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Improving swine climatic resilience through genomic selection has the potential to

minimize welfare issues and increase the industry profitability. The main objective of

this study was to investigate the genetic and genomic determinism of tolerance to heat

stress in four independent purebred populations of swine. Three female reproductive

traits were investigated: total number of piglets born (TNB), number of piglets born

alive (NBA) and average birth weight (ABW). More than 80,000 phenotypic and 12,000

genotyped individuals were included in this study. Genomic random-regression models

were fitted regressing the phenotypes of interest on a set of 95 environmental covariates

extracted from public weather station records. Themodels yielded estimates of (genomic)

reactions norms for individual pigs, as indicator of heat tolerance. Heat tolerance is a

heritable trait, although the heritabilities are larger under comfortable than heat-stress

conditions (larger than 0.05 vs. 0.02 for TNB; 0.10 vs. 0.05 for NBA; larger than 0.20 vs.

0.10 for ABW). TNB showed the lowest genetic correlation (-38%) between divergent

climatic conditions, being the trait with the strongest impact of genotype by environment

interaction, while NBA and ABW showed values slightly negative or equal to zero

reporting a milder impact of the genotype by environment interaction. After estimating

genetic parameters, a genome-wide association study was performed based on the

single-step GBLUP method. Heat tolerance was observed to be a highly polygenic trait.

Multiple and non-overlapping genomic regions were identified for each trait based on the

genomic breeding values for reproductive performance under comfortable or heat stress

conditions. Relevant regions were found on chromosomes (SSC) 1, 3, 5, 6, 9, 11, and 12,

although there were important regions across all autosomal chromosomes. The genomic

region located on SSC9 appears to be of particular interest since it was identified for

two traits (TNB and NBA) and in two independent populations. Heat tolerance based

on reproductive performance indicators is a heritable trait and genetic progress for

heat tolerance can be achieved through genetic or genomic selection. Various genomic

regions and candidate genes with important biological functions were identified, which

will be of great value for future functional genomic studies.
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INTRODUCTION

Heat stress (HS) is a major welfare issue in the swine industry,
especially as global temperatures trend upwards. Over the past
decades, genetic selection has played a major role in improving
productive and reproductive performance in pigs (Merks, 2000;
Hill, 2016; Zak et al., 2017). However, the enormous genetic
progress achieved has been accompanied by a large increase in
total metabolic heat production (Cabezón et al., 2016; Johnson,
2018; Johnson et al., 2019). Consequently, the animal’s ability
to cope with high ambient temperatures has been significantly
reduced (Brown-Brandl et al., 2001; Renaudeau et al., 2011).
In addition to creating welfare concerns, HS is responsible for
significant economic losses to the swine industry (St-Pierre et al.,
2003; Johnson and Baumgard, 2019).

Excessive heat and humidity are the main factor contributing
to seasonal infertility, which has important economic
implications as producers cannot maintain a constant flow
of individuals throughout the farm during the whole year. Pigs
have low capacity of dissipating body temperature under high
ambient temperatures (Einarsson et al., 2008). HS leads to a
reduction in the number of piglets born alive and weaned as
well as litters produced per sow per year (Bertoldo et al., 2012).
Furthermore, HS negatively impacts different stages of the sow
reproductive life. For instance, Paterson et al. (1992) and Love
et al. (1993) have shown how the attainment of puberty in gilts
as well as early retained pregnancy losses could increase during
the summer-autumn seasons. In addition, HS has been linked
to reduced embryo establishment, resulting in a smaller number
of piglets born per litter, particularly in gilts (Tummaruk et al.,
2010).

There is evidence of genetic variability for heat tolerance (HT)
in livestock species, including pigs (Carabaño et al., 2017;Misztal,
2017; Ansari-Mahyari et al., 2019; Zhang et al., 2019), particularly
in the growing and finishing stages. In general, genetic analysis of
HT in growing/finishing pigs are based on a heat-load function
for live or carcass weight (Zumbach et al., 2008a,b; Fragomeni
et al., 2016a). HT based on growth traits is moderately heritable
(Fragomeni et al., 2016a,b), but there is a gap in knowledge
on the genetic mechanisms of HS response in sows since only
differences between maternal genetic lines have been reported
(Peltoniemi et al., 1999; Bloemhof et al., 2008). Furthermore,
the genetic correlations among reproductive traits expressed in
different seasons of the year are lower than unity (Lewis and
Bunter, 2011). This indicates that some genotypes that perform
best in comfortable conditions might not be the top performer
individuals under HS. The presence of genetic variability for
HT enables selective breeding, which is a cost-effective approach
for mitigating climatic HS in livestock (Renaudeau et al., 2012).
For instance, Australian dairy cattle breeding programs are
already reporting genomic breeding values for HT (Nguyen
et al., 2016, 2017). Reaction-norm random-regression is an
approach commonly used to study genotype by environment
interactions (GxE, Rauw and Gomez-Raya, 2015) based on
routinelymeasured traits such as reproductive records (Knap and
Su, 2008; Silva et al., 2014). These models provide solutions for
the across-environment genetic merit of individuals as well as

their responsiveness to the environmental changes (i.e., the norm
of their reaction; Rauw and Gomez-Raya, 2015).

Genotype by environment interactions have been largely
neglected in the investigation of sow reproductive performance
(Su et al., 2007; Putz et al., 2015) although genetic evaluations
are routinely reported for several reproductive traits (Samorè and
Fontanesi, 2016). Neglecting GxE could result in a deterioration
of reproductive performance in pigs, especially in maternal
lines. Several genomic regions have been identified to be
associated with sows’ reproductive performance in various breeds
(Onteru et al., 2011; Schneider et al., 2012; Wang et al.,
2018). Selective breeding based on genomic information is a
promising alternative to reduce seasonality in swine reproductive
performance as well as to improve HT. Therefore, the main
objectives of this study were: (1) to investigate the impact
of multiple environmental covariates on sow reproductive
traits, (2) to estimate genetic variance components for HT,
and, (3) to identify candidate genes and metabolic pathways
that are associated with HS response in four independent
swine populations.

MATERIALS AND METHODS

Animal welfare and ethics committee approval was not needed
for this study as all the datasets used were provided by
commercial breeding operations.

Phenotypic Records
Datasets from four maternal-line pig populations were used for
the current study. Nucleus-herd farrowing records were obtained
from January 2008 to June 2016 for 11,163 Landrace (SPG_LR;
21,276 litters) and 12,184 Large White (SPG_LW; 27,794 litters)
sows from the Smithfield PremiumGenetics company (SPG) and
from August 2011 to June 2016 for 11,537 Landrace (TML_LR;
24,934 litters) and 5,318 Yorkshire (TML_YS) sows (11,625
litters) from The Maschhoffs company (TML). Farms were
located in North Carolina (n = 2), Texas (n = 1), Illinois
(n = 6), Alabama (n = 1), Nebraska (n = 1) and Indiana (n
= 1). The traits analyzed were: total number of piglets born
(TNB), number of piglets born alive (NBA), and the average birth
weight of the piglets (ABW, in kg). The phenotypic datasets were
edited independently for each population by removing records
deviating 3.5 SD from the mean.

Weather Records
Weather records were obtained from the National Climatic Data
Center Quality Controlled Local Climatological Data database at
the National Oceanic and Atmospheric Administration (www.
ncdc.noaa.gov/cdo-web/datatools/lcd?prior\=\N). Zip codes
were obtained for each nucleus farm, converted to geological
coordinates and matched to the closest weather station using
the packages “zipcode” (Breen, 2012) and “geosphere” (Hijmans,
2019), available in the R software (R Core Team, 2016). In the
present study, we assumed that the impact of HS on reproductive
performance could be pinpointed to a specific time range from
ovulation to farrowing (Bloemhof et al., 2012). Environmental
covariates (ENV) used were obtained from the raw weather
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TABLE 1 | Number of genotyped animals (sows and their sires) across the four

populations used in this study.

