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To date, interpretation of genomic information has focused on single variants conferring
disease risk, but most disorders of major public concern have a polygenic architecture.
Polygenic risk scores (PRSs) give a single measure of disease liability by summarizing
disease risk across hundreds of thousands of genetic variants. They can be calculated
in any genome-wide genotype data-source, using a prediction model based on
genome-wide summary statistics from external studies. As genome-wide association
studies increase in power, the predictive ability for disease risk will also increase.
Although PRSs are unlikely ever to be fully diagnostic, they may give valuable medical
information for risk stratification, prognosis, or treatment response prediction. Public
engagement is therefore becoming important on the potential use and acceptability of
PRSs. However, the current public perception of genetics is that it provides “yes/no”
answers about the presence/absence of a condition, or the potential for developing
a condition, which in not the case for common, complex disorders with polygenic
architecture. Meanwhile, unregulated third-party applications are being developed to
satisfy consumer demand for information on the impact of lower-risk variants on
common diseases that are highly polygenic. Often, applications report results from
single-nucleotide polymorphisms (SNPs) and disregard effect size, which is highly
inappropriate for common, complex disorders where everybody carries risk variants.
Tools are therefore needed to communicate our understanding of genetic vulnerability
as a continuous trait, where a genetic liability confers risk for disease. Impute.me is one
such tool, whose focus is on education and information on common, complex disorders
with polygenetic architecture. Its research-focused open-source website allows users to
upload consumer genetics data to obtain PRSs, with results reported on a population-
level normal distribution. Diseases can only be browsed by International Classification of
Diseases, 10th Revision (ICD-10) chapter–location or alphabetically, thus prompting the
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user to consider genetic risk scores in a medical context of relevance to the individual.
Here, we present an overview of the implementation of the impute.me site, along with
analysis of typical usage patterns, which may advance public perception of genomic
risk and precision medicine.

Keywords: genetics, polygenic risk scores, direct-to-consumer, personal genomes, risk prediction

INTRODUCTION

In clinical genetics, testing for rare strong-effect causal variants
is routinely performed in the health-care system to confirm
a diagnosis or to evaluate individual risk suspected from
anamnestic information (Baig et al., 2016), and in such instances,
the use of genome sequencing is expanding (Byrjalsen et al.,
2018). Meanwhile, outside of the health-care system, direct-
to-consumer (DTC) genetics expands rapidly, providing the
public with access to individual genetic data profiles and
to interpretation of common genetic variants derived from
genotyping microarrays (Kaye, 2008; Greshake et al., 2014).
This is developing as a sprawling industry of consumer
services with widely diverging standards, including third-party
genome analysis services. These services typically provide
individual results from analysis of common single-nucleotide
polymorphisms (SNPs) with (at best) weak effects. They are
therefore severely mis-aligned with current state-of-the-art,
which at least for common, complex disease is to use polygenic
risk scores (PRSs) to estimate the combined risk of common
variation in the genome (Lee et al., 2008; Lewis and Vassos, 2017).

We believe that the goal of the academic genetics community
should extend beyond theory. This means engaging with the
public and assisting those who seek information, even when
it means helping them to interpret their own genomic data.
We therefore developed impute.me as an online web-app
for analysis and education in personal genetic analysis. The
web-app is illustrated in Figure 1. Using any major DTC
vendor, a user can download their raw data and then upload
it at impute.me. Uploaded files are checked and formatted
according to procedures that have been developed to handle most
types of microarray-based consumer genetics data, including
an imputation step. These data are then further subjected to
automated analysis scripts including PRS calculations. This
includes more than 2,000 traits, browsable in different interface
types (modules). Each module is designed with the goal of putting
findings in as relevant a context as possible, prompting users
to see common variant genetics as a support tool rather than a
diagnosis finder. The aim is to provide information as broadly as
possible to offer a real alternative to the widespread practice of
reporting on weak SNP genotypes for any trait, even though that
means generation of reports that are below any sensible threshold
for clinical usability. We hope that having this as an open and
accessible resource for everyone will be of help to the debate
on what exactly constitutes clinical usability beyond high-risk
pathogenic variants.

In this article, we will describe the (i) development and
setup, (ii) validation and testing, (iii) evaluation of usage, (iv)
communication of risk scores, and (v) ethics and implications.

