3.0. VSN International.Hemel Hempstead.

Goddard, M. E. (2009). Genomic selection: prediction of accuracy

and maximisation of long term response. Genetica 136, 245–257.

doi: 10.1007/s10709-008-9308-0

Habier, D., Fernando, R. L., Kizilkaya, K., and Garrick, D. J. (2011). Extension

of the bayesian alphabet for genomic selection. BMC Bioinformatics 12:186.

doi: 10.1186/1471-2105-12-186

Hartwig, S., Wellmann, R., Emmerling, R., Hamann, H., and Bennewitz, J.

(2015). Short communication: importance of introgression for milk traits in

the German vorderwald and hinterwald cattle. J. Dairy Sci. 98, 2033–2038.

doi: 10.3168/jds.2014-8571

Hartwig, S., Wellmann, R., Hamann, H., and Bennewitz, J. (2014). The

contribution of migrant breeds to the genetic gain of beef traits of German

vorderwald and hinterwald cattle. J. Anim. Breed. Genet. 131, 496–503.

doi: 10.1111/jbg.12099

Ibánez-Escriche, N., Fernando, R. L., Toosi, A., and Dekkers, J. C. M. (2009).

Genomic selection of purebreds for crossbred performance. Genet. Sel. Evol.

41:12. doi: 10.1186/1297-9686-41-12

Jiang, J., Shen, B., O’Connell, J. R., VanRaden, P. M., Cole, J. B., and Ma,

L. (2017). Dissection of additive, dominance, and imprinting effects for

production and reproduction traits in holstein cattle. BMC Genomics 18:425.

doi: 10.1186/s12864-017-3821-4

Legarra, A., Aguilar, I., and Misztal, I. (2009). A relationship matrix including

full pedigree and genomic information. J. Dairy Sci. 92, 4656–4663.

doi: 10.3168/jds.2009-2061

Legarra, A., Christensen, O. F., Aguilar, I., and Misztal, I. (2014). Single

Step, a general approach for genomic selection. Livest. Sci. 166, 54–65.

doi: 10.1016/j.livsci.2014.04.029

Lopes, M. S., Bovenhuis, H., Hidalgo, A. M., van Arendonk, J. A. M., Knol,

E. F., and Bastiaansen, J. W. M. (2017). Genomic selection for crossbred

performance accounting for breed-specific effects. Genet. Sel. Evol. 49:51.

doi: 10.1186/s12711-017-0328-z

Lopez-Villalobos, N., Garrick, D. J., Holmes, C. W., Blair, H. T., and Spelman, R. J.

(2000). Profitabilities of some mating systems for dairy herds in New Zealand.

J. Dairy Sci. 83, 144–153. doi: 10.3168/jds.S0022-0302(00)74865-X

los Campos, G., de, Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi,

E., et al. (2009). Predicting quantitative traits with regression models

for dense molecular markers and pedigree. Genetics 182, 375–385.

doi: 10.1534/genetics.109.101501

MacLeod, I. M., Bowman, P. J., Vander Jagt, C. J., Haile-Mariam, M., Kemper, K.

E., Chamberlain, A. J., et al. (2016). Exploiting biological priors and sequence

variants enhances QTL discovery and genomic prediction of complex traits.

BMC Genom. 17:144. doi: 10.1186/s12864-016-2443-6

Madsen, P., Su, G., Labouriau, R., and Christensen, F. (2010). “DMU-a package

for analyzing multivariate mixed models,” in Proceedings of 9th World

Congress on Genetics Applied to Livestock Production (Leipzig: Gesellschaft für

Tierzuchtwissenschaft e.V). 137

Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total

genetic value using genome-wide dense marker maps.Genetics 157, 1819–1829.

Meuwissen, T. H. E. (2009). Accuracy of breeding values of ’unrelated’

individuals predicted by dense SNP genotyping. Genet. Sel. Evol. 41:35.

doi: 10.1186/1297-9686-41-35

Meyer, K. (2007). WOMBAT-A tool for mixed model analyses in quantitative

genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B 8,

815–821. doi: 10.1631/jzus.2007.B0815

Misztal, I. (1999). “Complex models, more data: simpler programming?,” in

Interbull Proceedings of the Interbull Workshop Computers and Cattle Breeds

(Tuusala: Interbull Bulletin 20), 33–42.

