
fgene-11-00655 July 24, 2020 Time: 9:5 # 1

METHODS
published: 21 July 2020

doi: 10.3389/fgene.2020.00655

Edited by:
Ting Hu,

Memorial University of Newfoundland,
Canada

Reviewed by:
Firoz Ahmed,

Jeddah University, Saudi Arabia
Xiaoyong Pan,

Shanghai Jiao Tong University, China

*Correspondence:
Yaowen Chen

ywchen@stu.edu.cn
Xianhua Dai

issdxh@mail.sysu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 28 October 2019
Accepted: 29 May 2020
Published: 21 July 2020

Citation:
Zhang G, Deng Y, Liu Q, Ye B,

Dai Z, Chen Y and Dai X (2020)
Identifying Circular RNA

and Predicting Its Regulatory
Interactions by Machine Learning.

Front. Genet. 11:655.
doi: 10.3389/fgene.2020.00655

Identifying Circular RNA and
Predicting Its Regulatory Interactions
by Machine Learning
Guishan Zhang1, Yiyun Deng1, Qingyu Liu1, Bingxu Ye2, Zhiming Dai3,4, Yaowen Chen2*
and Xianhua Dai1,5*

1 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China, 2 Key Laboratory of Digital
Signal and Image Processing of Guangdong Provincial, College of Engineering, Shantou University, Shantou, China, 3 School
of Data and Computer Science, Sun Yat-sen University, Guangzhou, China, 4 Guangdong Province Key Laboratory of Big
Data Analysis and Processing, Sun Yat-sen University, Guangzhou, China, 5 Southern Marine Science and Engineering
Guangdong Laboratory, Zhuhai, China

Circular RNA (circRNA) is a closed long non-coding RNA (lncRNA) formed by
covalently closed loops through back-splicing. Emerging evidence indicates that
circRNA can influence cellular physiology through various molecular mechanisms.
Thus, accurate circRNA identification and prediction of its regulatory information
are critical for understanding its biogenesis. Although several computational tools
based on machine learning have been proposed for circRNA identification, the
prediction accuracy remains to be improved. Here, first we present circLGB, a
machine learning-based framework to discriminate circRNA from other lncRNAs.
circLGB integrates commonly used sequence-derived features and three new features
containing adenosine to inosine (A-to-I) deamination, A-to-I density and the internal
ribosome entry site. circLGB categorizes circRNAs by utilizing a LightGBM classifier
with feature selection. Second, we introduce circMRT, an ensemble machine learning
framework to systematically predict the regulatory information for circRNA, including
their interactions with microRNA, the RNA binding protein, and transcriptional regulation.
Feature sets including sequence-based features, graph features, genome context, and
regulatory information features were modeled in circMRT. Experiments on public and
our constructed datasets show that the proposed algorithms outperform the available
state-of-the-art methods. circLGB is available at http://www.circlgb.com. Source codes
are available at https://github.com/Peppags/circLGB-circMRT.

Keywords: circular RNA, long non-coding RNA, microRNA, RNA binding protein, transcriptional regulation,
machine learning

INTRODUCTION

Circular RNA (circRNA) constitutes a unique class of RNAs that is characterized by the presence of
a covalently closed cyclic structure without a poly adenylated tail (Lasda and Parker, 2014). During
pre-mRNA splicing, the 5′ and 3′ termini of exons can be covalently ligated to form circRNAs
(Barrett et al., 2015; Wang and Wang, 2015). Owing to their circular structure and lack of free ends
(Awasthi et al., 2018), circRNAs have greater stability and are more conserved across species than
linear RNAs (Jeck et al., 2013). Although the functions of most circRNAs are still elusive, they have
been shown to act as sponges to microRNAs (miRNAs; Hansen et al., 2013; Panda, 2018) and may
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potentially sponge RNA binding proteins (RBPs; Memczak
et al., 2013). In addition, circRNAs can also be involved in
transcriptional regulation (TR) and alternative splicing (Zhang
et al., 2013; Conn et al., 2017). circRNAs may even have
translation potential (Li et al., 2018). circRNAs play crucial
roles in gene regulation and the development of many complex
diseases. Moreover, circRNAs have a promising potential as
biomarkers of diseases due to their stability and relation to
diseases (Zhang et al., 2018).

