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Objectives: The occurrence of hepatocellular carcinoma (HCC) is a complex process

involving genetic mutations, epigenetic variation, and abnormal gene expression.

However, a comprehensive multiomics investigation of HCC is lacking, and the available

multiomics evidence has not led to improvements in clinical practice. Therefore, we

explored the molecular mechanism underlying the development of HCC through an

integrative analysis of multiomics data obtained at multiple levels to provide innovative

perspectives and a new theoretical basis for the early diagnosis, personalized treatment

and medical guidance of HCC.

Methods: In this study, we collected whole-exome sequencing data, RNA (mRNA

and miRNA) sequencing data, DNA methylation array data, and single nucleotide

polymorphism (SNP) array data from The Cancer Genome Atlas (TCGA). We

analyzed the copy number variation (CNV) in HCC using GISTIC2. MutSigCV

was applied to identify significantly mutated genes (SMGs). Functional enrichment

analyses were performed using the clusterProfiler package in R software. The

prognostic values of discrete variables were estimated using Kaplan–Meier

survival curves.

Results: By analyzing the HCC data in TCGA, we constructed a comprehensive

multiomics map of HCC. Through copy number analysis, we identified significant

amplification at 29 loci and significant deletions at 33 loci. A total of 13 significant

mutant genes were identified. In addition, we also identified three HCC-related mutant

signatures, and among these, signature 22 was closely related to exposure to aristolochic

acids. Subsequently, we analyzed the methylation level of HCC samples and identified

51 epigenetically silenced genes that were significantly associated with methylation. The

differential expression analysis identified differentially expressed mRNAs and miRNAs in

HCC samples. Based on the above-described results, we identified a total of 93 possible

HCC driver genes, which are driven by mutations, methylation, and CNVs and have

prognostic value.

Conclusion: Our study reveals variations in different dimensions of HCC. We performed

an integrative analysis of genomic signatures, single nucleotide variants (SNVs), CNVs,
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methylation, and gene expression in HCC. Based on the results, we identified HCC

possible driver genes that might facilitate prognostic prediction and support decision

making with regard to the choice of therapy.

Keywords: hepatocellular carcinoma, driver genes, methylation, multiomics, mutational signatures, APOBEC

INTRODUCTION

Hepatocellular carcinoma (HCC) is a leading cause of cancer-
related death in many parts of the world, and its surveillance
and early detection increase the possibility of potentially curative
treatment (Llovet et al., 2018). There are few effective treatments
for HCC, and no mutations that are targeted by available
drugs have been identified in HCC patients (Liu et al., 2019).
Intratumoral heterogeneity is one of the main reasons for the
ineffectiveness of the current therapies in most types of cancer,
including HCC (Zhang et al., 2019). Thus, the mechanism of
HCC development needs to be elucidated, and the identification
of effective prognostic molecular markers is of great significance
for the individualized diagnosis and treatment of HCC.

Whole-genome and exome sequencing studies conducted in
recent years have revealed the mutational landscape of HCC
(Nie et al., 2014; Fujimoto et al., 2016), and omics analyses of
HCC have broadened our knowledge of the molecular events
related to this fatal malignancy. Li et al. performed an integrative
analysis of 1,061 HCC genomes and identified 11 novel mutant
genes (Li et al., 2018). Pan et al. sequenced the transcriptome of
HCC patients and identified 755 differentially expressed genes
(DEGs). These researchers also identified 15 hub genes in the
module associated with the alpha fetoprotein (AFP) level (Pan
et al., 2016). Cheng et al. identified a group of patients with a
CpG island methylator phenotype (CIMP) and found that the
overall survival (OS) rate of CIMP patients was poorer than that
of non-CIMP patients. These researches also identified promising
biomarkers for the diagnosis of HCC (Cheng et al., 2018).
However, these above-mentioned studies focused on single genes
or individual omics, and conducting an in-depth systematic study
of the molecular mechanism of HCC from a comprehensive,
multidimensional perspective is thus difficult.