Population Sows Sires

60 K 80 K Total 60K 80K Total

SPG_LR 2,085 1,086 3,171 406 213 619

SPG_LW 3,658 1,153 4,811 333 138 460

TML_LR 1,474 0 1,474 113 0 113

TML_YS 1,443 0 1,443 109 0 109

Population: indicates the breeding company and breed, in which SPG, Smithfield Premium

Genetics; TML, The Maschhoffs; LR, Landrace; LW, Large White; YS, Yorkshire (also

known as Large White in other breeding companies).

records. Litter-specific values were calculated for each week of
the sows’ reproductive cycle from 3 weeks prior to breeding
through farrowing (19 week-intervals). The variables defined
were: average of mean daily temperature (Mean.T), average of
daily relative humidity (RH), average of maximum temperature
(Max.T), average of minimum temperature (Min.T), and average
temperature-humidity index (THI), calculated as Bohmanova
et al. (2008). This generated a total of 95 (19 intervals by 5
variables) different ENV.

Genomic Datasets
A total of 12,200 animals (10,899 sows and 1,301 boars) across the
four populations were genotyped with either the PorcineSNP60K
Bead Chip (Illumina Inc., San Diego, CA, USA; 61,566 SNPs)
or the GGP Porcine HD v1 80K (GeneSeek Inc., Neogen Co.,
Lincoln, NE, USA; 68,529 SNPs). The missing genotypes were
imputed using the FImpute v2.2 software (Sargolzaei et al.,
2014) to the 60K Bead chip. Quality control of genotype data
consisted of removing SNPs with minor allele frequency lower
than 0.05, SNP call rate below 0.90 and extreme deviation from
Hardy-Weinberg equilibrium (with a p-value smaller than 10−6).
The total number of individuals with genotypes involved in
further analyses is reported in Table 1. SPG populations had the
largest number of individuals genotyped, with a total of 3,790
for SPG_LR and 5,271 for SPG_LR. TML populations had a
lower number of individuals genotyped, with 1,587 for TML_LR
and 1,552 for TML_YS. The final number of SNPs that passed
the quality control was 48,911, 49,183, 44,824, and 44,875, for
SPG_LR, SPG_LW, TML_LR, and TML_YS, respectively.

Statistical Analyses
Random regression models (RRM; Jamrozik and Schaeffer, 1997;
Oliveira et al., 2019) coupled with the Single-step GBLUP
approach (Aguilar et al., 2010) were used to regress the
phenotypes (TNB, NBA, ABW) on the ENV to obtain reaction
norms for the animal additive genetic effect. Legendre orthogonal
polynomials (order = 1) were used to model the trajectory of
phenotypic traits across environmental conditions, by running
a model for each potential ENV. The random regression model
is used as a reaction norm model, where each individual will
be assigned two solutions for the genetic effect: a solution
for the intercept term, expressing the performance where the

environmental covariate is set to 0; and a solution for the slope
term, which eliciting the change in performance given a unit
change in the environmental covariate. The latter component can
be considered as an indicator of plasticity. The model fitted for all
the traits can be described as:

yijklmn = α1+ βϕ1k + CGi + Parj + a0l1+ a1lϕ1k+pm + eijklmn

Where yijklmn is the nth phenotypic record for TNB, NBA
or ABW, α is the intercept, CGi is the fixed effect of the
contemporary group (sow birth year), Parj is the fixed effect
of the parity of the sow (1, 2, 3, 4, 5 and higher), β is the
fixed regression coefficient on the ENV, ϕ1k is the ENV vector
(standardized between −1 and 1) at the value k, aol and a1l are
the random regression coefficients for the intercept and slope
of the additive genetic effect of individual l, pm is the random
permanent environmental effect for sow m and eijklmn is the
random residual error for record n. The following assumptions

with regards to the additive genetic effects were made:

[

a0
a1

]

∼

N (0,H⊗ G). G is a 2 × 2 (co)variance matrix for the intercept

and slope effects:G =

[

σ 2
0 σ01

σ10 σ 2
1

]

, where σ 2
0 is the additive genetic

variance for the intercept term, σ 2
1 is the additive genetic variance

for the slope term, σ10 (and σ01) is the covariance between the
two aforementioned effects. The contemporary group effect was
defined only based on sow birth year to account for genetic trend
while avoiding collinearity with the ENV effect.

The H matrix was constructed using the preGSf90 software
(Aguilar et al., 2014) by blending the pedigree-derived (traced
back for 10 generations) relationship matrix (A) and a SNP-
derived genomic relationship matrix (Legarra et al., 2014):

H−1
= A−1

11 +

[

0 0

0 ZDZ′−1 − A−1
22

]

where ZDZ′−1 is the inverse of the SNP-derived genomic
relationship matrix, calculated based on the second method
described by VanRaden (2008), A−1

22 and A−1
11 are the inverse

of the A matrix for the genotyped and non-genotyped animals,
respectively. The sow permanent environmental effect was

assumed as pm = N
(

0, I⊗ σ 2
pe

)

, while residuals were allocated

to five classes of residual variance:













en1
en2
en3
en4
en5













N (0, I⊗ R) , where,R =

















σ 2
e1 0 0 0 0

0 σ 2
e2 0 0 0

0 0 σ 2
e3 0 0

0 0 0 σ 2
e4 0

0 0 0 0 σ 2
e5

















,

And σ 2
et is the residual variance for the tth class. Phenotypic

records were allocated to one of the five classes using the first
four quintiles as discriminants, in order to have a balanced
number of observations in each class. Variance components were
estimated using the gibbs3f90 package from the BLUPF90 family
programs (Misztal et al., 2018). Posterior means for the variance
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components and the genetic parameters were stored at each
iteration. The variance component estimation was performed
in two steps. First, all possible “trait x population x ENV”
combinations were run, in order to find the ENV yielding the
strongest GxE estimate as measured by the parameter σ 2

1 . In this
step, 30,000 iterations were run, and only genotypes of sires were
included. While not providing an accurate estimate of variance
components for GxE, we assumed this strategy to be effective in
detecting the presence of GxE while saving computation time.
The omission of sows’ genotypes made the sampling process
considerably faster. The second step consisted of analyzing the
selected “trait x population x ENV” combinations, running
120,000 iterations with 20,000 iterations of burn-in and thinning
every 20 rounds. All genotyped individuals were included in
the analyses. The convergence was checked by visual inspection
of trace plots and through the Geweke’s test. After obtaining
the random-regression variance components, an additive genetic
(co)variance matrix among values of ENV Ŵ was calculated as:

Ŵ = 8′G8

Where G is the estimated (co)variance matrix between the
intercept and slope terms (described above), 8 is a matrix of
number of rows equal to the number of unique values of the ENV
and two columns (a vector of “1” and the ENV). Heritability of
each single value k of ENV (h2

k
) was calculated as follows:

h2k =
Ŵkk

Ŵkk + σ 2
pe + σ 2

et

,

WhereŴkk is the k
th value of the diagonal ofŴ, σ 2

peis the estimated

sow permanent environmental variance, and σ 2
et is the estimate

of residual variance for the respective ENV class (1 to 5) of each
kth value. Additive GxE predicted values at the population and
individual level (i.e., reaction norms), were calculated as rk =

α1 + βϕ1k and rkl = (α + a0l)
∗ 1 + (β+a1l)

∗ ϕ1k, where rk
is the predicted value k at the population level, and rkl is the
predicted value k for the individual l, and all other parameters
are as described before.

Genome-Wide Association Study and
Functional Annotation
AGWAS was carried out for each of the three reproductive traits,
performed on the population that showed the largest estimate
of σ 2

1 in the second step of the variance component estimation.
This approach was used in order to reduce the amount of results
presented still delivering the most valuable findings. Marker
effects were obtained by back-solving the gEBV (Wang et al.,
2012). In brief, gEBV were calculated using the blupf90iod2
package (Misztal et al., 2018). Subsequently, the marker effects
were obtained for both intercept and slope terms of the random
regression model, using the postGSf90 software (Aguilar et al.,
2014). Similarly to Wang et al. (2014) and Bergamaschi et al.
(2020), direct genomic values for 10-SNP overlapping windows
were calculated, their variance was divided by the whole-
genome direct genomic values’ variance and subsequently used
as measure of relative contribution of that genomic region to the

total genomic variance. Miami plots of the significant regions
were generated using the ggplot2 package (Wickham, 2016)
available in the R software. Genomic windows were selected if
falling within the top 1% for contribution to genomic variance for
the intercept and slope terms, independently. Genomic windows
were then tested using a bootstrapping method following
Howard et al. (2015) and Bergamaschi et al. (2020).