In the section Development and Setup, we discuss some of the
challenges faced when developing a full personal-genome scoring
pipeline. The goal of this section is to motivate and explain the
choices made in development. In the second section, Validation
and Testing, we use public Biobank data from individuals who
consented for genetic research to test the effect of the impute.me
scores on known disease outcomes. The purpose of this section is
to test and validate scores, as well as to investigate consequences
of some of the challenges that were raised in the first section. In
the third section, Evaluation of Usage, we evaluate usage metrics
of impute.me users. The goal of this section is to shed light
on behavioral patterns of individuals who use DTC genetics
for health questions and to offer recommendations that may
be of use in other personal-genome scoring pipelines. In the
section Communication of Risk Scores, we discuss our views on
future directions particularly with respect to improving how
genetic findings are presented to people. Finally, in Ethics and
Implications, we discuss the ethics of providing access to health-
related interpretation of DNA data.

DEVELOPMENT AND SETUP

The first challenge in development of personal genomic services
is standardization. As the name impute.me implies, all genotype
data are processed by imputation of genotype data (Howie
et al., 2009; Delaneau et al., 2013). This procedure expands
the data available into ungenotyped SNPs and increases overlap
with public genome-wide association study (GWAS) summary
statistics used to estimate risk. It also expands the SNP overlap
between microarray types from the major vendors, such as
23andMe, MyHeritage, and Ancestry.com. Further, we have
found that imputation helps in avoiding major errors, for
example, strand-flip issues that arise from the dozens of different
data formats. Eliminating such problems from further processing
is one important step to minimize mis-interpretation of genome
analysis. To ensure high standard of reported results, impute.me
requires a fully completed imputation for continued analysis.

The second challenge is to estimate PRSs that are accurate
and robust to heterogenous data sources. This is particularly
important to an application utilized by people from around the
world leveraging data from dozens of different vendors and data
types. Importantly, PRSs calculated from GWAS of a population
of (for example) European ancestry will perform better for
individuals of the same ancestry, and the systematic shift (i.e.,
bias) in risk scores in individuals from other populations is a
problem (Curtis, 2018). Because studies of all disease traits are
not yet available for all non-European populations, the pragmatic
solution has been to include a population-specific normalization
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FIGURE 1 | Basic pipeline setup from the user point of view. On upload of a genome, data are checked according quality control (QC) parameters that have been
developed to handle most types of microarray-based consumer genetics data. The genome is then imputed using 1000 Genomes as reference (left). The imputed
data are then further subjected to automated analysis scripts from 15 different modules, most of which are based on polygenic risk score calculations. The
calculations include 1,859 traits from genome-wide association studies (GWASs) and 634 traits from the UK Biobank, as well as customized modules for height, and
drug response. Most polygenic risk scores use GWAS significant single-nucleotide polymorphisms (SNPs) out of necessity, although 20 major diseases are based on
LDpred all-SNP scores (center). A user can then browse their scores in relation to the population, shown together with a chart displaying how much variability is
explained (right).

attempting to minimize the systematic shifts of scores for non-
European ancestry users. Further, it is computationally and
logistically easier to implement PRSs that use only the most
(i.e., genome-wide) significant SNPs (often referred to as top
SNPs), but the prediction strength is better when more SNPs are
included (all-SNP), which, however, is more sensitive to ancestry
biases (Lam et al., 2019). The impute.me pipelines calculate
PRSs for each trait or disease on the basis of all-SNP-based PRS
calculations if full genome-wide summary statistics are available
and processed, and top-SNP-based PRS calculations if not.

The third challenge is presentation. For a single rare large-
effect variant, such as for the pathogenic variants in the
BRCA genes conferring very high risk of cancers (odds ratio
>10; Figure 2A, upper left), presentation focuses on absence
versus presence (Maxwell et al., 2016). However, also, low-
effect variants, for example, as in pharmacogenetics, impacting
statin response, is considered as having potential clinical use
(Natarajan et al., 2017; Figure 2A, lower right). This difference
in effect magnitude is a major challenge in result presentation
and understanding, particularly because a firm threshold is
difficult to set: In the context of a drug-prescription situation
or a question of which of two suspected disease risks is
the most likely, it may be useful to know such scores. But
in the context of an otherwise healthy individual, genetic
risks are only relevant if we are very certain of them, they
are serious, and preferably actionable [e.g., BRCA variants
(Kalia et al., 2017)]. For this reason, we have made the
design choice to avoid the use of lists sorted by risk score.
Currently, scores are accessible through either an alphabetically
sorted list or in a tree-like setup where genetic scores are
reported in a health-context tree (Figure 2B). In this, all

scores are included, but scores that are less relevant to healthy
individuals (i.e., most of them) are buried deeper into the
health-context tree. As further discussed in the section Future
Challenges, there are a lot of remaining challenges to solve
in this question.