Nishio, M., and Satoh, M. (2015). Genomic best linear unbiased predictionmethod

including imprinting effects for genomic evaluation. Genet. Sel. Evol. 47:32.

doi: 10.1186/s12711-015-0091-y

Park, T., and Casella, G. (2008). The bayesian lasso. J. Am. Stat. Assoc. 103,

681–686. doi: 10.1198/016214508000000337

Samorè, A. B., and Fontanesi, L. (2016). Genomic selection in pigs:

state of the art and perspectives. Ital. J. Anim. Sci. 15, 211–232.

doi: 10.1080/1828051X.2016.1172034

Sevillano, C. A., Bovenhuis, H., and Calus, M. P. L. (2019). Genomic evaluation

for a crossbreeding system implementing breed-of-origin for targeted markers.

Front. Genet. 10:418. doi: 10.3389/fgene.2019.00418

Sevillano, C. A., Vandenplas, J., Bastiaansen, J. W. M., and Calus, M. P. L. (2016).

Empirical determination of breed-of-origin of alleles in three-breed cross pigs.

Genet. Sel. Evol. 48:55. doi: 10.1186/s12711-016-0234-9

Shepherd, R. K., Meuwissen, T. H. E., and Woolliams, J. A. (2010).

Genomic selection and complex trait prediction using a fast EM

algorithm applied to genome-wide markers. BMC Bioinformatics 11:529.

doi: 10.1186/1471-2105-11-529

Sørensen, M. K., Norberg, E., Pedersen, J., and Christensen, L. G. (2008). Invited

review: crossbreeding in dairy cattle: a danish perspective. J. Dairy Sci. 91,

4116–4128. doi: 10.3168/jds.2008-1273

Strandén, I., and Christensen, O. F. (2011). Allele coding in genomic evaluation.

Genet. Sel. Evol. 43:25. doi: 10.1186/1297-9686-43-25

Su, G., Christensen, O. F., Ostersen, T., Henryon, M., and Lund, M.

S. (2012). Estimating additive and non-additive genetic variances and

predicting genetic merits using genome-wide dense single nucleotide

polymorphism markers. PLoS ONE 7:e45293. doi: 10.1371/journal.pone.

0045293

Tusell, L., Gilbert, H., Riquet, J., Mercat, M.-J., Legarra, A., and Larzul, C. (2016).

Pedigree and genomic evaluation of pigs using a terminal-cross model. Genet.

Sel. Evol. 48:32. doi: 10.1186/s12711-016-0211-3

van Grevenhof, I. E. M., and van der Werf, J. H. J. (2015). Design of reference

populations for genomic selection in crossbreeding programs. Genet. Sel. Evol.

47:14. doi: 10.1186/s12711-015-0104-x

Vandenplas, J., Calus, M. P. L., Sevillano, C. A., Windig, J. J., and Bastiaansen, J.

W. M. (2016). Assigning breed origin to alleles in crossbred animals. Genet. Sel.

Evol. 48:61. doi: 10.1186/s12711-016-0240-y

Vandenplas, J., Windig, J. J., and Calus, M. P. L. (2017). Prediction of the reliability

of genomic breeding values for crossbred performance. Genet. Sel. Evol. 49:43.

doi: 10.1186/s12711-017-0318-1

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J.

Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

Varona, L., Legarra, A., Toro, M. A., and Vitezica, Z. G. (2018). Non-additive

effects in genomic selection. Front. Genet. 9:78. doi: 10.3389/fgene.2018.

00078

Vitezica, Z. G., Varona, L., Elsen, J.-M., Misztal, I., Herring, W., and Legarra,

A. (2016). Genomic BLUP including additive and dominant variation in

purebreds and F1 crossbreds, with an application in pigs. Genet. Sel. Evol. 48:6.

doi: 10.1186/s12711-016-0185-1

Vitezica, Z. G., Varona, L., and Legarra, A. (2013). On the additive and

dominant variance and covariance of individuals within the genomic

selection scope. Genetics 195, 1223–1230. doi: 10.1534/genetics.113.

155176

Vuori, K., Strandén, I., Lidauer, M., and Mäntysaari, E. A. (2006). “MiX99 -

effectivesolver for large and complex linear mixedmodels,” in Proceedings of 8th

World Congress on Genetics Applied to Livestock Production (Belo Horizonte:

Instituto Prociência), 27–33.

Wei, M., and van der Werf, J. H. (1995). Genetic correlation and

heritabilities for purebred and crossbred performance in poultry egg

production traits. J. Anim. Sci. 73, 2220–2226. doi: 10.2527/ (1995).

