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The human Periodontal Ligament Stem Cells (hPDLSCs) exhibit self-renewal capacity
and clonogenicity potential. The Extracellular Vesicles (EVs) secreted by hPDLSCs are
particles containing lipids, proteins, mRNAs, and non-coding RNAs, among which
microRNAs, that are important in intercellular communication. The purpose of this
study was the analysis of the non-coding RNAs contained in the EVs derived from
hPDLSCs using Next Generation Sequencing. Moreover, our data were enriched using
bioinformatic tools. The analysis highlighted the presence of non-coding RNAs and
five microRNAs: MIR24-2, MIR142, MIR335, MIR490, and MIR296. Our results show
that these miRNAs target the genes classified in two terms of the Gene Ontology:
“Ras protein signal transduction” and “Actin/microtubule cytoskeleton organization.”
Noteworthy, the in-deep analysis of our EVs highlights that the miRNAs could be
implicated in the silencing of proto-oncogenes involved in 12 different types of tumors.

Keywords: human periodontal ligament stem cells, extracellular vesicles, next generation sequencing, non-
coding RNAs, microRNAs, cytokinesis

INTRODUCTION

The human Periodontal Ligament Stem Cells (hPDLSCs) are mesenchymal stem cells that can
be easily harvested from periodontal tissue. Non-invasive surgery during standard dental scaling
does not entail any additional risk to the donor (Chiricosta et al., 2019). The hPDLSCs showed
self-renewal capacity, differentiation and immunomodulatory proprieties (Eleuterio et al., 2013).
The Extracellular Vesicles (EVs) are particles delimited by a lipid bilayer capable of crossing
biological barriers and being internalized in the target cells so that they play an essential role

Abbreviations: EVs, Extracellular Vesicles; FGF, Fibroblast Growth Factor; GDP, Guanosine Diphosphate; GTP, Guanosine
Triphosphate; hPDLSCs, human Periodontal Ligament Stem Cells; lncRNAs, long non-coding RNAs; miRNAs, microRNAs;
MSCGM-CD, Mesenchymal Stem Cell Growth Medium Chemically Defined; ncRNAs, non-coding RNAs; NGS, Next
Generation Sequencing; Spry3, protein sprout homolog 3; STAR, Spliced Transcripts Alignment to a Reference RNA-seq
aligner; HMDD, Human microRNA Disease Database.
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in intercellular communication (Valadi et al., 2007; Pizzicannella
et al., 2019b). EVs contain different macromolecules such as
lipids, proteins, DNA, mRNA and non-coding RNAs (ncRNAs)
among which microRNAs (or miRNAs) (Zhang et al., 2019).
The dynamic light-scattering analysis, previously demonstrated
from our research group, highlighted the presence of two
different populations of EVs derived from hPDLSCs. The average
diameter of the EVs populations is between 90 ± 20 nm
and 1,200 ± 400 nm and they have the same ζ-potential of
−10.7 ± 0.9 mV. The tapping-mode topographic 3D atomic
force-microscopy measurements showed that EVs derived from
hPDLSCs have a globular shape with a central depression and a
relatively smooth surface (Diomede et al., 2018).

The ncRNAs are circulating RNAs that represent the 99%
of total RNAs and can be classified according with length
(small 18–200 nucleotides and long >200), with function
(ribosomal RNAs and transfer RNAs), or with regulation
[miRNAs and long non-coding RNAs (lncRNAs)] (Dozmorov
et al., 2013; Palazzo and Lee, 2015). The ncRNAs are involved
in gene regulation by RNA interference, RNA modification
or spliceosomal cycle. Specifically, miRNAs are small ncRNAs
(18–25 nucleotides in length) that prevent the translation of
mRNAs and consequently contribute to define the amount
of proteins inside the cell (Bartel, 2004). miRNAs play an
important role in physiological functions such as cell-cell
communication, cell proliferation and vascularization. The
ncRNAs and miRNAs are implicated in various diseases
including cancer, in which they play an important biological role
(Slaby et al., 2017).