VALIDATION AND TESTING

To evaluate pipelines on individuals with known disease
outcomes, we investigated 242 samples from the CommonMind
data set. The CommonMind data set includes patients with
schizophrenia (SCZ), bipolar disorder, and controls, from
European ancestry and from African ancestry. For each disorder
and each ancestry group, the full impute.me pipelines were
applied, including imputation and PRS calculation. Additionally,
SNP sets corresponding to each of three major DTC companies
were extracted and re-calculated. This was done to test the
hypothesis that PRS calculation in mixed SNP sets poses
particular challenges with regard to missing SNPs. Such sets
of genotyped SNPs that are different in each sample are an
unavoidable consequence of working with online data uploads.

We found that disease prediction strength, measured
as variability explained, corresponded well to theoretical
expectations of known SNP heritability (Lee et al., 2017; Li et al.,
2017; Wünnemann et al., 2019). Secondly, we found that using
all-SNP scores resulted in better prediction than top-SNP scores,
which was as expected (Vilhjálmsson et al., 2015). Thirdly,
we found that prediction was more accurate in individuals
of European ancestry compared with individuals of African
ancestry, which is concordant with the PRSs being developed
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FIGURE 2 | Theoretical background of the analysis pipeline. (A) Clinical genetics currently concern high-effect DNA variants that often can only be sequenced (red).
Additionally, high-effect variants such as APOE4 and a small subset of BRCA1 and BRCA2 pathogenic variants are possible to measure using microarray (blue
includes several other variants not shown in plot, e.g., Parkinson’s variants). There may be an untapped potential for valuable clinical information in polygenic risk
scores (PRSs) for common disease (green), for example, for type 2 diabetes (T2D), coronary artery disease (CAD), or statin response (Natarajan et al., 2017; Khera
et al., 2018; Wünnemann et al., 2019). It is a primary aim of the impute.me project to make this potential available more broadly, balancing the practice of relying on
individual genome-wide association study (GWAS) single-nucleotide polymorphisms (SNPs) and/or reporting of SNP genotypes (pink). (B) The secondary aim is to
provide genetic scores in a relevant context, exemplified in the precision medicine module showing the so-called health-context tree. This tree consists of all entries
from the international classification of disease [International Classification of Diseases, 10th Revision (ICD-10)], linked to all genetic studies. It allows browsing of
PRSs in a relevant context. In the example shown, the tree is open on the psychiatry chapter, showing PRSs for schizophrenia (F20), unipolar depression (F32), and
bipolar depression (F31). Although these scores have little predictive relevance for a healthy individual, they may be useful in the context of psychiatric evaluation,
particularly in the case of more extreme scores.

from European Ancestry GWAS (Schizophrenia Working Group
of the Psychiatric Genomics Consortium, 2014; Hou et al., 2016;
Lee et al., 2018). These observations match well with findings
from studies of PRSs in much larger data sets. We caution that
universally valid estimates of variability explained are better
derived from larger studies that can consider the numerous
issues such as balancing of cases and controls, realistic sampling
conditions, and other inflations of effects. The intention here
is to provide a specific test of impute-me pipelines and address
DTC data-related questions.

Of importance to this, we found that PRS prediction in mixed
samples of non-imputed data causes severe problems. When
training PRS algorithms, an SNP set is prespecified. The pipelines
evaluated here were trained with HapMap3 as SNP set. Similar
choices are made in other published PRSs. However, such SNP
sets may not match with the SNPs available in downloadable raw
data from DTC vendors. We therefore tested what prediction
strength would be possible when using raw data directly from
DTC vendors, both in a uniform setting (e.g., “all individuals
use 23andMe v4 data”) and in a mixed setting (e.g., “individuals
have data from different vendors”). We found that in the uniform
setting, roughly half the predictive strength remained when using
genotype data that are not imputed to match the HapMap3 SNP
sets (Figure 3, rows 2 and 4). In the mixed setting, virtually no
predictive strength remained (Figure 3, rows 3 and 6). The mixed
setting is the reality that is faced, both for third-party analytical
services and for DTC vendors with different chip versions.
Imputation is therefore likely to be an essential requirement
in such scenarios.