Circular RNAs have some different attributes from other
long non-coding RNAs (lncRNAs), such as back-splicing (Xiong
et al., 2015). Unlike lncRNA, which can be effectively recognized
from other little non-coding RNAs (e.g., miRNA, siRNA, and
snoRNA) according to the transcript size, it is scarcely possible
to distinguish circRNA from different lncRNAs based on simple
features (Xiong et al., 2015). Moreover, it is hard to classify
circRNAs from other lncRNAs due to the low expression levels
of almost all lncRNAs. To date, several machine learning-
based methods have been developed for circRNA detection.
For example, PredcircRNA (Pan and Xiong, 2015) identifies
circRNAs by utilizing a multiple kernel learning-based (MKL)
framework. This tool incorporates diverse sequence features
including basic sequence features, graph features, conservation
scores as well as features of transposable element (ALU), tandem
repeats, ORF length, ORF proportion, and single nucleotide
polymorphism (SNP) density (ATOS) to train and test the model.
Hierarchical extreme learning machine (H-ELM; Chen et al.,
2018) extracts identical features and discriminates circRNAs
by performing a H-ELM algorithm with feature selection.
circDeep (Chaabane et al., 2019) distinguishes circRNAs by
integrating a reverse complement matching descriptor, an
asymmetric convolutional neural network (CNN) combined with
bidirectional long short-term memory sequence descriptor and a
conservation descriptor for extracting high level abstract features
of a given RNA sequence. When evaluating the performance
on the published dataset proposed by Pan and Xiong (2015),
circDeep achieves an improvement of over 12% in terms of
accuracy (ACC) compared with PredcircRNA and H-ELM (with
values of 0.778 vs. 0.789). However, there is still room for
improving the performance. Thus, novel computational methods
and comprehensive exploration of informative sequence features
affecting back-splicing are required.

Technological obstacles for understanding the regulation and
functions of circRNAs occur at various levels. Take suppression
strategy as an example, it usually uses loss and gain functions
to annotate gene function [i.e., RNAi (Boutros and Ahringer,
2008) and CRISPR/Cas9-mediated genome editing (Shalem et al.,
2015)]. However, this technique does not have adequate ability
to achieve specificity or high efficacy in targeting circRNAs.
Therefore, decoding the regulatory interactions of circRNAs
can greatly expand the understanding of their functions.
Thanks to the development of high-throughput sequencing,
alongside the advance of bioinformatics technology, a great
number of circRNAs loci have been discovered in human
genomes. Several databases and resources are available for
describing the circRNAs regulatory interactions, which can
facilitate research on miRNA, RBP, and TR interacting with

specific circRNAs. For instance, Circ2Traits (Ghosal et al., 2013)
predicts interactions between the disease-associated miRNAs
and circRNAs. CircNet (Liu et al., 2016) provides circRNA–
miRNA–gene regulatory networks and tissue-specific circRNA
expression profiles. CircInteractome (Dudekula et al., 2016)
explores circRNAs interacting with miRNAs. Besides, it identifies
RBPs binding to circRNA junctions. CIRCpedia v2 (Dong et al.,
2018) provides a comprehensive circRNA annotation from over
180 RNA-seq datasets across six different species. ENCORI (Li
et al., 2014) identifies the miRNA–ceRNA, miRNA–ncRNA,
and protein–RNA interaction networks. TRCirc (Tang et al.,
2018) provides a resource for efficient retrieval, browsing and
visualization of TR information of circRNAs. The availability of
these databases speeds up the exploration of circRNAs biogenesis
and the function analysis.