Therefore, in this study, using Next Generation Sequencing
(NGS), we want to analyze the ncRNAs and miRNAs
contained in EVs derived from hPDLSCs in the early
stages of stemness. Particularly, we investigated the possible
implications of ncRNAs in the biological processes and in the
proto-oncogenes modulation.

MATERIALS AND METHODS

Culture and Extraction of the hPDLSCs
All the subjects that were involved in the study gave their
informed consent. The protocol executed for this study was
approved by the Medical Ethics Committee at the Medical
School, “G. d’Annunzio” University of Chieti-Pescara, Chieti,
Italy (n◦266 17 April 2014) and it is in accordance with
the Declaration of Helsinki. Five patients in healthy general
conditions were chosen for tooth removal for orthodontic
purposes. Subsequently, the cells were cultured in the
Mesenchymal Stem Cell Growth Medium Chemically Defined
(MSCGM-CD) Bulletin medium (Lonza, Basel, Switzerland).
In order to minimize exposure to the non-human substances
and facilitate the growth of human MSCs, the MSCGM-CD was
changed twice a week. Cells isolation and characterization were
performed as previously described (Rajan et al., 2016; Trubiani
et al., 2016). The hPDLSCs were collected and washed with PBS
(Lonza) several times. Finally, they were cultured at 37◦C with
5% of CO2 with the MSCGM-CD medium.

Isolation of the hPDLSCs-Derived EVs
The hPDLSCs, isolated from each patient, were collected
from conditioned medium (CM; 10 mL) at passage 2 after
48 h of incubation. For 15 min, the CM was centrifuged at
3,000 × g in order to remove debris and suspended cells. EVs
were extracted using the commercial agglutinant ExoQuick TC
(System Biosciences, Euroclone SpA, Milan, Italy). Specifically,
10 mL of CM of the hPDLSCs were mixed with 2 mL
ExoQuick TC and the whole was incubated at 4◦C overnight
without rotation. Subsequently, in order to deposit the EVs, a
centrifugation step was carried out for 30 min at 1,500 × g.
Finally, the pellets were resuspended in 200 µL of PBS (Ca2+ and
Mg2+). The EVs, obtained from hPDLSCs of each patient, were
used for transcriptomic analyses.

RNA Extraction and Non-coding Analysis
The RNA extraction and processing were conducted as previously
reported (Silvestro et al., 2020). Briefly, the Total Exosome
RNA and Protein Isolation Kit (catalog #4478545; Thermo
Fisher Scientific, Rockford, IL, United States) was used to
isolate the RNA following the manufacturer’s protocol and
30 µL of RNA solution were collected from each sample
(Pizzicannella et al., 2019a).

The manufacturer instructions and the TruSeq RNA Exome
protocol (Illumina, San Diego, CA, United States) were followed
in order to prepare the library. The normalized libraries were
analyzed using the MiSeq instrument (Illumina) in a single read
mode. For the NGS analysis, the RNA extracted from the EVs of
each patient was repeated in triplicate.

The software fastQC (Babraham Institute, Cambridge,
United Kingdom) was used to perform the quality check of
the reads. Then, the adapters and the low-quality bases were
identified and removed by the software Trimmomatic (Usadel
Lab, Aachen, Germany) (Bolger et al., 2014). The “Homo
Sapiens” reference genome, available from the University of
California Santa Cruz website1, was used to align the reads
taking advantage of the software Spliced Transcripts Alignment
to a Reference RNA-seq aligner (STAR) (Dobin et al., 2013).
Finally, the Cufflinks software (Trapnell Lab, Washington, DC,
United States), version 2.2.1, was used to assign the gene symbol
to each transcript (Trapnell et al., 2013). In order to study
the transcripts, the whole set was classified with HUGO Gene
Nomenclature Committee website2 (Stelzer et al., 2016) using
the “non-coding RNAs” group (475). Specifically, the genes
that are targeted by the identified miRNAs were analyzed with
TargetScanHuman (version 7.2) (Agarwal et al., 2015). Moreover,
the target genes were enriched with the “Biological Process”
terms included in the “Gene Ontology” using PANTHER.
Finally, the Human microRNA Disease Database (HMDD) v3.2
was used in order to associate the genes target of our miRNAs to
the disease in which their expression is deregulated. All the plots
were depicted with the software R.