To compare these findings with approaches that look at
one SNP at the time, we extracted the SNPedia/Promethease
SNPs that were indicated as associated with SCZ (Cariaso and
Lennon, 2012). All cases (n = 25) and all controls (n = 39)
had at least one risk variant from at least one of the 139 SNPs
that indicated SCZ association. When focusing on SNPs that
had the SNPedia/Promethease-defined “magnitude”-level (sic.)
at >1.5, we found that 80% of the SCZ cases (20 of 25)
had at least one SNPedia/Promethease risk variant. Among the
healthy controls, 84% (33 of 39) had at least one such risk
variant (p = 0.9 for difference in proportions). In other words,
it is not very predictive to know if you have a SCZ SNP.
This illustrates the importance of considering more than one
SNP at the time.

Finally, we compared pipeline reproducibility using two
genome-data files, one obtained from MyHeritage and one
from Ancestry.com, but sampled from the same person. After
processing through the impute-me pipelines, the correlation
between PRS values over 1,468 traits was r = 0.933 between the
two samples. Traits that showed discrepancy between the two
data files typically were based on only few SNPs, of which one did
not meet imputation quality thresholds for one of the data files.

EVALUATION OF USAGE

As of June 2019, a total of 28,651 genomes had been uploaded
to impute.me, and a total of 3.1 million analytical queries
had been performed (Figure 4A). The following additional
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FIGURE 3 | Pipeline evaluation using publicly available genotyped cohorts. (A) Three scores were calculated in individuals of European ancestry and relevant
diagnoses (ncontrol = 39, nSCZ = 25, and nBP = 39): a schizophrenia (SCZ) all-single-nucleotide polymorphism (SNP) score (nSNP = 558,406), an SCZ top-SNP score
(nSNP = 93), and a bipolar (BP) all-SNP score (nSNP = 554977). The BP top-SNP score only used five genome-wide significant SNPs and was not tested. The
proportion of variance explained (Nagelkerke R2) is shown above each case–control pair. (B) Testing different conditions of ancestry and input SNP sets. Row #1
corresponds to the variability explained after processing through the full impute.me pipeline, that is, the same calculation shown in the plot. Row #2 shows the
prediction level when the polygenic risk score (PRS) algorithm uses input samples from only one type of direct-to-consumer (DTC) vendor, but the algorithm has not
been trained specifically for that SNP set. Values are given as mean ± SD of three analyses in which SNP sets were all from 23andMe (v4), ancestry-com, or
MyHeritage. row #3 shows the prediction when each sample uses different SNP sets, that is, the actual situation when dealing with user-uploaded DTC data online.
Values are given as mean ± SD over 100 random drawings of combinations of the 23andMe (v4), Ancestry.com, and MyHeritage sets, in proportions of 55, 30, and
15%, respectively. These proportions correspond to what are observed in live users. Rows #4–6 shows the same as #1–3 but calculated for CommonMind
individuals of African ancestry (ncontrol = 47, nSCZ = 39, and nBP = 6). The corresponding AUC values for this figure are 0.693, 0.614, and 0.634 for row #1: for row
#2, 0.55 ± 0.12, 0.53 ± 0.084, and 0.62 ± 0.012; and for row #3, 0.58 ± 0.047, 0.55 ± 0.03, and 0.57 ± 0.047. Additionally, an extended version of the figure is
available at www.impute.me/prsExplainer, where additional metrics of prediction can be explored interactively.

observations about user behavior may be of use to the genetics
research community.

Common and well-known diseases are the most sought
after. By overall click count and comparing over several
different modules, there is no doubt that users are most
interested in common disease types; diseases of the brain,
heart, and metabolism are more requested. Interface design
may of course play important roles in such choices. For
example, the choice to serve disease traits as alphabetically
sorted lists is likely to artificially inflate interest in, for example,

abdominal aneurysm (Figure 4B). However, the larger interest
in psychiatry, cardiovascular, and metabolic disorders remains
also in the precision medicine module, which is not presented
as an alphabetically sorted list (Figure 4C). It is possible that
greater scientific interest in PRSs in these fields also drives
some of these effects, but we cannot explain why other fields
where PRSs are actively discussed, such as cancer, are not
attracting more attention.