Machine learning has made impressive advances in the area
of bioinformatics such as molecular interactions prediction.
The machine learning-based predictors require considerable
domain expertise to design the feature extractor. For example,
Muppirala et al. (2011) proposed support vector machine (SVM)
and random forest (RF)-based methods to predict the RNA–
RBP interactions using sequence composition. Previous studies
suggested that incorporating informative features can boost the
predictive power (Ahmed et al., 2009, 2013; Wang L. et al., 2019).
For instance, Ahmed et al. (2009) proposed SVM-based methods
to predict guide strand of miRNAs and human Dicer cleavage
sites (Ahmed et al., 2013). In their work, they found adding
secondary structure information contributes to the improvement
of ACC compared with considering sequence only. Owing to
the non-coding nature of circRNA, the relationship between
structure and function in it is stronger than in linear RNAs.
There is increasing evidence that RNA secondary structure
promotes exon skipping RNA circularization (Pervouchine,
2019) and alternative splicing (Buratti and Baralle, 2004). Besides,
a quantitative characterization of the relationship between
primary sequence and structure of circRNAs contributes to
our understanding of how their function emerges. Inspired by
this, incorporating secondary structure features may achieve
better performance than considering primary sequence for
circRNAs regulatory interactions prediction. Recently, machine
learning-based identification of circRNAs coordinated regulatory
interaction has been gradually applied in the bioinformatics
field. For example, CircRNAs Interact with Proteins (CRIP)
integrates CNN and a recurrent neural network to predict
circRNA–RBP binding sites (Zhang et al., 2019). Wang Z.
et al. (2019) proposed a multiple CNNs-based method to
identify cancer-specific circRNA–RBP binding sites considering
only nucleotide sequences. Ju et al. (2019) applied a hybrid
LSTM-CNN-CRF (a long short-term memory network, CNN
network and a conditional random field) model to identify
RBP-binding sites on circRNAs (Ju et al., 2019). Lei and Fang
(2019) proposed GBDTCDA, a gradient boosting decision tree
(GBDT) regression model with multiple biological data to predict
circRNA-disease associations (Lei and Fang, 2019). To the best
of our knowledge, no machine learning-based tool has been
proposed to systematically predict the regulatory information of
circRNAs, including their interactions with miRNA, RBP, and TR.
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In this study, we introduce two machine learning-based
methods, circLGB and circMRT to combine both sequence and
structure information, to identify circRNAs from other lncRNAs
and to predict their regulatory interactions, respectively. circLGB
extracts the commonly used features and three new features
including adenosine to inosine (A-to-I) deamination, A-to-I
density as well as internal ribosome entry site (IRES), and in
turn, distinguishes circRNA by utilizing a LightGBM classifier.
We propose a two-step feature optimization strategy to select
the most discriminative features. circLGB achieves superior
performance on the public and our datasets compared to
the state-of-the-art methods. circMRT integrates sequence-
based features, graph features, genome context and regulatory
information for predicting circRNA interacting with miRNA,
RBP, and TR. We first propose three classifiers to predict
circRNA–miRNA, circRNA–RBP and circRNA–TR interactions,
respectively. Each classifier extracts the abovementioned
sequence features and predicts the regulatory interaction by
applying an ensemble machine learning algorithm with optimal
features. Then, the outputs of all three classifiers are fused by a
union operator to predict the coordinated regulatory interaction
of the candidate circRNA. As far as we know, circMRT is
currently a comprehensive computational platform that predicts
the regulatory information of circRNA using machine learning.

MATERIALS AND METHODS

Data Collection and Pre-processing
circlncRNA Datasets
We downloaded the human circRNAs from the circBase
(Glazar et al., 2014) database. Taking circRNA isoforms into
consideration and removing the transcripts which were shorter
than 200 nt, we obtained 79,987 positive samples. Besides,
we also downloaded the annotated human lncRNAs from
LNCipedia (Volders et al., 2013). This database provides basic
transcript information, gene structure and several statistics
(e.g., miRNA binding sites and secondary structure) for each
transcript. After excluding the overlapped circRNAs in circBase
and deepBase (Zheng et al., 2016), we obtained 127,432 lncRNAs
transcripts. We randomly selected 21,882 circRNAs and the same
number of lncRNAs to construct our circlncRNA dataset. The
determination of the sample size is given in Supplementary
Material (Supplementary Figure S1).