The genomic windows that were selected and passed the
bootstrapping test were used for the subsequent functional
genomic analyses. Firstly, the biomaRt package (Durinck et al.,
2005, 2009) was used to retrieve candidate genes overlapping
with the genomic windows identified, based on the current
gene annotations from the ENSEMBL Genes platform (Version
99; www.ensembl.org/index.html). Subsequently, biological
processes, metabolic pathways, and enrichment analyses were
performed using the DAVID 6.8 (Huang et al., 2009a,b), the
Kyoto Encyclopedia of Genes and Genomes—KEGG (Kanehisa
et al., 2014) bioinformatic tools and the PANTHER Classification
System (Thomas et al., 2003). Furthermore, the genes identified
were compared to previously-published QTL regions using
the Pig QTL database (www.animalgenome.org/cgi-bin/QTLdb/
SS/index).

RESULTS

Descriptive Statistics
Table 2 shows the descriptive statistics for the three reproductive
traits in the four populations studied. The population with the
largest number of records was SPG_LW, followed by SPG_LR
and TML_LR (depending on the trait) and TML_YS. All
populations had an average TNB and NBA above 10 and 9
piglets, respectively. AWB was equal or larger than 1.5 kg in
all populations. Standard deviation values were similar among
populations, although TML populations showedmore variability.

Selection of Environmental Covariates
Table S1 shows a summary for the ENV tested in this study across
the four populations studied. Table 3 presents the descriptive
statistics for the ENV selected for each trait by population
combination together with the variance components estimated
for the additive genetic terms (intercept and slope) in the RRM.
RH was the ENV selected for seven out of the 12 “ENV x trait x
population” combinations. RH recorded from 14 to 7 days before
conception was selected for both TNB and NBA in SPG_LR,
while RH measured in the week before conception was selected
for TNB and ABW in SPG_LW.

RH in similar gestation periods (100 to 107 days, and 107
to 114 days into pregnancy, for NBA in SPG_LW and ABW in
TML_YS, respectively) was selected. Also, RH in the third week of
gestation was selected for ABW in TML_LR. In addition, Max.T
was selected for TNB (in the fifth and third week of gestation in
TML_LR and TML_YS, respectively) and ABW in SPG_LR (from
21 to 14 days before conception). For NBA, average THI recorded
from 86 to 93 days into pregnancy was selected in TML_LR
while Min.T recorded from 72 to 79 days into pregnancy was
selected in TML_YS. The variance components estimates were
partially consistent within trait and across populations. The

Frontiers in Genetics | www.frontiersin.org 4 June 2020 | Volume 11 | Article 629

www.ensembl.org/index
www.animalgenome.org/cgi-bin/QTLdb/SS/index
www.animalgenome.org/cgi-bin/QTLdb/SS/index
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tiezzi et al. Genomics of Swine Heat Tolerance

TABLE 2 | Descriptive statistics for each trait by population combination.

Trait Population N N sows N sires Mean SD

Total number of piglets born (TNB) SPG_LR 21,104 11,113 886 11.94 3.53

SPG_LW 27,616 12,155 739 12.48 3.94

TML_LR 23,848 11,173 447 10.84 3.79

TML_YS 11,230 5,179 249 11.09 3.92

Number of piglets born alive (NBA) SPG_LR 21,104 11,113 886 10.86 3.40

SPG_LW 27,631 12,138 739 11.26 3.83

TML_LR 23,848 11,173 447 9.78 4.06

TML_YS 11,229 5,178 249 9.81 4.29

Average birth weight (ABW) SPG_LR 18,942 10,673 883 1.60 0.26

SPG_LW 24,399 11,587 707 1.52 0.25

TML_LR 14,521 8,262 401 1.56 0.29

TML_YS 7,369 4,142 229 1.50 0.28

Population: indicates the breeding company and breed, in which SPG, Smithfield Premium Genetics; TML, The Maschhoffs; LR, Landrace; LW, Large White; and YS, Yorkshire (also

known as Large White in other breeding companies).

TABLE 3 | Variance components estimates for the intercept and slope terms of the additive genetic effect.

Trait Pop. Covariate Variance components estimates

Variable and time of recording Intercept Min Max σ
2
0 σ01 σ

2
1

TNB SPG_LR Average Rel. Humidity 14 to 7 days before conception 52.50 11.74 93.24 8.93 (7.51;10.26) 0.61 (−0.36;1.76) 6.57 (5.21;8.26)

SPG_LW Average Rel. Humidity 7 days to conception 52.50 11.74 93.24 9.99 (8.60;11.40) 0.22 (−0.59;0.96) 3.68 (2.76;4.61)

TML_LR Maximum Temp. 28 to 35 days int pregnancy 15.07 −8.54 38.68 13.70 (11.90;15.66) −2.46 (−3.57;−1.38) 4.69 (3.49;5.87)

TML_YS Maximum Temperature 14 to 21 days into pregnancy 16.81 -6.46 40.14 10.34 (8.49;12.18) −2.01 (−3.03;−1.01) 3.71 (2.83;4.57)

NBA SPG_LR Average Rel. Humidity 14 to 7 days before conception 52.50 11.74 93.24 9.35 (7.97;10.74) 0.72 (−0.20;1.72) 4.93 (3.86;6.20)

SPG_LW Average Rel. Humidity 100 to 107 days into pregnancy 51.78 11.74 91.82 10.73 (9.38;12.23) −0.81 (−1.70;0.04) 4.04 (3.13;5.03)

TML_LR Average THI 86 to 93 days into pregnancy 46.43 12.18 80.7 14.63 (12.58;16.65) -2.99 (−4.35;−1.58) 7.44 (5.80;9.23)

TML_YS Minimum Temp. 72 to 79 days into pregnancy 2.22 −18.47 22.92 10.62 (8.78;12.48) −2.70 (−3.91;−1.41) 6.33 (4.91;7.79)

ABW SPG_LR Max Temp. 21 to 14 days before conception 19.58 −0.69 39.86 26.09 (23.71;28.51) −0.46 (−1.65;0.70) 3.46 (2.73;4.24)

SPG_LW Average Rel. Humidity 7 days to conception 52.50 11.74 93.24 23.11 (21.09;25.29) 0.01 (−1.40;1.30) 4.80 (3.71;5.92)

TML_LR Average Rel. Humidity 14 to 21 days into pregnancy 59.09 27.65 90.55 30.90 (28.05;33.98) −3.25 (−5.17;−1.31) 8.25 (6.32;10.22)

TML_YS Average Rel. Humidity 107 to 114 days into pregnancy 59.09 27.65 90.55 28.60 (24.98;32.32)
−2.33 (−4.76;−0.18) 9.40 (7.01;11.78)

Results are reported for each trait by population combination, with one case representing the largest estimate of the slope term variance. Cases highlighted in bold show the strongest

estimate of the slope term variance, per trait.