Likewise, it seems that common disease (“complex disease
module”) is more sought after than rare disease (“rare disease
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FIGURE 4 | Detailed usage statistics. (A) Overall count of unique users and unique analysis requests since August 2015. Each request corresponds to a specific
analysis, for example, the risk score for a disease, or a view in the International Classification of Diseases, 10th Revision (ICD-10)-based map in the precision
medicine module. Each user corresponds to an uploaded genome with a unique md5sum. There is no check for twins, altered files, or users with data from separate
direct-to-consumer (DTC) companies. (B) Distribution of user interests in a trait in the complex disease module. In this module, each disease entry is presented on
an alphabetically sorted list, with aortic aneurysm being the default value. The percentage indicates how many of the users scrolled down and selected this disease
at least once (nclicks = 871,855). (C) Distribution of interests in a trait in the precision medicine module. In this module, each disease entry is presented in the layout
of the ICD-10 classification system. The click-through rate reflects how many users pursued information in a given chapter or subchapter, as percentage of total
amount of clicks (nclicks = 114,039). (D) Analysis of how individuals use the interface over time. For each user, the number of queries is shown as a function of time
after they first access their data. As all data are automatically deleted after 2 years, no queries extend beyond 730 days. The color code indicates the submission
date. The highlighted black line indicates the publically available permanent test user with ID id_613z86871, which is omitted from all other analyses.

module”); 95% of all users visit the first, whereas only 70% visit
the second. Again, interface design and project goals probably
play a big role in this—the landing page headers says Beyond

one SNP at the time, and the rare disease module is found in the
navigation bar only below seven other module entries. But it may
also illustrate a central communication challenge for the field:
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People are more interested in the genetics of common, complex
diseases with small effect sizes (Figure 2A, lower right) but may
interpret the results as if they were for rare diseases with large
effect sizes (Figure 2A, upper left).

Finally, we have observed that usage of health genetic
data surprisingly often is not just a test-and-forget event.
When plotting query count as a function of time from first
data access, we find an expected pattern of intense browsing
the hours and days after first data access (Figure 4D).
However, many users revisit their data even months and
years after first data access, perhaps implying that results are
considered and saved and then revisited at a later time in a
different context.

COMMUNICATION OF RISK SCORES

Generation of the PRS data presents one set of challenges, but
communicating them to people in such a way as to make it
both comprehensible and useful presents another (Lipkus and
Hollands, 1999; Naik et al., 2012). We believe that this is a crucial
unmet need in current genetics research, because presenting PRS
data in a way that is useful requires an understanding of people’s
motivations for accessing them in the first place.

To date, studies of PRSs have focused on providing people
with PRS information in relation to specific conditions [e.g.,
cancer (Bancroft et al., 2014, 2015; Smit et al., 2018; Young
et al., 2018)] for which participants have an indicated risk
and exploring understanding and reactions. No studies have
examined what motivates people to seek out and access their own
PRSs for common complex conditions, and little is known about
how people understand or respond to the data they receive.

Polygenic risk scores information is inherently probabilistic
in nature, which is well known to be difficult for people to
understand (Hallowell et al., 1998; Smerecnik et al., 2009), and
receiving information about genetic risk is not necessarily benign.
When people receive genetic test results that they perceive to
reflect high risk for a condition, this can have negative impact
on outcomes like self-perception and affect, and in the case
of receiving high-risk test results for Alzheimer’s disease—can
actually impact objective measures of cognitive performance
(Wilhelm et al., 2009; Dar-Nimrod et al., 2013; Lineweaver et al.,
2014; Lebowitz and Ahn, 2017; Turnwald et al., 2019). Therefore,
how information about genetic risk is communicated matters.