CIRCdeep Dataset
We used a dataset available in Chaabane et al. (2019) (hereafter
referred to as CIRCdeep). This dataset contains 32,914 human
circRNAs and 19,683 lncRNAs. circRNAs were downloaded
from the circRNADb (Chen et al., 2016) database. Transcripts
shorter than 200 nt were removed. Negative data was collected
from the GENCODE (Harrow et al., 2012) database. The
annotated lncRNAs in GENCODE have three validation levels
for RNA annotation, namely validation, manual annotation, and
automated annotation. Only validated or manually annotated
transcripts were chosen. CIRCdeep dataset can be downloaded
at https://github.com/UofLBioinformatics/circDeep.

circMI, circRBP, circTR Datasets and the
Independent Test Set
circRNA–miRNA and circRNA–RBP interactions were
downloaded from the ENCORI database1. Additionally,
circRNA–TR interactions were extracted from the TRCirc
database2. After removing the duplicates and getting the
full-length sequence and basic sequence information from
circBase database, we built datasets circMI, circRBP, and circTR
for training the classifiers of circRNA–miRNA, –RBP and –
TR, respectively. To be specific, we randomly selected 1046
full-length circRNAs interacting with miRNAs to construct the
positive data of circMI dataset. We collected 1036 and 2172 entire
circRNAs which have interactions with RBPs and TRs, being
used as positive data of circRBP and circTR datasets, respectively.
Note that, there is no overlap among these three positive samples.
We randomly selected 1046 circRNAs interacting with TRs as
negative data for circMI dataset. Analogously, 1036 circRNAs
interacting with TRs were derived to be used as negative
samples for circRBP dataset. The 2172 circRNAs interacting with
miRNAs or RBPs were chosen to construct the negative data of
circTR dataset. In addition, we used 140 samples including 29
circRNA–miRNA interactions, 50 circRNA–RBP interactions,
40 circRNA–TR interactions, and 21 miRNA–circRNA-RBP
interactions as an independent test set. This test set does not
overlap the former datasets. More details can be found in Table 1.

Feature Extraction
Feature extraction has great influence on the predictive
performance. Note that, features related to RNA circularization
and circRNA regulatory information may be different. So, we
separately extracted the features for circLGB and circMRT
models. 188 sequence-derived features including 70 sequence
composition features, 101 graph features, 12 conservation scores,
and 5 ATOS features (Pan and Xiong, 2015; Chen et al., 2018)
were used for circRNAs detection. Based on these features,
we added three features including A-to-I, A-to-I density and
IRES to train our circLGB. We extracted a 182-dimensional
vector to train our circMRT for circRNAs regulatory interactions

1http://starbase.sysu.edu.cn/
2http://licpathway.net/TRCirc/view/index

TABLE 1 | Summary of circMI, circRBP, circTR datasets and the
independent test set.

Model Dataset Positive data Negative data

circRNA-miRNA circMI 1046 circRNAs
interacting with
miRNAs

1046 circRNAs
interacting with
TRs

circRNA-RBP circRBP 1036 circRNAs
interacting with
RBPs

1036 circRNAs
interacting with
TRs

circRNA-TR circTR 2172 circRNAs
interacting with
TRs

2172 circRNAs
interacting with
miRNAs or
RBPs

circMRT Independent test set – –
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prediction. These features were divided into four groups:
sequence-based features, graph features, genome context and
regulatory information. The value of each feature was normalized
to the interval from 0 to 1. More details were summarized in
Supplementary Tables S1, S2.

Features of circLGB for Classifying circRNA From
Other lncRNAs
Group 1: Basic sequence features
The basic sequence features were extracted using the same
processing scheme described in Pan and Xiong (2015). These
features contain a wide range of possible explanatory attributes
from 64 trinucleotide frequencies and other sequence component
composition features, e.g., sequence length, GC content,
frequencies of AG, GT, AGGT, and GTAG. GT/AG signal has an
impact on forming the circRNAs, such as back-splicing and exon-
junction (Kitamura-Abe et al., 2004). A detailed description can
be referred to Pan and Xiong (2015).