7382220x

Wei, M., and van der Werf, J. H. J. (1994). Maximizing genetic response in

crossbreds using both purebred and crossbred information. Anim. Sci. 59,

401–413. doi: 10.1017/S0003356100007923

Wellmann, R., and Bennewitz, J. (2012). Bayesian models with

dominance effects for genomic evaluation of quantitative

traits. Genet. Res. 94, 21–37. doi: 10.1017/S00166723120

00018

Frontiers in Genetics | www.frontiersin.org 9 June 2020 | Volume 11 | Article 568

https://doi.org/10.1186/1297-9686-46-50
https://doi.org/10.3168/jds.2008-1287
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.3168/jds.2014-8571
https://doi.org/10.1111/jbg.12099
https://doi.org/10.1186/1297-9686-41-12
https://doi.org/10.1186/s12864-017-3821-4
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.1016/j.livsci.2014.04.029
https://doi.org/10.1186/s12711-017-0328-z
https://doi.org/10.3168/jds.S0022-0302(00)74865-X
https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1186/s12864-016-2443-6
https://doi.org/10.1186/1297-9686-41-35
https://doi.org/10.1631/jzus.2007.B0815
https://doi.org/10.1186/s12711-015-0091-y
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1080/1828051X.2016.1172034
https://doi.org/10.3389/fgene.2019.00418
https://doi.org/10.1186/s12711-016-0234-9
https://doi.org/10.1186/1471-2105-11-529
https://doi.org/10.3168/jds.2008-1273
https://doi.org/10.1186/1297-9686-43-25
https://doi.org/10.1371/journal.pone.0045293
https://doi.org/10.1186/s12711-016-0211-3
https://doi.org/10.1186/s12711-015-0104-x
https://doi.org/10.1186/s12711-016-0240-y
https://doi.org/10.1186/s12711-017-0318-1
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3389/fgene.2018.00078
https://doi.org/10.1186/s12711-016-0185-1
https://doi.org/10.1534/genetics.113.155176
https://doi.org/10.2527/~(1995).7382220x
https://doi.org/10.1017/S0003356100007923
https://doi.org/10.1017/S0016672312000018
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Stock et al. Genomic Models for Crossbred Data

Wientjes, Y. C. J., and Calus, M. P. L. (2017). Board invited review: the purebred-

crossbred correlation in pigs: a review of theory, estimates, and implications. J.

Anim. Sci. 95, 3467–3478. doi: 10.2527/jas2017.1669

Xiang, T., Christensen, O. F., Vitezica, Z. G., and Legarra, A. (2016b).

Genomic evaluation by including dominance effects and inbreeding

depression for purebred and crossbred performance with an

application in pigs. Genet. Sel. Evol. 48:92. doi: 10.1186/s12711-016-

0271-4

Xiang, T., Nielsen, B., Su, G., Legarra, A., and Christensen, O. F. (2016a).

Application of single-step genomic evaluation for crossbred performance in

pig. J. Anim. Sci. 94, 936–948. doi: 10.2527/jas.2015-9930

Zeng, J., Toosi, A., Fernando, R. L., Dekkers, J. C. M., and

Garrick, D. J. (2013). Genomic selection of purebred animals

for crossbred performance in the presence of dominant

gene action. Genet. Sel. Evol. 45:11. doi: 10.1186/1297-9686-

45-11

Zumbach, B., Misztal, I., Tsuruta, S., Holl, J., Herring, W., and Long, T.

(2007). Genetic correlations between two strains of durocs and crossbreds

from differing production environments for slaughter traits. J. Anim. Sci. 85,

901–908. doi: 10.2527/jas.2006-499

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Stock, Bennewitz, Hinrichs and Wellmann. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 10 June 2020 | Volume 11 | Article 568

https://doi.org/10.2527/jas2017.1669
https://doi.org/10.1186/s12711-016-0271-4
https://doi.org/10.2527/jas.2015-9930
https://doi.org/10.1186/1297-9686-45-11
https://doi.org/10.2527/jas.2006-499
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Review of Genomic Models for the Analysis of Livestock Crossbred Data
	Introduction
	Genomic Models
	Additive Models
	The Parental Additive Model
	The BSAM and ASGM Model
	Additive Single Step Model

	Dominance Models
	Model Evaluation
	Implications for Breeding Programs

	Dominance Model With Imprinting

	Discussion
	Distribution of SNP Effects
	Model Choice

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