1http://labshare.cshl.edu/shares/gingeraslab/www-data/dobin/STAR/
STARgenomes/Old/ENSEMBL/homo_sapiens/ENSEMBL.homo_sapiens.release-
75/
2https://www.genenames.org/
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FIGURE 1 | Classification of the non-coding RNAs families contained in EVs belong using HUGO database.

RESULTS

Evaluation of Non-coding Transcripts of
EVs Derived From hPDLSCs
The analysis of EVs derived from hPDLSCs reveals 955 non-
coding transcripts (Supplementary Table S1). The HUGO
website characterizes 212 transcripts distributed in 11 groups
as showed in Figure 1. The most of the non-coding transcripts
of EVs belong to the “Antisense RNAs” (109), to the “Long
intergenic non-protein coding RNAs” (40) and to the “Long
non-coding RNAs with non-systematic symbols” (25). The
remaining transcripts are included in smaller categories. Our EVs
contain also 5 miRNAs: MIR24-2, MIR142, MIR296, MIR335,
MIR490. We studied the biological roles of our miRNAs using
TargetScanHuman (Agarwal et al., 2015) that associates each
miRNA to its target genes. We used the database PANTHER
(Thomas et al., 2003) to visualize all the “Biological Process”
terms in which the target genes are involved (Figure 2). The
deepest terms that better characterize our transcripts are related
to the cytoskeletal organization (“Actin/microtubule cytoskeleton
organization”) and the signal transduction mediated by Ras
protein (“Ras protein signal transduction”). PANTHER was also
used to associate the genes with the pathway in which they
are involved. In particular, the most characterized pathways
include the genes CDC42, RAC1, RHOC, RHOA, RHOJ, SPRY3,
PFN2, WASL, TUBB, TUBB4B, SSH3, SSH1, ARPC5L, PARVA,
RHOQ. The first five genes are in common to “Actin/microtubule
cytoskeleton organization” and “Ras protein signal transduction.”
SPRY3 is found only in the pathway related to Ras protein

while the other genes are exclusively related to the cytoskeletal
organization. Moreover, we inspected the amount of genes that
are simultaneously targeted by our miRNAs as represented in the
Venn Diagram in Figure 3. There is no gene that is targeted by all
the miRNAs. Nevertheless, we observed that one gene (GABRB1)
is not targeted just by MIR142, one gene (ONECUT2) just by
MIR24, one gene (CNNM2) just by MIR490. Furthermore, MIR-
24 targets the most of the genes (1,500) immediately followed by
MIR142 (1,250). MIR490, MIR335, and MIR296 target exclusively
less than 200 genes each. Furthermore, using HMDD (Huang
et al., 2019) we reported in Table 1 the associations found among
our miRNAs and the target genes deregulated in specific diseases.

DISCUSSION

EVs are phospholipids membrane-enclosed organizations that
carry proteins, lipids and nucleic acids including mRNAs and
ncRNAs (Trubiani et al., 2019).

In this study, we analyzed the ncRNAs contained in EVs
derived from hPDLSCs at early stage of stemness with a
focus on miRNAs.