Pop., indicates the breeding company and breed, in which SPG, Smithfield Premium Genetics; TML, The Maschhoffs; LR, Landrace; LW, Large White; and YS, Yorkshire (also known as

Large White in other breeding companies). Covariate: indicates the environmental covariate selected for the population-trait combination, mean and SD are reported. Intercept, indicates

the value that was set to 0 (intercept) in the random regression model.

proportion of variance explained by the intercept term (σ 2
0 ) was

smaller for TNB (8.93 to 10.34) and NBA (9.35 to 14.63) and
greater for ABW (23.11 to 30.90), and consistently larger for
TML populations (with TML_LR showing the largest values).
The proportion of variance explained by the slope term (σ 2

1 )
was significantly smaller than the intercept term (3.46 to 9.40
vs. 8.93 to 30.90). The covariance term σ01 (off-diagonal element
of covariance matrix G) did not include the value 0 in the
confidence intervals only for the TML populations. In these
populations the estimates ranged from −3.25 to −2.01, with
larger values for TML_LR and TML_YS. Further results will
be reported only for the scenarios with the largest estimate
of σ 2

1 : (1) SPG_LR for TNB regressed on RH measured 14
to 7 days before conception, (2) TML_LR for NBA regressed
on THI measures 89 to 93 days into pregnancy, and, (3)

TML_YS for ABW regressed on RH measured 107 to 114 days
into pregnancy.

Heritability Estimates
Figure 1 shows the heritability estimates across the range of
ENV for the three selected scenarios. Figure 1A presents the
heritability estimates for TNB over value of RH. In general,
there is a decrease in heritability as RH increases and the
environmental conditions become more uncomfortable to the
sows. The decrease in heritability is mostly due to the increase
in residual variance for the high-RH classes, as it can be seen
that within-class the trend is stable, with 0.05 to 0.12 values
in the high-RH class and a 0.02 to 0.04 values in the low-RH
class. The heritability estimates ranged from 0.05 to 0.10 for
low-RH conditions and was stable below 0.05 under the other

Frontiers in Genetics | www.frontiersin.org 5 June 2020 | Volume 11 | Article 629

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tiezzi et al. Genomics of Swine Heat Tolerance

FIGURE 1 | (A) Heritability estimates (posterior means with 95% empirical confidence intervals) for total number of piglets born (TNB) in the Smithfield Premium

Genetics Landrace population (SPG_LR) over the range of Average Relative Humidity 14 to 7 days before conception. (B) Heritability estimates (posterior means with

95% empirical confidence intervals) for number of piglets born alive (NBA) in the Landrace population of the Maschhoffs breeding company (TML_LR) over the range

of average THI 86 to 93 days into pregnancy. (C) heritability estimates (posterior means with 95% empirical confidence intervals) for average birth weight (ABW) in the

Yorkshire population of the Maschhoffs breeding company (TML_YS) over the range of average relative humidity 107 to 114 days into pregnancy.

environmental conditions. Similar results were observed for
NBA (Figure 1B). The heritability estimates are larger (between
0.1 and 0.2) in the low range of THI, but lower (∼0.05)

and stable in all other THI classes. For ABW (Figure 1C),
the heritability estimates are larger compared to the TNB and
NBA but follow a similar trend (highest values in the most

Frontiers in Genetics | www.frontiersin.org 6 June 2020 | Volume 11 | Article 629

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tiezzi et al. Genomics of Swine Heat Tolerance

comfortable environmental gradients and descending values as
RH surpasses 60%).

Reaction Norms and Re-ranking Across
Environments
Figure 2 shows the genomic reaction norms for each population
average (black tick lines) and top and bottom HT boars (sires),
for the three selected scenarios. Sires were selected to have at
least 50 daughters so that the phenotypes were distributed under
the largest range in ENV (i.e., daughters’ records could not be
concentrated under the comfortable environmental gradients).
Under the three studied cases, this resulted in 28 sires for
SPG_LR, 54 sires for TML_LR and 18 sires for TML_YS.
However, only reaction norms for the four most HT and the
four most heat susceptible sires are reported, in blue and
red, respectively. In the case of TNB (Figure 2A), there is
an unfavorable effect of HS across the ENV range, with a
difference of 0.25 piglets from the driest to the most humid
conditions (from 12 to 11.75 piglets). While there are not
relevant differences between the groups of sires in the driest
environment, heat susceptible sires show a stronger reduction
in reproductive performance of approximately 1 piglet across
the whole ENV range. HT sires had no (or small) reduction
in reproductive performance. For TNB, off-diagonal values of
the genetic correlation matrix Ŵ showed a median value of
78.7% and a minimum value of −37.8% (Figure 3A), supporting
a remarkable GxE effect. For NBA (Figure 2B), there were
also clear negative effects in reproductive performance [almost
1.5 less piglets born alive from low THI values (around 10
points) to the highest values (80 points)]. Larger variability
was also seen among the sires’ reaction norms, with sensitive
sires generally showing higher performance under comfortable
environmental conditions. Some HT sires appeared to have
an increased performance in high-THI compared to low-THI
conditions, but the differences were small. However, HT sires in
the uncomfortable environments do not outperform the sensitive
sires in the comfortable environmental gradients. For NBA, the
genetic correlations in Ŵ indicated a more moderate GxE effect,
with a median value of 83.4% and a minimum value of −21.7%
(Figure 3B). Figure 2C presents the reaction norms for ABW.
While the population average reduction in ABW across the range
of RH is negligible, the sires’ reaction norms show a group of
high HT sires that also have the best performance in the low-
RH conditions, with a small reduction in ABW (∼0.1 kg). For
ABW, the genetic correlations in Ŵ showed the most moderate
GxE effect, with a median value of 87.6% and minimum value of
0% (Figure 3C).

Genome-Wide Association Study and
Functional Annotation
The Miami plots presented in Figure 4 show the percentage of
additive genetic variance explained by each 10-SNP overlapping
genomic window for the intercept and slope terms of the
genomic reaction norms based on TNB, NBA, and ABW. The
suggestive red line highlights the genomic windows that were
tested via bootstrapping, while red dots indicate the genomic

windows that were considered as significant. The number (and
percentage) of selected genomic windows for bootstrapping were
891 (1.84%), 700 (1.68%), and 702 (1.72%) for TNB, NBA, and
ABW, respectively.

The top significant genomic windows for the slope term on
TNB as regressed on average RH from 14 to 7 days prior to
conception were located at SSC3, SSC9, and SSC11 (Table 4).
The most significant genomic windows for the intercept term
(shown in Figure 4A) were located on SSC2 (from 133,626,412
to 134,446,288 bp as well as from 157,492,614 to 158,466,521
bp), SSC16 (from 47,916,509 to 48,994,238 bp) and SSC17
(from 48,537,476 to 49,274,453 bp). Furthermore, 116 additional
genomic windows explained a minimum of 0.13% of the total
additive genetic variance for the intercept and slope terms on
TNB (Tables S2a, S2b, respectively).

The top significant genomic windows for the slope term
on NBA as regressed on average THI from 86 to 93 days
into pregnancy were located in SSC5, SSC6, SSC9, and SSC12
(Table 5). The most significant genomic windows for the
intercept term (shown in Figure 4B) are located at SSC1 (from
266,158 to 2,322,507 bp and from 67,951,385 to 71,151,381
bp), SSC11 (from 79,931,895 to 80,427,841 bp) and SSC9 (from
43,064,592 to 43,794,001 bp). The genomic window located on
SSC9 (28,988,041 to 29,535,913 bp) with strong impact on NBA
partially overlaps with another genomic window located on
SSC9 (28,682,617 to 29,350,733 bp), with moderate effect on
the slope term for TNB, despite of the fact that the association
study was performed on different populations. Furthermore, 54
additional genomic windows explaining more than 0.17% of the
total additive genetic variance were identified for the intercept
and slope term on NBA (Tables S3a, S3b). These regions were
located on all chromosomes, except SSC10 and SSC14.

The top significant genomic windows for the slope term on
ABW as regressed on average RH from 107 to 114 days into
pregnancy were located on SSC1, SSC3, and SSC11 (Table 6). The
most significant genomic windows for the intercept term of ABW
(Figure 4C) are located in SSC9 (from 75,823,479 to 81,214,756
and from 55,824,884 to 58,228,279 bp), SSC14 (from 114,610,574
to 117,846,180 bp) and SSC18 (from 31,560,363 to 32,946,579
bp). Furthermore, 44 additional genomic windows explaining
more than 0.18% of the total additive genetic variance for the
intercept term on ABW were identified (Table S4a).