The development of HCC is a complex biological process
that involves the interaction of multiple omics, and thus, a
comprehensive multiomics analysis of the variation in HCC
can accelerate our understanding of disease development and
provide a new and effective solution for clinical diagnosis and
treatment (Miao et al., 2014; Large et al., 2017). At present,
international research on malignant tumors has been performed
at the genomic, transcriptomic, and epigenetic levels using high-
throughput sequencing technology (Chen et al., 2017; Ortega
et al., 2017; Bareche et al., 2018). The obtained data have been
combined with clinical information to reveal the occurrence and
development of malignant tumors. The molecular mechanisms
provide a basis for the identification of effective therapeutic
targets and the development of personalized treatment strategies.
However, multiomics research on HCC is scarce.

The integration of multiple levels of omics data is important
research direction for obtaining a comprehensive and

systematic understanding of HCC. Therefore, we conducted a
comprehensive analysis of the HCC data included in The Cancer
Genome Atlas (TCGA). By combined these data with clinical
information, this study aimed to comprehensively clarify the
role of different levels of variability in HCC. Driver genes are
directly responsible for carcinogenesis and are closely related to
the development of cancer (Dietlein et al., 2020). A major goal of
cancer genomics is to identify these rare driver genes amid the
myriad passengers (Merid et al., 2014). Cancer driver genes by
definition carry at least one driver mutations that increase cell
growth advantage (Nono et al., 2019). Therefore, combined with
multi-omics analysis, we identified possible driver genes in HCC
samples, and these findings lay a theoretical foundation for the
prevention, individualized treatment, and even exploration of
potential therapeutic targets of HCC.

MATERIALS AND METHODS

The steps of the workflow used in this study are shown in
Figure 1.

Datasets
MalaCards (http://www.malacards.org/) was used to explore the
genes associated with HCC. The RNA-seq data, methylation
data, mutation data, and corresponding clinical information
for HCC patients were obtained from TCGA (https://tcga-data.
nci.nih.gov/tcga/) cohort (Tomczak et al., 2015). We accessed
TCGA and downloaded whole-exome sequencing data, RNA
(mRNA and miRNA) sequencing data, DNA methylation array
data, and single nucleotide polymorphism (SNP) array data. We
also downloaded the clinical information of HCC patients in
TCGA for subsequent analysis.

Copy Number Analysis
The Genetic Identification of Significant Targets in Cancer
version 2.0 (GISTIC2.0) program (Mermel et al., 2011) was
used to identify significant regions showing broad and focal
amplification and deletion across all the samples. The copy
number values were obtained by examining the distribution
of log2 ratios to identify peaks associated with copy number
states, and q-values based on permutations of copy number
segment locations were used to assess the significance of G-
scores. A q-score of < 0.1 and a confidence interval of 95%
were considered to determine significance. The default GISTIC
threshold for identifying gains and losses was used. The GISTIC
algorithm considers both high and low thresholds for copy
number determination across all the input samples to assign
significance to CNVs. The copy number statuses of low-level
gene amplification, high-level gene amplification, low-level gene
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FIGURE 1 | Workflow of the present study.

deletion, and high-level gene deletion was inferred using the
“thresholded” calls.

Identification of Significantly Mutated
Genes (SMGs)
The mutational data were saved in the mutation annotation
format (maf), and the maf data were processed using the
R package maftools (Mayakonda et al., 2018). The mutation
spectra were analyzed by non-negative matrix factorization
(NMF). The maf mutation file was analyzed using MutSigCV
(version 1.3.4) (Lawrence et al., 2013) to recognize significant
SMGs based on the significance threshold. MutSigCV quantifies
the significance of non-silent mutations in a gene based on
the background mutation rate estimated by silent mutations,
and other confounding covariates are also considered in this
analysis. The significance levels (p-values) were determined by
testing whether the observed mutations in a gene significantly
exceeded the expected counts based on the background model.
The false discovery rates (q-values) were then calculated, and
genes with q-values ≤ 0.1 were regarded as significantly
mutated. We then utilized maftools to visualize the mutation
information of these significant SMGs among HCC patients
in TCGA.