Our results show that the ncRNAs contained in EVs are
classified in 11 families (Figure 1). The most represented
class of ncRNAs is the “Antisense RNAs,” small molecules
that regulate gene’s expression by binding the complementary
mRNAs (Xu et al., 2018). Our results show also the presence
of lncRNAs, an important class of transcripts that indirectly
regulates the transcription recruiting transcription factors and
affecting mRNA stability (Fatima and Nawaz, 2017). EVs
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FIGURE 2 | Representation of the biological processes in which the genes targeted by the miRNAs in EVs are mainly involved. The miRNAs MIR24, MIR142,
MIR335, MIR296, and MIR490 mainly target genes belonging to the “Cellular processes” category of the Gene Ontology. More specifically, the genes fall into two
sub-categories “Ras protein signal transduction” and “Actin/microtubule cytoskeleton organization.” The genes involved in these subprocesses are characteristic of
the pathways represented in the outer ring.

transport lncRNAs from one cell to another and can induce
epigenetic modifications in the receiving cells (Fatima and
Nawaz, 2017). Other classes of ncRNAs represented in our
EVs are the small nucleolar RNAs and miRNAs. The small
nucleolar RNAs are involved in the chemical alteration of
different RNAs and in the regulation of the alternative splicing in
pre-mRNAs (Decatur and Fournier, 2002; Falaleeva et al., 2016;
Sharma et al., 2016).

Among ncRNAs, miRNAs are the most studied since they
can regulate the expression of 60% of the human genes.
Specifically, miRNAs are post-transcriptional regulators that
bind complementary mRNA and consequently reduce protein
expression. miRNAs, released from the EVs, can determine the
cell fate through their participation in differentiation and in the
regulation of reprogramming processes (Friedman et al., 2009;
Fatima and Nawaz, 2017; Mens and Ghanbari, 2018). In the last

two decades, many studies contextualized the role of miRNAs in
cancer development (Rupaimoole and Slack, 2017). Interestingly,
in our EVs, we found five miRNAs: MIR24-2, MIR142, MIR335,
MIR490, and MIR296.

Our bioinformatic analysis, represented in Figure 3, highlights
the amount of target genes that are modulated by our miRNAs.
Indeed, both MIR24-2 and MIR142 are able to influence more
than 1,000 genes while MIR335, MIR490, and MIR296 less than
200 each. The representation with the Venn Diagram shows that
each miRNA can regulate several genes and each gene can be
regulated by more than one miRNA. This evidence suggests that
MIR24-2 and MIR142 are ones most involved.

The MIR24-2, MIR142, MIR335, MIR490, and MIR296
found in our EVs target the genes mainly involved in
“Ras protein signal transduction” and “Actin/microtubule
cytoskeleton organization” (Figure 2).
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FIGURE 3 | Venn diagram. The plot represents for each miRNA in EVs the genes that inhibits in comparison to the others. MIR24 and MIR142 target exclusively the
highest number of genes.

The Ras proteins are GTPases that act as switches recruiting
either the Map Kinases or the RHO/RAC family resulting in
downstream signaling for transcription, cell cycle or cytoskeletal
organization (Bustelo et al., 2007).

The analysis performed using PANTHER database shows
that our miRNAs target CDC42, RAC1, RHOA, RHOC, and
RHOJ that simultaneously participate in the regulation of
“Actin/microtubule cytoskeleton organization” and “Ras protein
signal transduction.” These genes encode for smalls GTPases/Rho
family that are active when bound to Guanosine Triphosphate
(GTP) or inactive when bound to Guanosine Diphosphate
(GDP). The CDC42, RAC1, RHOC, and RHOA genes play
an important role in cytoskeletal rearrangement, morphology
regulation, cell motility, cell adhesion and cell cycle regulation
(Aspenström, 2019; Thomas et al., 2019). RHOJ is a gene that
encodes for an endothelial member of the Cdc42 subfamily
involved in endothelial motility, tubulogenesis and microtubule
lumen formation (Leszczynska et al., 2011). Indeed, miRNAs
are very important regulators of these GTPase Rho family
(Liu et al., 2012).