The positional candidate genes identified are presented
in Tables 4–6, Tables S2a, S2b, S3a, S3b, S4a. The genes
and genomic regions identified to be associated with heat
tolerance (slope term) have been previously linked to a variety
of trait groups: body temperature, blood-related traits (e.g.,
hemoglobin content, white blood cell number, leukocyte
percentage), coping behavior, organ weight and size (adrenal
gland, liver, head, kidney, heart, small intestine), melanoma
susceptibility, maternal infanticide, growth rate, meat quality,
carcass fatness, and fatty acid metabolism, fertility, thoracic
vertebra number, water holding capacity (and drip loss), and
Salmonella shedding status (Tables 4–6, Tables S2b, S3b). The
most significant (p-value < 0.05) KEGG pathway identified
was: “ssc00061:Fatty acid biosynthesis.” The main biological
processes identified (p-value < 0.05 after multiple testing
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FIGURE 2 | (A) Reaction norms for total number of piglets born (TNB) in the Smithfield Premium Genetics Landrace population (SPG_LR) as regressed on Average

Relative Humidity 14 to 7 days before conception. Black line indicates the population trend, blue lines indicate the most tolerant sires, red line indicates the most

susceptible sires. (B) Reaction norms for number of piglets born alive (NBA) in the Landrace population of the Maschhoffs breeding company (TML_LR) as regressed

on average THI 86 to 93 days into pregnancy. Black line indicates the population trend, blue lines indicate the most tolerant sires, red line indicates the most

susceptible sires. (C) Reaction norms for average birth weight (ABW) in the Yorkshire population of the Maschhoffs breeding company (TML_YS) as regressed on

average relative humidity 107 to 114 days into pregnancy. Black line indicates the population trend, blue lines indicate the most tolerant sires, red line indicates the

most susceptible sires.

correction) were: cardiac conduction system development,
ventricular cardiac muscle tissue development, genitalia
development, epithelium development, embryonic forelimb

morphogenesis, tube development, and somatic diversification
of immune receptors via germline recombination within a single
locus. The significant (p-value < 0.05 after multiple testing
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FIGURE 3 | (A) Heatmap reporting the genetic correlation estimates (posterior

mean) across values of the environmental covariate for total number of piglets

born (TNB) in the Smithfield Premium Genetics Landrace population (SPG_LR)

as regressed on Average Relative Humidity 14 to 7 days before conception.

(B) Heatmap reporting the genetic correlation estimates (posterior mean)

across values of the environmental covariate for number of piglets born alive

(Continued)

FIGURE 3 | (NBA) in the Landrace population of the Maschhoffs breeding

company (TML_LR) as regressed on average THI 86 to 93 days into

pregnancy. (C) Heatmap reporting the genetic correlation estimates (posterior

mean) across values of the environmental covariate for average birth weight

(ABW) in the Yorkshire population of the Maschhoffs breeding company

(TML_YS) as regressed on average relative humidity 107 to 114 days into

pregnancy.

correction) cellular components associated with the candidate
genes identified are: intermediate filament cytoskeleton,
supramolecular fiber, cytoskeleton, non-membrane-bounded
organelle, and intracellular part. The significant (p-value < 0.05
after multiple testing correction) metabolic functions identified
are structural molecular activity and core promoter binding.
Furthermore, Figures S3–S5 present a schematic representation
of the functional analyses of the intercept term using the
PANTHER Classification scheme.

The genes and genomic regions identified to be associated
with the intercept term have been previously linked to a
variety of trait groups, including: spinal curvature, growth
traits, meat fatty acid composition, meat quality, gestation
length, NBA, testicular width and length, semen pH, number
of mummified piglets, glucose level, age at puberty, gait
score, corpus luteum number, litter size, number of non-viable
fetuses, skin thickness, time spent lying, maternal infanticide,
body length, chest circumference, birth weight variability,
cortisol level, piglet mortality, teat number, and scrotal hernia
(Tables S2a, S3a, S4a). The most significant (p-value < 0.05)
KEGG pathways identified were: “Oocyte meiosis,” “Insulin
resistance,” “Neutrophin signaling pathway,” “Insulin signaling
pathway,” “Basal transcription factors,” and “Acute myeloid
leukemia.” The biological processes identified (p-value < 0.05
after multiple testing correction) were: regulation of cellular
response to stress, response to starvation, regulation of cell
proliferation, cellular response to nutrient levels, hemoglobin
metabolic process, mitotic cell cycle response, macromolecule
modification, regulation of catabolic process, regulation of
protein metabolic process, regulation of kinase activity, apoptotic
signaling pathway, regulation of phosphate metabolic process,
DNA methylation or demethylation, cellular response to
extracellular stimulus, regulation of immune system process, and
animal organ development. Figures S6–S8 present a schematic
representation of the functional analyses for the slope term
using the PANTHER Classification System. Despite of the use
of different databases, similar pathways and biological processes
were identified based on DAVID or PANTHER.

DISCUSSION

In the present study we performed a series of comprehensive
analyses to reveal the genomic background of heat tolerance
based on routinely-measured phenotypic records and publicly
recorded weather variables, and provide the basic knowledge
needed for implementation of genomic selection for heat
tolerance in maternal-line swine breeds. We focused on
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FIGURE 4 | (A) Miami plot (proportion of genomic variance explained by each 10-SNP window) for total number of piglets born (TNB) in the Smithfield Premium

Genetics Landrace population (SPG_LR) as regressed on Average Relative Humidity 14 to 7 days before conception. Graph above the line reports the variance

absorbed for the intercept term of the random regression model (across-environment performance), graph below the line reports variance absorbed for the slope term

(reaction norms). (B) Miami plot (proportion of genomic variance explained by each 10-SNP window) for number of piglets born alive (NBA) in the Landrace population

of the Maschhoffs breeding company (TML_LR) as regressed on average THI 86 to 93 days into pregnancy. Graph above the line reports the variance absorbed for the

intercept term of the random regression model (across-environment performance), graph below the line reports variance absorbed for the slope term (reaction norms).

(C) Miami plot (proportion of genomic variance explained by each 10-SNP window) for average birth weight (ABW) in the Yorkshire population of the Maschhoffs

breeding company (TML_YS) as regressed on average relative humidity 107 to 114 days into pregnancy. Graph above the line reports the variance absorbed for the

intercept term of the random regression model (across-environment performance), graph below the line reports variance absorbed for the slope term (reaction norms).
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TABLE 4 | The top significant genomic windows for the slope term of the reaction norm on total number of piglets born (TNB) as regressed on the Average Relative

Humidity 14 to 7 days before conception in the SPG_LR population.

Location Var(%) N SNP Positional genes QTL traits

SSC3: 35,273,575–36,463,191 0.32 23 ENSSSCG00000007917 (RBFOX1),

ENSSSCG00000051042,

ENSSSCG00000046506,

ENSSSCG00000020433,

ENSSSCG00000051435

CD8-negative leukocyte percentage, CD8-positive leukocyte

percentage, CD3-negative

SSC3: 60,835,887–62,535,813 0.31 18 ENSSSCG00000035540 Feed conversion ratio, back fat thickness between 3rd and 4th rib,

ham weight, CD8-positive leukocyte percentage, CD3-negative,

CD8-negative leukocyte percentage, average daily gain, Japanese

color scale, meat color L

SSC11: 80,629,582–81,387,249 0.31 19 - Conductivity 45min post-mortem, hind leg conformation

SSC9: 28,682,617–29,350,733 0.28 17 ENSSSCG00000039906,

ENSSSCG00000020347

Litter weight, adrenal gland weight, hind-leg conformation,

gestation length

Location, indicates the chromosome number (SSC1 to SSC18), followed by the starting and end position of the genomic window(s) in base pairs; Var(%), the percental variance explained

by the most relevant 10-SNP window within the region of interest; N SNP, number of SNP marker included in the genomic region identified; Positional genes, Ensembl gene stable ID

(with official gene symbol when known) mapped to the genomic regions identified; QTL traits, indicates which traits have known QTLs mapped within the genomic region of interest,

based on QTLs reported in the Pig QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index).

four independent lines of sows to test the discoveries over
genetically-different populations that were raised under different
management systems, therefore also testing the portability of the
methods employed in the study. We finally explored the genetic
basis of heat tolerance for the three traits in selected populations.
The use of four independent pig populations greatly validates the
results identified and conclusions drawn in this study.