The literature suggests that when communicating risk, the
most useful and effective strategy is to use absolute risks (Lipkus
and Hollands, 1999; Reyna et al., 2009; Naik et al., 2012). In the
case of PRSs with modest predictive power, however, this may
simply result in restating the population prevalence of a disease
for everyone (Janssens, 2019). It is therefore important that
the predictive strength is also included in this communication;
that is how much the genetic component potentially could alter
the absolute risk. The genetic component corresponds to the
SNP heritability, and we are therefore exploring how to best
include this information (e.g., Figure 1, right). Currently, we
have registered the SNP heritability for 294 of the reported traits,
available as an experimental option called “plot heritability.” We

believe that a main future direction is to experiment and expand
on how to best communicate this to people.

It will therefore be useful to have a constant flow of people
that are interested in interpreting their genetics and expose
them to various modes of presentation. Some could involve
statistically advanced concepts, like the area under the receiver
operating characteristic curve (AUC) and SNP heritability, but
others may take simpler approaches, such as the explanatory
jar model pioneered for talking with families about genetics
(Peay and Austin, 2011; Austin, 2019). One may even imagine
layered models of increasing complexity. This should be followed
up with questionnaires probing the level of understanding and
general impact on users, something that is possible using the
impute.me platform.

ETHICS AND IMPLICATIONS

Using genetics to maximize the benefits and minimize the harms
to individuals and society requires the effective management
of the ethical, legal, and social implications of genetics.
Researchers have a responsibility to ensure that the technology
and the knowledge developed through genetic research are used
responsibly, in light of the bioethical principles of beneficence,
non-maleficence, justice, and autonomy (Lázaro-Muñoz et al.,
2019). Given that for most complex disorders there is currently
a lack of data regarding the harms or benefits of accessing PRS
information, the fundamental principle in favor of making PRSs
available to the public is that of autonomy—in the context of
genetic testing, this refers to “the right of persons to make an
informed, independent judgment about whether they wish to
be tested and then whether they wish to know the details of
the outcome of the testing” (Andrews et al., 1994). Accordingly,
currently, DTC users can access health information through
portals of DTC providers and through third-party applications
(Kalokairinou et al., 2018; Tiller and Lacaze, 2018; Ahmed and
Shabani, 2019). The problem is that many popular websites
do not communicate high-quality genetic knowledge, in part
possibly owing to the lack of engagement by the research
communities (Badalato et al., 2017). One solution to this problem
is to call for regulation and to ban such sites. Alternatively, as we
propose here, it is possible to meet user demands and strive to do
so as ethically as possible.

To exemplify this, as researchers, we have a choice in whether
to provide access to a state-of-the-art PRS for a disease or not.
We know that this PRS does not explain everything about the
disease, does not account for all the genetic information, and is
not part of today’s clinical guidelines. However, we also know that
users are already accessing information about disease through
DTC genetics. These users may get their information from flawed
assumptions of SNP effect sizes or from commercial platforms
with little interest in explaining the limitations of the score. We
argue that the choice that maximizes the potential for benefits to
individuals is to provide the score and to provide it in a setting
that puts its consequence in perspective.

An example of such perspective is that of giving reports by
disease score, and not by individual risk variant as is currently
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the case in most third-party analytics apps. Many people carry
the high-risk allele for a common variant, but fewer people
have a high PRS, which is the sum of all such risk variants.
An example of this is the 84% frequency of SCZ risk variants
in healthy users according to SNPedia, as reported above. This
means that for those autonomously seeking information on
health genetics data, the use of PRSs has the potential to decrease
the level of induced worry in people in comparison with the
current levels. Similarly, smart interface design can actively steer
people toward browsing results by indication, and away from
the pervasive practice of reporting the worst genetic scores
for any disease first. This too may serve to reduce induced
worry, in alignment with the general approach of testing only
on indication to limit false-positive rates. Finally, of course,
adaptive warnings based on risk levels, including referral to
resources such as findageneticcounselor.com, is something we
continuously strive to optimize.

CONCLUSION

In summary, we present impute.me as a fully operational General
Data Protection Regulation (GDPR)-compliant genetic analysis
engine covering a very broad range of health-related traits,
specifically focusing on optimizing possibilities from microarray-
based DNA measurements. The challenges, their solutions, and
the curation work behind them are highly relevant today in a
setting of highly varying quality in interpretation of personal
consumer genetics. In the future, we can expect that PRS
predictiveness will increase. This will mean a continued and
increasing relevance of the platform, even more so as the number
of individuals doing genetic testing increases. With a directed
push toward responsible use of genetics, this may even prove to
be an overall clinical benefit.