Additionally, as regards the Gene Ontology term “Ras protein
signal transduction,” the miRNAs inside our EVs target the SPRY3
gene, which encodes for the Protein sprouty homolog 3 (Spry3),
an intracellular negative regulators of Receptor tyrosine kinase
signaling and of the Fibroblast Growth Factor (FGF) pathways
(Hacohen et al., 1998). Furthermore, Panagiotaki et al. (2010)

showed that Spry3 negatively regulates the release of calcium
downstream of brain-derived neurotrophic factor signaling, and
consequently cause the inhibition of the axons branching in
cultured cortical neurons.

Moreover, the miRNAs present in our EVs regulate the
"Actin/microtubule cytoskeleton organization" process by
targeting different genes such as TUBB, TUBB4B, PFN2,
WASL, SSH3, SSH1, ARPC5L, PARVA, and RHOQ. In detail,
TUBB and TUBB4B encode respectively for a beta-tubulin
protein and for the beta-4B tubulin chain, both representing
structural components of the microtubules. RHOQ encodes
for a small GTPase involved in the regulation of the cell shape
through the organization of the actin cytoskeleton. SSH1
and SSH3 encode for protein phosphatases that play a role
in the regulation of the dynamics of the actin filament. In
addition, SSH1 and SSH3 activate the actin-binding protein
family ADF/cofilin that promotes the disassembling of the
actin filaments (Kurita et al., 2007). ARPC5L gene, part
of Arp2/3 complex, encodes for the Actin Related Protein
2/3 Complex Subunit 5 Like. This gene regulates the actin
polymerization in the cytoskeleton and generates an actin
filament network (Abella et al., 2016). PARVA encodes for
the α-parvin protein that is involved in the regulation of the
actin cytoskeleton dynamism (Sepulveda and Wu, 2006). PFN2
is an actin-binding protein that regulates the architecture
of the synapse and the cytoskeleton (Jeong et al., 2018).
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TABLE 1 | MiRNAs found in hPDLSCs-derived EVs associated to specific cancer.

MiRNA Target gene Gene name Disease References

MIR24-2 S100A8 S100 calcium binding protein A8 Laryngeal carcinoma Guo et al., 2012

MIR24-2 AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase 2 Osteosarcoma Song et al., 2013

MIR142 RAC1 Rac family small GTPase 1 Hepatocellular carcinoma Wu et al., 2011

MIR142 PROM1 Prominin 1 Colon cancer Shen et al., 2013

MIR142 ABCG2 ATP binding cassette subfamily G member 2 Colon cancer Shen et al., 2013

MIR142 LGR5 Leucine rich repeat containing G protein-coupled receptor 5 Colon cancer Shen et al., 2013

MIR142 HMGA1 High mobility group AT-hook 1 Osteosarcoma Xu et al., 2014

MIR296 HMGA1 High mobility group AT-hook 1 Prostate cancer Wei et al., 2011

MIR296 PIN1 Peptidylprolyl cis/trans isomerase, NIMA-interacting 1 Prostate cancer Lee et al., 2014

MIR296 FGFR1 Fibroblast growth factor receptor 1 Hepatocellular carcinoma Wang et al., 2016

MIR296 AKT2 AKT serine/threonine kinase 2 Pancreatic cancer Li et al., 2017

MIR296 PLK1 Polo like kinase 1 Lung cancer Xu et al., 2016

MIR296 SP1 Sp1 transcription factor Cervical cancer Lv and Wang, 2018

MIR296 CDX1 Caudal type homeobox 1 Gastric cancer Li et al., 2014

MIR490 CCND1 Cyclin D1 Lung cancer Gu et al., 2014

MIR490 CDK1 Cyclin dependent kinase 1 Ovarian cancer Chen et al., 2015

MIR490 FOS Fos proto-oncogene, AP-1 transcription factor subunit Bladder cancer Li et al., 2013