DNA Methylation Analysis
After downloading DNA methylation data of HCC patients in
TCGA, we performed further analyses using the Chip Analysis
Methylation Pipeline (ChAMP) package (Morris et al., 2013) in
R language. The DNA methylation value was calculated from
the intensity data files using the ChAMP package in the R

programming language and was quantified as a beta-value. The
ChAMP program was run using the default parameter settings,
and this program first subjects the data to a number of quality
control (QC) filtering steps, which included probes with poor
removal results, multiple hit probes, probes with overlapping
genomic regions, and probes within the XY chromosome. After
QC, the remaining probes were utilized to identify differentially
methylated probes (DMPs) and differentially methylated regions
(DMRs) between cancer-paracancer using the ChAMPR pipeline
with a linear model. The p < 0.05 was considered to be
significantly different.

Identification and Scoring of Differentially
Expressed Genes in HCC
We obtained 50 pairs of RNA sequencing data and
analyzed differential expression patterns between cancer
and paracancerous tissues in TCGA. The R language package
DEseq2 (Love et al., 2014) was used to identify differentially
expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs)
between HCC and normal liver tissue from mRNA/miRNA
sequencing data of HCC obtained from TCGA. The fold changes
(FCs) in the expression of individual genes were calculated,
and genes with |log2FC| > 1 and p < 0.05 adjusted by the false
discovery rate (FDR) were considered significant. Differentially
expressed volcano maps were generated using the ggplot2
package (Ginestet, 2011) of R software.

We then screened differentially expressed genes with |log2FC|
> 1 and p< 0.05, and the changes in the expression levels of these
genes were consistent with the changes in the hazard ratios (HRs)
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FIGURE 2 | GISTIC heat map showing the genomic copy number profiles from the LIHC cohort in TCGA. (A,B) The gain (red) and loss (blue) of each peak are shown.

The x-axes represent the normalized amplification signal (top) and the significance of the q-value (bottom). The green line represents the significance cutoff at a

q-value of 0.25.

of overall survival (OS) and disease-free survival (DFS). We used
regression analysis to score each gene and calculate the p-value.

Unsupervised Clustering Analysis
The ConsensusClusterPlus package (Wilkerson and Hayes, 2010)
was utilized to perform consistent clustering analyses using K-
means. The clustering was performed using 100 iterations, and
each iteration contained 80% of the samples. The optimal cluster
number was determined by the cumulative distribution function
(CDF) curves of the consensus score, and the heatmap was then
constructed using the pheatmap package (Quackenbush, 2011)
in R software.

Functional Enrichment Analyses of Driver
Genes
To explore the biology of the gene modules, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed using the
clusterProfiler package (Yu et al., 2012) in R software. The p-
value was adjusted using the Benjamini and Hochberg algorithm,
and p < 0.05 was considered to indicate statistical significance.

The figure was drawn using the ggplot2 package (Ginestet, 2011)
in R software.

Survival Analysis
The prognostic values of discrete variables were estimated by
Kaplan–Meier survival curves (Bland and Altman, 1998), and
the log-rank test was employed to estimate significant differences
between survival curves. Univariate andmultivariate Cox models
were constructed to estimate the HRs of the prognosticators
with a p < 0.05 in the log-rank test. Various outcomes,
including OS and DFS, were investigated. All the statistical
analyses were performed using the R survival package with the
default parameters.

RESULTS

Copy Number Alterations (CNAs) in HCC
To investigate the molecular basis of HCC progression and
explore new molecular diagnostic approaches, DNA CNAs were
analyzed, and genome-wide focal DNA gains, and losses were
delineated. Significant arm-level alterations included the gain of
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FIGURE 3 | Mutational landscape of SMGs in HCC. (A) Significantly mutated genes in HCC. The different colors represent different mutation types. (B) Expression of

SMGs in HCC and normal tissues. According to an analysis of immunohistochemical staining data from the Human Protein Atlas database, the expression of SMGs in

HCC was compared with that in normal tissues.