Group 2: Graph feature
RNA structure plays an important role in gene splicing,
which has an influence on back-splicing (Ding et al., 2014).
Secondary structures play important role in identifying of the
hypothetical interacting sites of circRNAs (Cuesta and Manrubia,
2017). In RNA graph, the nodes are nucleotides while edges
represent backbone connection or bond relations between the
nucleotides (Maticzka et al., 2014). RNA graph features reflect
the relationships between nucleotides and represent the relations
of the abstract structure annotations predicted from RNA
shapes (Steffen et al., 2006). GraphProt is a machine learning-
based framework considering both sequence and full secondary
structure information that can find RBP sequence and structure-
binding preferences from the high-throughput data (Maticzka
et al., 2014). In this work, we applied GraphProt to calculate RNA
secondary structures. In addition, it was adopted in previous
studies (Pan and Xiong, 2015; Chen et al., 2018; Pan et al., 2018;
Ilik et al., 2020). We initially extracted a 32,768-dimensional RNA
graph feature vector for the candidate transcript using GraphProt
1.0.1. To improve the feature representation ability, Pan et al.
employed RF to rank the extracted features by their importance
scores and chose the top 101 features (Pan and Xiong, 2015).
For fair comparison, we used these 101 features for analysis.
The RF importance ranking list of the selected features can be
downloaded from https://github.com/xypan1232/PredcircRNA/
blob/master/features/all_fea_ranking.

Group 3: Conservation scores
Previous studies showed that circRNAs are significantly enriched
with conserved nucleotides (Memczak et al., 2013). On the
contrary, lncRNAs have a low level of sequence conservation
compared with other functional transcripts (Marques and
Ponting, 2009). Thus, conservation scores may help to
discriminate circRNAs from lncRNAs. These scores were
extracted by downloading the placent_phylop46way3 from the
UCSC database (Karolchik et al., 2003). We calculated the mean,

3http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP46way/
placentalMammals/

maximum, and variance of conservation scores from per base
phyloP conservation score for each transcript (Lowe et al., 2011).
Furthermore, the frequencies of bases with conservation scores
greater than 0.3, 0.6, 0.9 and smaller than 0.9 were also calculated.

Group 4: ALU and tandem repeat, ORF, SNP, IRES, A-to-I,
and A-to-I density
ALU repeats contribute to RNA circularization by making the
splice sites recognize each other (Liang and Wilusz, 2014).
We downloaded the annotated ALU repeat sites from UCSC
and calculated the number of ALU repeats for each transcript.
Tandem duplications within a gene have a great impact on back-
splicing (Ulitsky et al., 2011). Tandem repeats were detected by
employing Tandem Repeat Finder (Benson, 1999). We computed
the frequency of tandem repeats. The open reading frame (ORF)
length information was extracted by using txCdsPredict from
UCSC. The longest ORF and ORF propensity (ORF prop)
defined by the length of an ORF divided by the total length of
the transcript were calculated. Single nucleotide polymorphism
data with coordinates in the genome was downloaded from
the 1000 Genomes Project (Kuehn, 2008). Single nucleotide
polymorphism density was computed for each transcript.
A previous study suggested that A-to-I editing events occur
frequently at intronic positions that were proximal to the splice
sites of circularized exons (Ivanov et al., 2015). The annotated
data of A-to-I was downloaded from the RADAR (Ramaswami
and Li, 2014) dataset. A-to-I density was defined by the number
of A-to-I divided by the sequence length for each transcript.
Another work demonstrated that IRES provides the information
of peptides or proteins from circRNA (Abe et al., 2015), implying
that this feature has discriminative power for circRNA detection.
IRES information of the given RNA sequence was extracted by
IRESfinder (Zhao et al., 2018).

Features of circMRT for Predicting circRNA
Regulatory Interactions
Group 1: Sequence-based features
The sequence features consist of 70 sequence composition
features and one repeat feature. Note that these features were
generated in the same way in section “Features of circLGB for
Classifying circRNA From Other lncRNAs.”

Group 2: Graph features
The 101-dimensional graph features were generated identically to
the way described in section “Features of circLGB for Classifying
circRNA From Other lncRNAs.”