MIR490 HMGA2 High mobility group AT-hook 2 Osteosarcoma Liu et al., 2015

MIR335 BCL2L2 BCL2 like 2 Gastric cancer Xu et al., 2012

Ovarian cancer Cao et al., 2013

MIR335 SP1 Sp1 transcription factor Gastric cancer Xu et al., 2012

MIR335 ROCK1 Rho associated coiled-coil containing protein kinase 1 Osteosarcoma Wang et al., 2013

Neuroblastoma Lynch et al., 2012

MIR335 MAPK1 Mitogen-activated protein kinase 1 Neuroblastoma Lynch et al., 2012

MIR335 LRG1 Leucine rich alpha-2-glycoprotein 1 Neuroblastoma Lynch et al., 2012

To each miRNA found in hPDLSC-derived EVs is associated a Target Gene and the kind of cancer in which it is found deregulated inside the Human MicroRNA Disease
Database along with the Reference in which it is described.

WASL, which encodes for Neural Wiskott-Aldrich syndrome
protein, appears to be involved in the polymerization of
actin. In addition, PFN2 and WASL are highly expressed in
neural tissues and participate to the axon guidance in the
Slit/Robo pathway. These results show that our EVs contain
miRNAs involved in axon guidance and consequently in
neural differentiation.

Moreover, we evaluated (using HMDD) how much our
miRNAs deregulate oncogenes involved in different kinds of
cancers. Noteworthy, our miRNAs are involved at least in 12
different cancers (Table 1) and specifically in their development
and progression (Calin and Croce, 2006).

The MIR24-2 encodes miR-24 that plays an important role
as a suppressor of the genes E2F2 and MYC. Moreover, by
binding the complementary 3′-UTR mRNA of these genes,
miR24-2 is involved in the regulation of the cell cycle (Lal
et al., 2009). Guo et al. (2012) also showed that the up-
regulation of MIR24 leads to morphological changes, low cell
proliferation and enhancement of cell invasion potential in
laryngeal squamous cell carcinoma by inhibiting transcription
of the S100A8 gene. Additionally, the overexpression of
MIR24 inhibits osteosarcoma cell proliferation by blocking the
transcription of AGPAT2 gene encoding for Lysophosphatidic
Acid Acyltransferase β, an enzyme involved in osteosarcoma cell
proliferation (Song et al., 2013).

The MIR142 appears to be a potential proto-oncogene
suppressor. Indeed, through the transcriptional block of RAC1,
a gene that encodes for a GTPase that regulates cell growth and
migration and promotes the activation of protein kinases. Wu
et al. (2011) showed that MIR142 has also a role in suppressing
migration and invasion of hepatocellular carcinoma cells. In
addition, MIR142 inhibits the proliferation of pancreatic cancer
cells by decreasing the expression of heat shock protein 70
(Mackenzie et al., 2013). It inhibits the growth of cells responsible
for colon cancer, hindering the transcription of PROM1 (CD133),
ABCG2, and LRG5 genes (Shen et al., 2013). Moreover, by
blocking the transcription of the HMGA1 gene, an important
gene involved in promoting cancer and increasing invasiveness,
Xu et al. (2014) reveals that MIR142 can act as a suppressor
in osteosarcoma. Furthermore, as reported by Dickman et al.
(2017) the MIR142 is secreted by oral squamous cell carcinoma
cells, promoting the growth of the tumor. The release of miR-
142-3p also influences the tumor microenvironment, promoting
angiogenesis (Dickman et al., 2017). Indeed, in oral squamous cell
carcinoma, MIR142 was up-regulated, demonstrating how the
differential expression of miRNAs could be useful in the diagnosis
of oral cancer (Xu et al., 2019).