1q, 8q, 5p, 6p, 5q, 7p, 7q, and 20q (Figure 2A) and the loss of
17p, 8p, 16q, 13q, 14q, 9p, and 9q (Figure 2B). We identified
significant amplifications at 29 loci and significant deletions at

33 loci (p < 0.05). As expected, our analysis confirmed many
known CNAs, including those observed at 11q13.3 (CCND1),
6p21.1 (VEGFA), 5p15.33 (TERT), and 8q24.21 (MYC), and
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FIGURE 4 | Mutation signatures operative in HCC. (A) Single nucleotide variation classification: different colors represent different types of variation. (B) Variant

classification: different colors represent different variant classifications. (C) Mutational signatures: spectrum of total SNVs and three mutational signatures in the

context of the 96 base-pair substitutions. Because the dynamic range for the signatures is large, the upper limits of the y-axis used for each signature are different. (D)

SMG mutation rate in three groups of HCC samples. (E) Unsupervised clustering of mutations in SMGs and focal SCNAs. (F) Differences in mutational patterns

between APOBEC-enriched and non-APOBEC-enriched samples.
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FIGURE 5 | Unsupervised clustering analysis of DNA methylation. (A) Heat map and unsupervised hierarchical clustering of DNA methylation profiles. The different

colored bar charts represent different groups. Hypermethylation is marked in red, and hypomethylation is marked in blue. (B) Heat map and unsupervised hierarchical

clustering of methylation differences between tumor and normal tissues. The samples under the red bar represent normal samples, and the samples under the blue

bar represent HCC samples. Hypermethylation is marked in red, and hypomethylation is marked in blue. (C) Epigenetically silenced genes.

focal deletions, including those observed at 9p21.3 (CDKN2A),
13q14.2 (RB1), and 10q23.31 (PTEN). Collectively, these data
reveal the CNA environment in HCC and provide insights for
subsequent research on HCC. The tumor ploidy estimated by
ABSOLUTE (Carter et al., 2012) revealed that a large proportion
of HCCs exhibited genome doubling (Table S1).

Significantly Mutated Genes in HCC
To identify SMGs associated with HCC development, we
identified genes whose mutations were positively accumulated,

clustered at a hotspot, and of functional importance. In total, we
identified 13 SMGs (q< 0.01). Most of these SMGs, such as TP53,
CTNNB1, and BAP1, have been identified in previous studies. In
addition, we also identified some novel SMGs, such as CDC27,
CDKN2E, KRT2, and ALB, which have rarely been detected in
HCC research (Figure 3A).

Mutational Signatures Operative in HCC
There are six types of single nucleotide variations (SNVs),
and among these, T>C is dominant (Figure 4A). Regardless
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FIGURE 6 | Differential mRNA and miRNA expression analysis. (A,B) Volcano map of differentially expressed mRNAs/miRNAs. The x-axis indicates the fold-change,

and the y-axis indicates the negative logarithm base 10 of the adjusted p-value. The gray vertical and horizontal lines reflect the filtering criteria. The red and blue dots

represent the significantly upregulated and downregulated genes, respectively.

of the sample or the frequently mutated gene, missense
mutations accounted for the largest proportion (Figure 4B).
In the context of the 96 base-pair substitutions, we analyzed
the spectrum of total SNVs and identified three mutational
signatures (signatures 5, 22, and 12) (Figure 4C). The etiology
of signature 22 was closely related to exposure to aristolochic
acids (AAs). Chinese herbal medicines containing AAs were
recently reported as contributors to oncogenesis, including
HCC oncogenesis (Ng et al., 2017). Based on these three
mutational signatures, we divided HCC patients into three
groups and analyzed the mutation rates of 13 SMGs in
each group (Figure 4D). Subsequently, we clustered the
mutations in the SMGs and focal somatic copy number
alterations (SCNAs). The results showed that these three
mutation signatures can be used to classify HCC samples
(Figure 4E).