Descriptive Statistics
The reproductive performance observed in the four populations
(Table 2) are within the ranges reported in other studies
(Bloemhof et al., 2008; Williams et al., 2013). LR sows farrowed
relatively less piglets compared to the other breeds, but the ABW
(per piglet born) was slightly higher. The overall reproductive
performance of the TML populations is similar to SPG, but
YS had greater ABW with lower prolificacy compared to LR.
When compared to other studies investigating HT based on
reproductive traits, TML and SPG had lower TNB and NBA
values (Su et al., 2007; Wegner et al., 2014). However, similar
prolificacy was reported in YS and LW sow populations raised in
Spain (Bloemhof et al., 2008, 2013) and in purebred LR and LR x
LW crossbred animals raised in the US (Williams et al., 2013).
Therefore, the four populations used in the present study are
representative of North-American and European swine breeding
populations based on their prolificacy level.

Selection of Environmental Covariates
In the present study, climate records from the National
Climatic Data Center weather stations were used to describe
the environmental conditions experienced by the sows at
different stages of ovulation and pregnancy. While these climate
records are usually publicly available and have been successfully
employed in other worldwide studies focusing on sow HT
(Tummaruk et al., 2010; Wegner et al., 2014), the collection of
within-barn environmental measurements is an alternative to
further improve the quality of these estimates for such studies. It

would be advisable for breeders to record indoor environmental
conditions for a more accurate assessment of heat stress.

The sow’s thermoneutral zone has been estimated to be
between 18 and 20 Celsius degree (Peltoniemi et al., 1999)
and the distribution of values recorded by the weather stations
by far exceeded those boundaries (Table 2). This suggests that,
unless the farms employed very efficient methods to control the
environmental conditions within the barns, HS was expected
to have a large impact on the welfare and performance of the
populations included in this study.

Time of Recording of the Climate Variable
to Define the Environmental Covariates
In this study we assumed that the impact of HS on reproductive
performance can be reconduced to a specific time range from
ovulation to farrowing. We believe this assumption has two
advantages: (1) the possibility to discover a critical time in which
the sows appear to show different tolerance to HS for at least one
trait and (2) the ability to leverage on a larger variation in ENV,
since averaging the environmental conditions found in a 114-d
span could reduce the observed variability. As for point (1), in our
data we found that the autocorrelation for ENV in consecutive
weeks is relatively large (larger or equal to 0.9 for temperature
and THI variables, larger than 0.65 for humidity) so that such
step would be unnecessary in future analyses.

In general, HS occurring before conception or early pregnancy
had a remarkable impact on prolificacy. For the SPG populations
on both TNB and ABW, and for SPG_LR on NBA, the
ENV covariates reported during ovulation and conception
were selected to be the best environmental stressors to assess
heat tolerance. The negative effect of pre-conception HS has
been reported in other populations as well. For instance, Iida
and Koketsu (2014) found a significant detrimental effect of
summer conditions at conception on TNB. Tani et al. (2016)
also reported that high temperature and humidity recorded
on a 2-day window around farrowing decreased farrowing
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TABLE 5 | Top four significant windows for the slope term on NBA as regressed on average THI 86 to 93 days into pregnancy in the TML_LR population.

Location Var(%) N SNP Positional genes QTL traits

SSC12: 15,953,277–17,487,606 0.45 32 ENSSSCG00000017299

(MARCH10),

ENSSSCG00000017300 (MRC2),

ENSSSCG00000017301 (TLK2),

ENSSSCG00000033421,

ENSSSCG00000017304 (EFCAB3),

ENSSSCG00000051573,

ENSSSCG00000045518,

ENSSSCG00000047329,

ENSSSCG00000049121,

ENSSSCG00000017305,

ENSSSCG00000017306,

ENSSSCG00000017307 (MYL4),

ENSSSCG00000017308 (CDC27),

ENSSSCG00000017310 (KANSL1),

ENSSSCG00000017311 (MAPT ),

ENSSSCG00000043989,

ENSSSCG00000017314 (SPPL2C),

ENSSSCG00000017313,

ENSSSCG00000031893,

ENSSSCG00000017316 (NSF ),

ENSSSCG00000031561

Red blood cell count, hematocrit, loin muscle area, loin pH 24h

post-mortem

SSC9: 28,988,041–29,535,913 0.39 10 ENSSSCG00000039906,

ENSSSCG00000020347,

ENSSSCG00000048478

Litter weight, hind-leg conformation

SSC5: 5,425,963–5,866,100 0.34 21 ENSSSCG00000038685 (MPPED1),

ENSSSCG00000051106,

ENSSSCG00000000029 (SCUBE1),

ENSSSCG00000000034 (TTLL12),

ENSSSCG00000000033,

ENSSSCG00000000031 (MCAT ),

ENSSSCG00000042788,

ENSSSCG00000046130,

ENSSSCG00000000035 (TTLL1),

ENSSSCG00000048701,

ENSSSCG00000000036 (PACSIN2)

Hind-feet conformation, corpus luteum number

SSC6: 23,525,525–23,900,710 0.34 16 ENSSSCG00000047100,

ENSSSCG00000018823,

ENSSSCG00000048963,

ENSSSCG00000050597,

ENSSSCG00000047287

Obesity index, gestation length, eicosadienoic acid content,

60-day body weight

Location, indicates the chromosome number (SSC1 to SSC18), followed by the starting and end position of the genomic window(s) in base pairs; Var(%), the percental variance explained

by the most relevant 10-SNP window within the region of interest; N SNP, number of SNP marker included in the genomic region identified; Positional genes, Ensembl gene stable ID

(with official gene symbol when known) mapped to the genomic regions identified; QTL traits, indicates which traits have known QTLs mapped within the genomic region of interest,

based on QTLs reported in the Pig QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index).

rate and increased number of stillborn piglets. Sevillano et al.
(2016) showed that HS recorded 21 days before the sows’ first
insemination was detrimental to a successful farrowing. Early-
pregnancy (first month) HS was also an important factor in the
present study. On TML populations, TNB was affected by Max.T
and ABWwas affected by RH in the third week of pregnancy. HS
during both the pre-conception and early pregnancy periods had
a detrimental impact on TNB in a study conducted by Bloemhof
et al. (2013), where the whole pre-conception to farrowing period
was evaluated. In general, these results indicate that HS can alter
the hypothalamic-hypophysial-ovarian axis, follicular and oocyte
development, embryo implantation, and survival (Hansen et al.,
2001; Bertoldo et al., 2012; De Rensis et al., 2017). Interestingly,

the candidate genes and biological pathways identified for both
the intercept and slope of the genomic reaction norms are related
to these processes. In addition, examples of later pregnancy HS
on ABW was observed for TML_YS, as well for NBA on three
populations. While our results are not in total agreement with
the strong impact of HS during ovulation and early pregnancy, it
should be considered that these results do not deny the impact
of HS in other time periods. In addition, it should be noted
that late-pregnancy HS could have a detrimental impact on sow
feed intake, with a compromising effect on fetus survival (and
consequently, NBA) and fetus growth (and thus, ABW). In this
context, Wegner et al. (2014) reported that NBA was affected by
high temperatures and THI before farrowing.
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TABLE 6 | Significant windows for the slope term on ABW as regressed on average relative humidity 107 to 114 days into pregnancy in the TML_YS population.