HMGA1 gene can be also targeted byMIR296, another miRNA
presents in our EVs, supporting the knowledge by which different
miRNAs can interact with the same mRNA. Negative regulation
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of this gene by MIR296 appears to reduce invasiveness in
prostate cancer cells (Wei et al., 2011). In addition, MIR296
targeting PIN1, another gene involved in tumor development,
suppresses cell proliferation and growth in prostate cancer
cells (Lee et al., 2014). In hepatocellular carcinoma, MIR296
inhibits the proliferative capacity and progression of the cell
cycle and induces apoptosis blocking the transcription of the
FGFR1 proto-oncogene (Wang et al., 2016). Other targets of
MIR296 are the proto-oncogenes AKT2 in pancreatic cancer (Li
et al., 2017), PLK1 in non-small cell lung cancer (Xu et al.,
2016), SP1 in cervical cancer (Lv and Wang, 2018) and CDX1 in
gastric cancer (Li et al., 2014). Through the negative regulation
of the expression of these genes, MIR296 exerts its action as
a tumor suppressor. Therefore, EVs derived from hPDLSCs,
through the secretion of MIR296, could act as suppressors of
the malignant progression by attenuating the transcription of
oncogenic targets. The MIR296, as reported by Severino et al.
(2015) was also detected in the in metastases of patients with oral
squamous cell carcinoma.

In the transcriptome of our EVs, we found also MIR490
that seems to have the role of tumor suppressor in lung cancer
cells A549 and ovarian cancer by blocking the transcription of
CCND1 and CDK1 respectively, two important genes involved
in cell cycle progression (Gu et al., 2014; Chen et al., 2015).
Additionally, as showed by Li et al. (2013), the MIR490
seems to be a suppressor of bladder cancer cell proliferation
by blocking the transcription of FOS. Moreover, MIR490
inhibits the expression of HMGA2 and its downregulation
appears to affect the development potential of the osteosarcoma
(Liu et al., 2015).

MIR335, present in our EVs, also appears to play the
role of proto-oncogene suppressor in a wide variety of
cancers. It is known that MIR335 negatively regulates the
metastasis in gastric cancer by targeting BCL2L2 and SP1
(Xu et al., 2012). Likewise targeting the same BCL2L2
gene, it is capable of inhibiting invasiveness in ovarian
cancer (Cao et al., 2013). In neuroblastoma cells, MIR335
downregulates the ROCK1 and MAPK1 genes, involved in the
non-canonical TGF-β pathways. This modulation implicates a
reduced invasiveness of the neuroblastoma cells. In addition,
MIR335 inhibits the mRNA transcribed by LRG1 gene reducing
the migration of neuroblastoma cells (Lynch et al., 2012).
Similarly, it negatively regulates at the post-transcriptional level
the ROCK1 inhibiting tumor cell invasion and migration in
osteosarcoma (Wang et al., 2013). Conversely, Kabir et al.
(2016) showed that MIR335 is up-regulated in fibroblasts
associated with senescent cancer. These cells present in the
tumor environment of oral neoplasms. Furthermore, the authors
reported that MIR335 is also involved in the development
of a secretory phenotype associated with senescence. In
this way, MIR335 contributing to the progression of cancer
(Kabir et al., 2016).

Interestingly, in our previous manuscript, we have
already demonstrated in an analysis of the oral stem
cell transcriptome that, following the in vitro expansion,
many oncogenes were absent or poorly expressed
(Gugliandolo et al., 2017).

CONCLUSION

The EVs derived from hPDLSCs contain several ncRNAs
among which the five miRNAs: MIR24-2, MIR142, MIR296,
MIR335, and MIR490. Specifically, these miRNAs regulate genes
that are involved in “Ras protein signal transduction” and
“Actin/microtubule cytoskeleton organization” processes that
regulate cell growth and differentiation during cytokinesis.
Moreover, our results demonstrate that MIR24 and MIR142 are
the most relevant miRNAs because they target more than 1,000
genes each. Furthermore, all the miRNAs detected in our EVs
could have a potential role as proto-oncogenes suppressors. These
findings indicated that the EVs obtained from hPDLSCs can
be considered as anticancer therapeutic agents. This evidence
supports the role of mesenchymal stem cell derivatives in the
deregulatory functioning of human carcinogenesis in addition to
their use in regenerative medicine.
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