Pan-cancer mutational signature analyses have identified
a signature consisting of apolipoprotein B mRNA editing
enzyme, catalytic polypeptide-like (APOBEC), which is
a cytosine deaminase, in a subset of cancers, including
HCC (Middlebrooks et al., 2016). We integrated a method
described by Roberts et al. (2013) to estimate the enrichment
of APOBEC in individual tumor samples. A total of 371
samples were included in the analysis, and 97.6% (362 of
371 samples) of HCC samples were enriched in APOBEC-
associated mutations (APOBEC enrichment score > 2).
The mutation burdens among non-APOBEC samples were
significantly higher than those among APOBEC-enriched
samples. Furthermore, on the tCw background, the APOBEC-
enriched samples exhibited higher mutation frequencies
than the non-APOBEC-enriched samples (0.11 vs. 0.05,
respectively) (Figure 4F). Of interest, we identified the top 10
differentially mutated genes between APOBEC-enriched and

non-APOBEC-enriched samples, and among these, KRAS,
CDHR5, JAK2, and MAP2K4 were previously shown to be
closely related to tumor development. Overall, APOBEC
enrichment is strongly associated with the mutational signature
in HCC.

DNA Methylation and Epigenetically
Silenced Genes in HCC
DNA methylation is an early event in tumorigenesis. Here,
to advance our understanding of DNA methylation in HCC,
all methylated samples were divided into different k groups.
Based on the CDF curves of the consensus score, optimal
division was reached with a k value of 5 (Figure 5A). Notably,
group 2 exhibited a low level of methylation, whereas group 5
had a high methylation level. To distinguish differences in the
methylation profiles between tumor and paracancerous tissues,
we systematically analyzed their methylation profiles, and the
results showed that tumor samples exhibited higher methylation
levels than paracancerous samples (Figure 5B).

Promoter methylation might cooperate with loss (gene
silencing) and enhances the malignant phenotype associated with
chromosomal aberrations or promotes chromosomal instability
and loss of the unaffected allele. DNA methylation is a
repressive marker critical for epigenetic gene silencing. Based
on methylation data in TCGA, we identified 51 significantly
silenced genes (|Cor| > 0.7) (Table S2), and interestingly, 10
genes from the zinc finger protein (ZNF) family were included in
this sett (Figure 5C). The vast majority of ZNF functions include
interaction modules that bind DNA, RNA, proteins, or other
small, useful molecules, and structural variations serve primarily
to alter the binding specificity of a particular protein andmight be
involved in transcriptional regulation (Klug and Rhodes, 1987).
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FIGURE 7 | Circos plot of possible driver genes. Each circle represents a gene driven by a mutation, CNV, methylation, and differential expression.

Analysis of Differentially Expressed Genes
in HCC
A total of 4,065 DEmRNAs, which included 2,727 upregulated
and 1,338 downregulated DEmRNAs, were identified in the
HCC samples compared with the control samples (Figure 6A,
Table S3). A total of 228 DEmiRNAs were identified in the HCC
tissues compared with the control samples, and these included
192 upregulated and 36 downregulated DEmiRNAs (Figure 6B,
Table S4).

The top 10 most significant DEmRNAs were GABRD, THBS4,
COL15A1, CDKN3, KIF4A, SLC26A6, PLVAP, CDCA5, KIF2C,
and KIFC1, and subsequent analysis of these genes revealed that
some play an important role in HCC. THBS4 enhances HCC
migration and vascular invasion (Su et al., 2017). Wu et al.
(2019) identified CDKN3 in HCC at very early stages. CDKN3
is considered a key gene for HCC initiation, and according to a
study conducted by Hu, KIF4A promotes HCC cell proliferation
(Hu et al., 2019). In addition, CDCA5 regulates proliferation in
HCC and might serve as a negative prognostic marker (Shen
et al., 2018). Although the mechanisms of the other genes in
HCC have not been extensively explored, their function has been

verified in other tumors. Whether these genes play the same role
in HCC is worthy of further experimental research.