Group 3: Genome context features
We calculated the mean and standard deviation of conservation
scores for each transcript. ALU, SNP density and A-to-I features
were generated identically to the way described in section
“Features of circLGB for Classifying circRNA From Other
lncRNAs.” A previous study showed that circRNA sequences are
enriched for back-splice junctions (Jeck et al., 2013). Moreover,
CIRI (Gao et al., 2015) and find_circ (Memczak et al., 2013)
characterized circRNA by calculating the circular junctions. We
derived the one-dimensional back-splice junction feature from
the TRCirc database. It is a general phenomenon that circRNAs
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FIGURE 1 | Overview of the proposed circLGB for circRNA identification that involved the following steps: (i) construction of circlncRNA dataset; (ii) extraction of
sequence-derived features including sequence composition, graph features, conservation scores and ATOSAAI for training and testing the circLGB model; (iii)
ranking the features using mRMR algorithm according their importance and generation of the optimal feature subset using SFS; and (iv) construction of the final
prediction by applying LightGBM classifier that separates the input into circRNAs and lncRNAs. ALU, transposable element; ATOSAAI, ATOS, A-to-I, A-to-I density
and IRES; ORF, open reading frame; SNP, single nucleotide polymorphism; A-to-I, adenosine to inosine; mRMR, minimal redundancy and maximal relevance; SFS,
sequential forward search. These abbreviations also apply to Figures 2, 3.

compete with other RNAs for binding miRNAs. For example,
ciRS-7 contains over 70 selective conserved miRNA target sites
(Hansen et al., 2013). We integrated the one-dimensional miRNA
binding sites as one feature.

Group 4: Regulatory information features
Transcriptional regulation involves in a complex and meticulous
pattern of activities that incorporates with transcription factors
(TFs; Rowell et al., 2014). A recent study indicated that TFs can
selectively promote the expression of circular Cul2 rather than
the host gene (Meng et al., 2018). circRNAs are regulated by TFs
and other correlative information, such as H3K27ac signals. Yang
et al. found N6-methyladenosine boosts the efficient initiation of
protein translation from circRNAs in human cells (Yang et al.,
2017). We obtained the one-dimensional of TF feature vector,
methylation feature vector, H3K27ac feature vector from TRCirc
for each sequence, thereby leading to a 3-dimensional vector.

Model Training and Optimization
LightGBM
Gradient boosting decision tree (Friedman, 2001) is an iterative
decision tree algorithm with various effective implementations
such as XGBoost (Chen and Guestrin, 2016). However, the
efficiency and scalability are still ungratified when feature
dimension is high and data size is large (Ke et al., 2017).
Recently, LightGBM (Ke et al., 2017) has been proposed

to address this issue, which can effectively solve the time-
consuming problem of conventional GBDT while retaining high
classification ACC. LightGBM possesses two novel techniques:
gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB). Gradient-based one-side sampling excludes a
significant proportion of data instances with small gradients and
uses the remaining to estimate the information gain. Hence,
this technique can effectively reduce the number of data at the
time of calculation and further improve the efficiency. Exclusive
feature bundling bundles mutually exclusive features to reduce
the number of features. Features with larger gradients contribute
more to the information gain and are thus more important for
classification. Compared with GBDT, LightGBM speeds up the
training process significantly because the number of bundled
features will be much smaller than those of the original features.
The speed of model training in LightGBM is 20 times faster than
GBDT under the premise of achieving almost the same ACC (Ke
et al., 2017). We employed the LightGBM algorithm using the
lightgbm package in Python4.

Support Vector Machine
Support vector machine is one of the most widely used machine
learning algorithms for classification problems (Noble, 2006).
The main idea of SVM is based on kernel functions that map

4https://github.com/Microsoft/LightGBM
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FIGURE 2 | The overall framework of circMRT. (A) An outline of the overall flowchart of circMRT. The development of circMRT involved four major steps: (i) data
collection and preprocessing, (ii) feature extraction, (iii) ensemble model construction, and (iv) model prediction and performance assessment. (B) An illustration of
the detailed procedures for constructing the circRNA-miRNA classifier. (i) Four groups of features including sequence composition, graph features, genome context
and regulatory information are extracted for each candidate circRNA. (ii) The optimal feature set is selected by applying the proposed two-step feature selection
strategy. (iii) Based on the optimal feature set, we train the prediction models using seven machine learning-based algorithms. (iv) Three individual model’s outputs
are integrated by using majority voting algorithm.

the input data into a high dimensional space. Support vector
machine aims to search the hyperplane to maximize the margin
between two support vectors. In this study, SVM with the “linear”
kernel was implemented using the Scikit-learn library in Python.
We optimized the parameter cost C from the choice of (1.0, 1.1,
1.2, 1.3, 1.4) by grid search. After optimization, the parameter of
C was set as 1.0.