Location Var(%) N SNP Positional genes QTL traits

SSC11: 55,037,726–55,844,999 0.26 14 ENSSSCG00000035248,

ENSSSCG00000042294,

ENSSSCG00000047575,

ENSSSCG00000044970,

ENSSSCG00000042996

Age at puberty

SSC3: 25,794,656–26,553,194 0.24 15 ENSSSCG00000007864 (GPRC5B),

ENSSSCG00000034720 (IQCK),

ENSSSCG00000025203 (KNOP1),

ENSSSCG00000027324 (VPS35L),

ENSSSCG00000047672,

ENSSSCG00000023829 (CCP110),

ENSSSCG00000029212 (GDE1),

ENSSSCG00000007868 (TMC5),

ENSSSCG00000018432,

ENSSSCG00000007866 (TMC7),

ENSSSCG00000034655 (COQ7),

ENSSSCG00000048910,

ENSSSCG00000039337 (ITPRIPL2),

ENSSSCG00000042386,

ENSSSCG00000045906,

ENSSSCG00000022200 (SYT17),

ENSSSCG00000047938 (CLEC19A)

CD8-negative leukocyte percentage, cortisol level, maternal

infanticide, loin pH 45min post-mortem

SSC1: 309,786,519–310,467,666 0.21 13 - -

Location, indicates the chromosome number (SSC1 to SSC18), followed by the starting and end position of the genomic window(s) in base pairs; Var(%), the percental variance explained

by the most relevant 10-SNP window within the region of interest; N SNP, number of SNP marker included in the genomic region identified; Positional genes, Ensembl gene stable ID

(with official gene symbol when known) mapped to the genomic regions identified; QTL traits, indicates which traits have known QTLs mapped within the genomic region of interest,

based on QTLs reported in the Pig QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index).

Seven of the 12 ENV selected were built upon RH as climate
variable, one was built upon THI and only four used temperature
(with Min.T in one case andMax.T in three other scenarios). The
preponderance of RH, rather than temperature, in challenging
sows was also found by Tummaruk et al. (2010). This might
indicate that the barn cooling systems can mitigate the impact
of temperature better than RH.

Variance Components Estimates
Heritability of Heat Tolerance
We used genomic random-regression models for the estimation
of genetic parameters, including additive genetic variance for the
trait performance in a standard environment (σ 2

0 , intercept term)
as well as the additive genetic variance for the tolerance to a given
environmental stressor (σ 2

1 , slope term). Variance components
are expressed as percentage of total phenotypic variance for
ease of comprehension (Table 3). The additive genetic variance
estimate for the intercept term represents the genetic variance
at the value of environmental covariates that is set to 0 in
the random regression model and is also marked as a vertical
line in Figures 2A–C. Additive genetic variance estimates are in
agreement with the literature (e.g., Putz et al., 2015) and seem to
be mostly determined by the specificities and phenotypic scale of
each trait. In particular, the heritability for ABW is larger than
the estimates for TNB and NBA. This is likely due to the ABW
calculation, which takes the average performance over a full-sib,
common environment group of animals, which likely led to the
underestimation of the residual variance. On the other hand,

the additive genetic variance for the slope term (HT indicator)
does not show a clear pattern across traits and populations. First
and foremost, this could be partially due to the use of different
ENV for each analysis, though it is be expected that different
populations (breeds) can have a different variability in terms
of HT, i.e., the potential of selection for HT could be larger in
one rather than another population (Bloemhof et al., 2013; Usui
and Koketsu, 2015). In general, the variability observed indicates
that genetic progress for improved HT can be achieved through
selective breeding and its efficiency will depend on the accuracy
of the phenotypes used. The identification of novel indicators of
HT that better represent the physiological responses to HS will be
paramount on improving the accuracies of genomic predictions
for HT in swine.

Heritability Change Across the Range of

Environmental Conditions
The parameters estimated using RRM can be used to provide
further estimates of heritability across the observed values of
ENV. Figure 1 shows the heritability estimates for the three
selected trait scenarios. While the heritability estimates were
larger for ABW than TNB and NBA, in general larger heritability
estimates were observed at the low (comfortable) levels of the
ENV. The changes in heritability derived more from different
estimates of residual variance of the five classes of ENV, as shown
by the broken line between class 1 (low values) and class 2
(medium-low values). No particular changes in heritability were
observed between the other ENV classes. These results are in
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partial agreement with Lewis and Bunter (2011), who did not
observe relevant differences in heritability estimates on TNB,
NBA and ABW expressed under different year seasons. As for the
higher heritability in comfortable conditions, Silva et al. (2014)
reported higher heritability estimates for TNB in contemporary
groups with better performance and Fragomeni et al. (2016b)
found a similar trend when assessing HT based on body weight
of purebred Duroc individuals.

GxE and Genetic Correlations Across Environments
GxE interaction can be confirmed, among other factors, by a
genetic correlation lower than 0.70 across the range of ENV
(Mulder and Bijma, 2007). In this study, genetic correlation for
the three scenarios investigated reached median values above
such threshold, but the minimum values were lower than the
0.70 threshold. Therefore, there is moderate GxE based on sow
reproductive traits under different environmental conditions
(presence or absence of HS). Similar values of genetic correlations
across ENV were found by Lewis and Bunter (2011) on TNB,
where the genetic correlation between spring and autumn
performance was below 0.70 and by Fragomeni et al. (2016b)
on crossbred growth performance, where the minimum genetic
correlation was close to zero. De Rensis et al. (2017) suggested
that the impact of HS on the traits could be determined by
the presence and intensity of factors responsible for seasonal
infertility. For this study, we used climate data recorded by public
weather stations. This may have affected the estimation of the
magnitude of GxE since the conditions measured by the weather
stations may differ from the indoor farm conditions. The use of
public weather data is common in studies of this kind, but further
studies should consider using indoor-recorded conditions.

Estimations of Reaction Norms and
Identification of HS Tolerant Genetic
Material
In a breeding scheme where HT is considered, an alternative
could be selecting the best performing individuals under HS,
provided that they are not under-performing in standard
(comfortable) environmental conditions. The identification
of such genetic resources (breeding animals) can be easily
performed graphically as shown in Figure 2 (the reaction norms
for the most and least heat tolerant sires are reported for the three
cases studies on TNB, NBA, and ABW, in sections A, B and C,
respectively). For TNB and ABW the most HT sires (blue lines)
appear also to be the best performing in the low-ENV conditions.
For NBA, the opposite relationship was observed, in which the
better performing sires are also the least HT, with a stronger
decline in performance due to HS than the population average.

Genome-Wide Association Study and
Functional Annotation
In this study we used single-step approach to obtain marker
effect estimates. This choice was dictated by the fact that not
all phenotyped individuals were genotyped and vice versa. A
comparison of the number of genotyped individuals (Table 1)
and the number of phenotyped individuals (Table 2) shows the
data structure. The proportion of sires genotyped ranged from

28 to 70%, while the number of sows genotyped ranged from
18 to 42%. The use of single-step GBLUP allowed the efficient
inclusion of all available information while a reduced sample size
and loss of sire genomic information would have occurred if only
individuals with both genotype and phenotypes were used.

A large number of significant genomic windows distributed
across all swine autosomal chromosomes were identified to be
associated with HT based on reproductive traits. In general, each
of these multiple genomic regions explained a small proportion
(<0.5%) of the total additive genetic variance, indicating
that HT is a largely polygenic trait. However, the functional
analyses performed confirm that the indicator traits analyzed are
involved in important biological mechanisms of HS response.
For instance, the genomic regions identified were previously
reported to be associated with traits such as body temperature,
hemoglobin content, coping behavior, cortisol levels and heart
size. Various pathways associated with fatty acid biosynthesis
were also identified.

As expected, the genomic regions associated with the intercept
(average performance at the comfort environmental gradient)
were previously linked with reproductive traits such as litter size,
number of mummified piglets, corpus luteum number, number
of non-viable fetuses, maternal infanticide, testicular width and
length, and semen pH. The fact that the present study identified
genomic regions previously reported to be associated with related
variables validates the indicator traits used in this study.