In addition, we scored the differentially expressed genes
through regression analyses. A larger score indicates that the gene
is more closely related to the development of HCC. A gene that
is highly expressed in high-risk cancer samples, as assessed by
an analysis of OS or DFS, can be considered a likely oncogene,
and low expression in these samples could indicate a tumor
suppressor. A total of 341 genes, including 15 genes with a score
of 1.5–2.0, 290 genes with a score of 1.0–1.5, and 37 genes with
a score of 0.5–1.0, were screened (Table S5). The gene with the
highest score was SPRYD4, and Zahid et al. (2019) found that
the SPRYD4 gene was downregulated in HCC tissues compared
with non-tumor tissues and that exogenous SPRYD4 expression
inhibits HCC cell proliferation by inducing apoptosis.

Identification of HCC Possible Driver
Genes
Identifying cancer driver genes is a crucial step in cancer
genomic toward the advancement of precision medicine. The
accumulation of alterations in cancer possible driver genes is a
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FIGURE 8 | Functional enrichment analyses. (A) GO analysis of the possible driver genes. The possible driver genes are significantly enriched in 20 biological

processes. (B) KEGG pathway analysis of the possible driver genes. The possible driver genes are significantly enriched in 11 KEGG pathways.

major trigger for hepatocarcinogenesis and tumor progression,
and their identification is thus essential for obtaining a full
understanding of the mechanisms of cancer.

Alterations in the genetic makeup of a cell, such as mutation,
CNV and methylation, can all lead to the development of cancer
(Hanahan and Weinberg, 2011). CNV promotes tumorigenesis
and progression by activating oncogenes or inactivating tumor
suppressor genes (Zack et al., 2013). Disruption of epigenetic
mechanisms can lead to hypermethylation or hypomethylation
of gene promoter regions and may lead to the silencing of
key tumor suppressor functions (Kulis and Esteller, 2010).
Discovery mutated driver genes from passenger mutations is one
of the primary task in tumorigenesis, and driver gene mutations
promote cancer progression, and have major impacts on patient
outcome (Vogelstein et al., 2013). When a gene is variated
at multi-omics levels, we have reason to believe that it plays
an important role in the development of cancer. Therefore,
we conducted a comprehensive analysis of HCC multi-omics,
and identified some important genes in each omics. Combined
with multi-omics analysis, we identified a total of 93 possible
driver genes in HCC (Figure 7), and all of these genes were
methylated genes that are differentially expressed in HCC and
have prognostic significance. Among these genes, 10 genes are
driven by mutations, and nine genes are driven by CNVs. In
particular, CDKN2A and CKS1B are driven by both mutations
and CNVs. Collectively, these data identify important genes
involved in the tumorigenesis of HCC.

Functional Enrichment Analysis of Driver
Genes
To further explore the relevant functions of the identified possible
driver genes, we performed GO and KEGG pathway analyses.

The top 20 most enriched biological process (BP) categories
are shown in Figure 8A. The possible driver genes were found
to be mainly enriched in “axon guidance,” “cell chemotaxis,”
“stem cell differentiation,” and “fat cell differentiation.” The
KEGG pathway enrichment analysis revealed that the integrated
possible driver genes are enriched in the “MAPK signaling
pathway,” “microRNAs in cancer,” “cell cycle,” “regulation of
actin cytoskeleton,” and “tyrosine metabolism” (Figure 8B). In
summary, these genes related or specific to HCC were found to
be significantly correlated with tumor progression, which further
highlights their clinical implications.