Random Forest
Random forest (Liaw and Wiener, 2002) is an ensemble learning
method for regression and classification which involves multiple
decision trees. Random forest assumes that there are P samples
with Q features in the original training set, and it selects P samples
from the training data by bootstrapping and randomly selects q
features (q� Q) to train a decision tree. By repeating the step
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FIGURE 3 | Performance of circLGB for circRNA identification on the circlncRNA dataset by various combinations of sequence-derived features including IRES,
A-to-I and A-to-I density. Panel (A) shows comparison of ROC curves and panel (B) shows comparison of ACC, MCC, SE, SP, F1,3] and PRE.

FIGURE 4 | (A) ROC curves and (B) histograms showing the performance of circLGB by extracting 188 and 191 sequence-derived features on the circlncRNA
dataset under 10-time 5-fold cross-validation. The performance comparison in terms of ACC, MCC, SE, SP, F1, and PRE.

above, numerous decision trees are trained, and their outputs are
integrated in the ensemble model to make a final prediction. We
trained the RF with 20 decision trees using Scikit-learn.

Stochastic Gradient Descent
Stochastic gradient descent (SGD; Friedman, 2001) is an effective
method for solving large scale supervised machine learning
problems. It generally confers a significant decrease in training

time without sacrificing ACC. In particular, SGD with early
stopping at a fixed number of interactions approximately
halves the training time. In this work, SGD was applied
using Scikit-learn.

Gaussian Naive Bayes
A Naive Bayes (NB) classifier calculates the probability of
a given example belonging to a certain class. When the
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FIGURE 5 | Feature importance analyses. (A) SFS curve of MCC with increasing number of ranked features. The features are selected by mRMR feature importance
list in descending order. X-axis represents the number of selected features. The maximum MCC (0.946) obtained by integrating the top 54 features on the curve is
marked by a red pentagon. This notation also applies to Figure 7A. (B) ROC curves of circLGB for discriminating circRNAs and lncRNAs by using the top 1 to top 5,
top 54 and total 191 features.

FIGURE 6 | (A) ROC curves and (B) histograms of evaluation metrics show the superior performance of circLGB over GBDT, XGBoost, RF, SVM, SGD, and GNB for
circRNA identification on the circlncRNA dataset under 10-time 5-fold cross-validation. Evaluation metrics including ACC, MCC, SE, SP, F1, and PRE. GBDT,
gradient boosting decision tree; RF, random forest; SVM, support vector machine; SGD, stochastic gradient descent; GNB, Gaussian naive Bayes.

likelihood of the features is assumed to be Gaussian, the
NB classifier is called Gaussian naive Bayes (GNB; John and
Langley, 2013). Gaussian naive Bayes supposes that features are
independent from each other. Gaussian naive Bayes is simpler

and faster than other sophisticated methods. Thus, it is usually
used for prediction problems in bioinformatics (Murakami
and Mizuguchi, 2010). Here, GNB was also implemented
using Scikit-learn.
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TABLE 2 | Performance evaluation of our circLGB and other two learning-based
algorithms on the CIRCdeep dataset.

Model ACC MCC F1 References

circLGB 0.998 0.995 0.998 –

circDeep 0.942 0.883 0.940 (Chaabane et al., 2019)

PredcircRNA 0.806 0.611 0.811 (Pan and Xiong, 2015)

The best performance across different evaluation metrics is highlighted in bold for
clarification. These highlights also apply to Tables 3, 4.

TABLE 3 | Performance of three ensemble machine learning-based classifiers for
circRNA regulatory interactions prediction based on different groups of
sequence-derived features.