Various candidate genes identified in this study to be
associated with HT (slope of the reaction norms) were previously
reported in the literature as well. For instance, ALDH1A3
and LRRK1 genes have been highly associated with multiple
reproductive traits (e.g., numbers of litter per sow per year, piglets
weaned per litter, NBA, weaning to conception interval) in LW
pigs (Suwannasing et al., 2018). The aldehyde dehydrogenase
(ALDH) genes family plays an important role in embryo
formation and development, cell proliferation and differentiation
(Duan et al., 2016). The genes ARHGAP21 and LSMEM2 have
been reported to be associated with immune responses in LR,
LW and Songliao Black Pig piglets based on hematological
traits after being immunized with classical swine fever vaccine
(Wang et al., 2013). Important genomic regions within the ESR2
gene (Estrogen receptor) were also identified. ESR2 has been
previously reported to be associated with reproductive traits
(e.g., litter size, maternal infanticide, TNB, NBA, semen volume,
semen concentration) in various pig breeds (Chen et al., 2011;
Gunawan et al., 2012; Laliotis et al., 2017). Interestingly, the
gene LIMK2 has been previously associated with melanoma
susceptibility in Duroc pigs (Bourneuf et al., 2018). Genes
associated with body characteristics have also been reported.
This includes PLOD1 and NRXN3, which have been associated
with traits such as diaphragm weight, carcass length, spinal
curvature and belly weight (Lindholm-Perry et al., 2010; Li
et al., 2011; Sato et al., 2016) and various other candidate
genes (e.g., AASS, AP3D1, CPT1A, DOCK1, FASN, LRRK2,
PDE1C, PPA2, PSMD1, SCUBE1, SLC27A6, SNAI2, TFAP2B,
TMPRSS4, UBAP2, WDR47) previously linked to carcass fatness,
fatty acid biosynthesis, average daily gain, and body weight
in various pig breeds, including LW and LR (Edwards et al.,
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2008; Li et al., 2011; Fontanesi et al., 2012, 2014; Do et al.,
2013; Fowler et al., 2013; Nonneman et al., 2013; Choi et al.,
2016; Sato et al., 2016; Reyer et al., 2017; Lee et al., 2019;
Zappaterra et al., 2019). Some candidate genes, such as CADPS2,
were also associated with feeding behavior, e.g., number of
daily visits to the feeder in Duroc pigs (Do et al., 2013).
The pathways, biological processes and cellular components
identified in alternative functional analyses were similar, which
indicates a large agreement across the results presented. Future
studies should focus on validating the current findings on
crossbred animals and in other independent populations (e.g.,
breeds). The use of better measures of climatic conditions
(e.g., indoor barn temperature, humidity) and closer-to-biology
phenotypes (with higher heritability) will result in more accurate
breeding values for HT as well as facilitate the identification
of genomic regions and candidate genes associated with HS
response. Investigating the genetic relationship between HT
indicators and other economically important traits is of great
importance when designing breeding programs and will be the
objective of future studies.

CONCLUSIONS

In the present study, we used four independent populations to
explore the genetic and genomic background of heat tolerance
in maternal-line pigs, based on three reproductive traits and
multiple environmental covariates. Our results indicate that
heat tolerance based on reproductive traits is heritable and
therefore genetic progress for HT can be achieve through
genetic or genomic selection. Higher heritability estimates were
observed in comfortable environments, indicating that selection
for improved heat tolerance based on reproductive traits is
feasible, although genetic progress will be slow. Therefore,
considering that there is substantial additive genetic variance for
heat tolerance, there is a need to identify novel indicators that
better capture the biological mechanisms of HS response. Various
genomic regions distributed across all autosomal chromosomes
and explaining a small proportion of the total additive genetic
variance were identified, indicating that heat tolerance is a highly
polygenic trait. Results validated across the populations seem to
point out to a genomic region located on SSC9 showing a sizable
impact on heat tolerance measured both on TNB and NBA. This
region will require future validation and refinement in future
studies. In summary, we have shown that selection for improved
heat tolerance in swine based on reproductive performance
and public weather station data is possible. Selection for heat
tolerance is expected to alter important biological mechanisms
underlying several traits. Future research should focus on
elucidating these mechanisms on a wide array of economically
important traits before heat tolerance can be included among the
breeding goals.
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Figure S1a | Additive genetic variance estimates (posterior means with 95%

empirical confidence intervals) for total number of piglets born (TNB) in the

Smithfield Premium Genetics Landrace population (SPG_LR) over the range of

Average Relative Humidity 14 to 7 days before conception.

Figure S1b | Additive genetic variance estimates (posterior means with 95%

empirical confidence intervals) for number of piglets born alive (NBA) in the

Landrace population of the Maschhoffs breeding company (TML_LR) over the

range of average THI 86 to 93 days into pregnancy.

Figure S1c | Additive genetic variance estimates (posterior means with 95%

empirical confidence intervals) for average birth weight (ABW) in the Yorkshire
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population of the Maschhoffs breeding company (TML_YS) over the range of

average relative humidity 107 to 114 days into pregnancy.

Figure S2a | Residual variance estimates (posterior means with 95% empirical

confidence intervals) for total number of piglets born (TNB) in the Smithfield

Premium Genetics Landrace population (SPG_LR) over the range of Average

Relative Humidity 14 to 7 days

before conception.

Figure S2b | Residual variance estimates (posterior means with 95% empirical

confidence intervals) for number of piglets born alive (NBA) in the Landrace

population of the Maschhoffs breeding company (TML_LR) over the range of

average THI 86 to 93 days

into pregnancy.

Figure S2c | Residual variance estimates (posterior means with 95% empirical

confidence intervals) for average birth weight (ABW) in the Yorkshire population of

the Maschhoffs breeding company (TML_YS) over the range of average relative

humidity 107 to 114 days into pregnancy.

Figure S3 | Schematic representation of the metabolic functions (PANTHER

Classification System) and the proportion of candidate genes identified in the

genome-wide association analyses for the intercept of the genomic reaction

norms based on reproductive traits in four maternal-line pig populations.

Figure S4 | Schematic representation of the biological processes (PANTHER

Classification System) and the proportion of candidate genes identified in the

genome-wide association analyses for the intercept of the genomic reaction

norms based on reproductive traits in four maternal-line pig populations.

Figure S5 | Schematic representation of the cellular components (PANTHER

Classification System) and the proportion of candidate genes identified in the

genome-wide association analyses for the intercept of the genomic reaction

norms based on reproductive traits in four maternal-line pig populations.

Figure S6 | Schematic representation of the molecular functions (PANTHER

Classification System) and the proportion of candidate genes identified in the

genome-wide association analyses for the slope of the genomic reaction norms

based on reproductive traits in four maternal-line pig populations.

Figure S7 | Schematic representation of the biological processes (PANTHER

Classification System) and the proportion of candidate genes identified in the

genome-wide association analyses for the slope of the genomic reaction norms

based on reproductive traits in four maternal-line pig populations.

Figure S8 | Schematic representation of the cellular components (PANTHER

Classification System) and the proportion of candidate genes identified in the

genome-wide association analyses for the slope of the genomic reaction norms

based on reproductive traits in four maternal-line pig populations.

Table S1 | Summary of the environmental covariates tested in this study. Each

row in the table reports a summary of the 19 weekly values for the population.

Table S2a | Significant genomic windows for the intercept term of the reaction

norm on total number of piglets born (TNB) as regressed on the Average Relative

Humidity 14 to 7 days before conception in the Smithfield Premium Genetics

(SPG) Landrace population (SPG_LR).

Table S2b | Significant genomic windows for the slope term of the reaction norm

on total number of piglets born (TNB) as regressed on the Average Relative

Humidity 14 to 7 days before conception in the Smithfield Premium Genetics

(SPG) Landrace population (SPG_LR).

Table S3a | Significant windows for intercept term on number of piglets born alive

(NBA) as regressed on average THI 86 to 93 days into pregnancy in the Landrace

population of the Maschhoffs breeding company (TML_LR).

Table S3b | Significant windows for slope term on number of piglets born alive

(NBA) as regressed on average THI 86 to 93 days into pregnancy in the Landrace

population of the Maschhoffs breeding company (TML_LR).

Table S4a | Significant windows for the intercept term on average birth weight

(ABW) as regressed on average relative humidity 107 to 114 days into pregnancy

in the Yorshire population of the Maschhoffs breeding company (TML_YS).
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