DISCUSSION

HCC is an aggressive malignancy, the sixth most common
malignancy and the fourth leading cause of cancer-related
death worldwide (Llovet et al., 2008). Although advances in
treatment strategies have been achieved, no effective molecular
targeted therapy has been successfully validated (Lu et al.,
2020). HCC is a heterogeneous tumor, and its occurrence, and
development is a complex process involving multiple omics
changes. This comprehensive multiomics analysis of HCC has
broadened our knowledge of the molecular events related to
this fatal malignancy (Ress et al., 2015). Herein, we separately
analyzed the genome, transcriptome, and methylome of HCC
samples and provided new insights for the molecular-level
analysis of HCC. In this study, we performed an integrative
bioinformatics analysis using a publicly available dataset to
emphasize the degree of HCC heterogeneity at the gene
expression, mutational, methylation, and CNV levels, and
correlated our analysis with clinical features. In the study
of Matthew et al., they identified 299 mutation driver genes
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in the PanCancer data from TCGA (Bailey et al., 2018).
Similar to our study, they also found that TP53, ARID1A,
PTEN, and other genes were significantly mutated in HCC
samples. In another study, the authors used data from 20
cancer types in TCGA to identify methylation driver genes
and expression driver genes (Youn et al., 2018), and there
is some overlap with our results. Therefore, these results can
be cross-validated, further confirming the reliability of our
research. After identifying SMGs, we obtained the expression
of SMGs in HCC and normal liver tissues in Human Protein
Atlas database (https://www.proteinatlas.org/). According to an
immunohistochemical staining analysis, five and four SMGs
were upregulated (Figure 3B) and downregulated in HCC,
respectively, compared with the levels in normal tissues
(Figure 3C). In addition, no differences in the expression levels
of the three SMGs were found between normal and HCC tissues
(Figure 3D).

In total, we identified of 93 possible driver genes in HCC,
and these genes might show comprehensive diagnosis and
prognostic value for HCC patients. Among the 93 possible
driver genes, CDKN2A and CKS1B are worthy of our attention
because these are driven by both mutations and CNVs.
Somatic mutations in CDKN2A are common in the majority
of human cancers. CDKN2A encodes two proteins, namely,
the INK4 family members p16 and p14arf (Bartsch et al.,
2002), and both of these proteins act as tumor suppressors
by regulating the cell cycle. Zhou et al. (2018) indicated
that CDKN2A promoter methylation is associated with an
increased risk of HCC and plays a crucial role in the
process of HCC, which indicates that it has potential value
as a triage marker. CKS1B proteins play principal roles in
cell cycle regulation. Huang et al. (2010) found that CKS1B
overexpression in HCC implicates clinical aggressiveness. The
scientific findings of our study further support those obtained
in previous studies. The specific mechanisms of the roles
of CDKN2A and CKS1B in HCC are worthy of further
experimental exploration.

GO enrichment and functional pathway analyses of 93
possible driver genes showed that these genes are mainly
involved in “stem cell differentiation,” “cell cycle,” “microRNAs
in cancer,” and “MAPK signaling pathway.” These biological
processes and KEGG pathways are closely related to the
proliferation and apoptosis of cancer cells. Therefore, these
results might indicate that the identified possible driver
genes are involved in the regulation of HCC growth and
are closely related to the occurrence and development
of HCC.

Our study has some limitations. First, our research is
limited to computer simulations, and thus, our findings should
be validated and extended through laboratory experiments.
Although our research identified possible driver genes that play
important roles in HCC, further experiments are needed to
confirm the associated molecular processes. More research is
needed to further elucidate the function of the identified possible
driver genes, the underlying mechanisms associated with HCC

progression, and their potential applications in disease diagnosis
and prognosis.

CONCLUSION

In conclusion, our study separately analyzed data on the
genome, transcriptome, and methylome of HCC samples
and constructed a comprehensive multiomics map of HCC.
Based on these findings, we believe that the identified
possible driver genes play an important role in HCC.
In addition, we identified a total of 93 possible HCC
driver genes that play an important role in HCC and have
prognostic value.
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