METHODS

Data Privacy and Security
On data submission, each personal genome is assigned a
nine-digit alphanumeric unique identifier (“uniqueID”). This
uniqueID is used as login and identifier throughout all
downstream processes because it has no information that is
personally linkable, as opposed to, for example, an email address.
The uniqueID is initially linked to two types of data: those that
can be traced back to individual that submitted the genome
and those that cannot. Genomic data, filename of submitted
data, and email address are of the first type: genomic data
because it can be used with software such as gedmatch to
trace family patterns, filename because it often contains the
name of the submitter (e.g., 23andMe data use full name as
standard), and email for obvious reasons. Data of the traceable
type are deleted 14 days after processing, which is the period
in which users are able to download their full imputed data
sets. The exception is email addresses, which are not deleted
but instead unlinked from the uniqueID and kept elsewhere for
the purpose of follow-up studies. Either way, this means that

14 days after processing, there exists nothing on the servers
that can link results (designated with a uniqueID) with the
person who submitted the data (any of the three traceable
data types). Thus, even if the database is leaked or lost, it
is not possible to link the data to an actual person. After
2 years, the remaining non-traceable data, for example, the
derived calculations, the risk scores, and the genotypes of SNPs
of specific interest, are all completely deleted. All ingoing and
outgoing data transfers are encrypted using Transport Layer
Security (TLS 1.3). All storage is encrypted using the AES-
256 standard.

This means that all data are collected for specified, explicit,
and legitimate purposes in a transparent manner and kept in a
form that permits identification of data subjects for no longer
than is necessary for the purposes for which the personal data
are processed. We therefore consider that these measures both
provide adequate security and privacy protection and are in
accordance with the GDPR.

Preprocessing and Bioinformatics
After submission of data, a comprehensive bioinformatic
processing of the genotype data takes place. This is done in
order of free computing nodes becoming available, consisting of
several support programs; first, a shapeit call is made to phase
the data correctly (Delaneau et al., 2013), and then an impute2
call is made with 1000 Genomes version 3 as reference (Howie
et al., 2009; 1000 Genomes Project Consortium et al., 2015).
Although the pipelines are not guaranteed to handle any format
they receive, they currently operate with less than 1% processing
failures, meaning uploads that cannot proceed through the
full quality control and imputation pipelines. The failures are
typically due to file formatting errors, missing chromosomes, or
any number of other odd data corruptions that real-world data
exchange suffers from.

Several customizations have been made with the goal
of minimizing memory footprint and thereby allowing
running in a clustered fashion on a series of small cloud
computers. This allows for relatively easy scaling of capacity:
one simple setup (“hub-only”), where calculations are run
on the same computer as the website interface. Another is
a hub + node-setup, where a central hub server stores data
and shows the website, while a scalable number of node-
servers perform all computationally heavy calculations. After
preprocessing is finished, two new files are created: a .gen
file with probabilistic information from imputation calls
and a simple format file with best guess genotypes, called
at a 0.9 impute2 INFO threshold. All further calculations
are based on these files. A mail with download links to
these two files is returned to the user, along with a JSON-
formatted file containing a machine-readable summary of
all calculations, as well as links with guidance to obtain
more in-depth information on personal DNA interpretation
(Folkersen, 2018).

Polygenic Risk Score Calculation
From the preprocessed data, a modular set of trait predictor
algorithms is applied. For many of the modules, the calculations
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are trivial. For example, this could be the reporting of presence
and/or absence of a specific genotype, such as ACTN3 and
ACE-gene SNPs known to be (weakly) associated with athletic
performance. These are included mostly because users expect
them to be. For others, we rely heavily on PRSs.

An important distinguishing factor between different PRS
algorithms is how risk alleles are selected. A commonly used
approach includes variants based on whether they surpass
a given p-value threshold in the GWAS, retaining only
linkage disequilibrium (LD)-independent variants using LD-
based clumping, often with a p-value threshold of genome-
wide significance (p < 5e−8). Herein, we refer to this approach
as the “top-SNP” approach. The top-SNP approach has the
advantage that it is simple to explain, is easy to obtain
for many GWAS, and has a light computational burden
(e.g., Buniello et al., 2019; Lambert et al., 2019; Patron
et al., 2019; Watanabe et al., 2019). However, research has
repeatedly shown that the inclusion of variants that do
not achieve genome-wide significance improves the variance
explained by PRSs, with PRSs including all variants often
explaining the most variance. PRSs based on GWAS effect
sizes that have undergone shrinkage to account for the LD
between variants have been shown to explain more variance
than PRSs that account for LD via LD-based clumping
(Vilhjálmsson et al., 2015). Herein, we refer to this approach
as the all-SNP approach. It is more computationally and
practically intensive to implement at scale. Consequently, within
impute.me, each trait or disease reported shows all-SNP-based
PRS calculations if such is available, and top-SNP-based PRS
calculations if not.

In the top-SNP calculation mode, the results are scaled such
that the mean of a population is zero and the standard deviation
(SD) is 1, according to the relevant 1000 Genomes super-
population: African, admixed American, East Asian, European,
or South Asian.

Population-scoresnp = frequencysnp × 2× betasnp

Zero-centered-score =∑
Betasnp × Effect-allele-countsnp

-Population-scoresnp

Z-score = Zero-centered-score/

Standard-deviationpopulation

where beta [or log(odds ratio)] is the reported effect size for
the SNP effect allele, frequencySNP is the allele frequency for the
effect allele, and the Effect-allele-countSNP is the allele count from
genotype data (0, 1, or 2).

In the all-SNP calculation, the scaling is similar but done
empirically, that is, based on previous impute.me users of
matching ethnicity. This mode of scaling is also available as an
optional functionality in the top-SNP calculations and generally
seems to match well with the default 1000 Genomes super-
population scaling.

The all-SNP scores were derived using weightings from the
LDpred algorithm (Vilhjálmsson et al., 2015). This algorithm
adjusts the effect of each SNP allele for those of other SNP
alleles in LD with it and also takes into account the likelihood
of a given allele to have a true effect according to a user-
defined parameter, which here was taken as wt1, that is, the
full set of SNPs. The algorithm was directed to use hapmap3
SNPs that had a minor allele frequency >0.05, Hardy–Weinberg
equilibrium p > 1e−05, and genotype yield >0.95, consistent with
our expectation that these would be the best imputed SNPs after
full pipeline processing.

Pipeline Testing
To test the pipelines described herein, the CommonMind
genotypes measured with the microarray of the type H1M
were downloaded along with phenotypic information. Each
sample was processed through the impute.me pipelines,
using the batch upload functionality. Reported ethnicity was
compared with pipeline (genotype) assigned ethnicity and found
to be concordant.

After pipeline completion, we extracted three PRSs
for each sample, corresponding to SCZ all-SNP, SCZ
top-SNP, and BP all-SNP. In the github repository for
impute.me, these three correspond to the scores labeled
SCZ_2014_PGC_EXCL_DK.EurUnrel.hapmap3.all.ldpred.effects,
schizophrenia_25056061, and BIP_2016_PGC.All.hapmap3.all.
ldpred.effects trait IDs (Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014; Hou et al.,
2016). These extracted scores formed the basis of the
row #1 and #4 calculations in Figure 3. The remaining
rows were created by subsetting the best guess imputed
genotypes into new sets of users, corresponding to each
of three major DTC vendors and then re-running the
scoring algorithms with either uniform data or mixed data.
Uniform data are here defined as all 195 samples having
the same set of SNPs available, corresponding to one of
three DTC vendors in each run. Mixed data are defined
as samples having different sets of SNPs available, a set
corresponding to actual distributions of customers from different
DTC vendors, with distributions redrawn 100 times. We
estimated the predictive ability of the PRSs using Nagelkerke’s
R2 and AUC.

Usage Evaluation
A log data freeze was performed on June 8, 2019 by making a
copy of all usage log files and then removing the uniqueID of
each user. This was done to prevent it from being linked with the
genetic data of that user. The exception was the publicly available
permanent test user with ID id_613z86871, which was lifted out
before analysis and is not included in other summary statistics.
Generally, a user corresponds to an uploaded genome with a
unique md5sum. Click-through rates were calculated as fraction
of users that performed any query in the module in question; for
example, the precision medicine module was only launched in
September 2018 and, therefore, only counts clicks from people
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who have used it. Plots were generated using base-R version 3.4.2
and cytoscape version 3.71.

URLS

Code repository: https://github.com/lassefolkersen/impute-me
Web resource: https://www.impute.me/
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