Features ROC SE SP ACC MCC F1 PRE

(A) circRNA-miRNA classifier

Sequence-
based

0.995 1.000 0.991 0.995 0.990 0.995 0.990

Graph
features

0.958 0.980 0.937 0.957 0.915 0.956 0.933

Genome
context

0.884 0.876 0.892 0.883 0.766 0.889 0.904

Regulation
information

0.952 0.922 0.981 0.952 0.906 0.950 0.979

(B) circRNA-RBP classifier

Sequence-
based

0.991 0.986 0.995 0.990 0.981 0.991 0.995

Graph
features

0.969 0.954 0.985 0.969 0.938 0.970 0.986

Genome
context

0.895 0.833 0.956 0.894 0.794 0.888 0.951

Regulation
information

0.955 0.925 0.985 0.954 0.910 0.954 0.985

(C) circRNA-TR classifier

Sequence-
based

0.993 0.989 0.998 0.993 0.986 0.993 0.998

Graph
features

0.961 0.935 0.987 0.962 0.925 0.959 0.985

Genome
context

0.891 0.954 0.829 0.891 0.788 0.896 0.846

Regulation
information

0.971 0.978 0.965 0.971 0.943 0.970 0.962

circLGB
We proposed a machine-learning framework called circLGB to
classify circRNA from lncRNAs. As shown in Figure 1, the
major procedures of circLGB can be summarized as below:
(i) The collected human circRNAs and lncRNAs transcripts
are combined to construct the circlncRNA dataset. (ii) Four
groups of sequence-derived features are extracted from various
toolkits and databases. (iii) minimum redundancy-maximum
relevance (mRMR; Ding and Peng, 2005) feature selection
framework is applied to rank the extracted features according
their importance scores. Then, sequential forward search (SFS)
is utilized to determine the optimal feature subset which yields
the best Matthews correlation coefficient (MCC). Supplementary
Table S3 summarizes the feature importance scores on the
circlncRNA dataset. (iv) The resulting feature vector is fed

into the LightGBM classifier for circRNA identification. Finally,
performance metrics are calculated for model evaluation.

circMRT
We next developed circMRT to predict the regulatory
information for circRNAs, including their interactions with
miRNA, RBP, and TR. Note that, one interaction may exist
simultaneously for a given circRNA. We first developed three
binary classifiers to explore whether the given circRNA has
associations with miRNA, RBP, and TR, respectively. Then, the
outputs of these classifiers were fused to make a final prediction.
The circMRT methodology (Figure 2) consists of four major
steps: (i) Datasets circMI, circRBP and circTR are constructed
to train the circRNA–miRNA, circRNA–RBP and circRNA–TR
classifiers, respectively. Besides, independent test set is generated
to evaluate the generalization of circMRT. (ii) The candidate
circRNA sequence is input for feature encoding by extracting
four types of features. (iii) The extracted features are fed into
the abovementioned classifiers for training and testing. Each
classifier is trained on its own optimal features selected by
applying the proposed feature optimization strategy. (iv) The
independent test set is respectively fed into three well-trained
classifiers for prediction. Finally, the outputs are fused by
a union operator to predict the regulatory interactions for
a given circRNA.

Feature Selection
We utilized a two-step feature selection strategy to improve
the feature representation ability. We first used mRMR to
achieve the ranked feature list according to the importance
scores of the learned features. Features with higher scores
were more predictive. Second, SFS was applied to investigate
the optimal combination of features that can yield the best
performance. We ranked the features in a descending order
from the mRMR features list. Subsequently, incremental feature
selection approach was employed to select the optimal top-k
features. We added the features from the ranked feature list one
by one and trained the proposed model. The feature subset with
the relative higher values of MCC was regarded as the most
discriminative features. It is worth noting that we here used
the MCC since it is a balanced measurement, even if the sizes
of positive and negative samples are imbalanced. Therefore, the
MCC is a better indicator to assess the performance of the models.

Hyperparameters Optimization
cricLGB and circMRT were implemented using Python 2.7. All
experiments were carried out on a desktop computer with Intel
(R) Core (TM) i7-7800X CPU @ 3.50GHz, Ubuntu 16.04.5 LTS
and 16 GB RAM. To ensure the ACC and robustness of the
proposed algorithms, we employed the grid-search parameter
adjustment to achieve the optimal parameters. Specifically, we
used grid-search to tune six parameters including learning rate,
number of leaves, feature fraction, bagging fraction, reg_alpha,
and reg_lambda for each dataset. The Grid search range of each
parameter was as below: learning rate from the choice (0.01, 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2), number of leaves
from the choice (20, 25, 30, 35, 40, 45, 50), feature fraction from
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FIGURE 7 | SFS curves of MCC with increasing number of selected features for classifiers of panel (A) circRNA-miRNA, (B) circRNA-RBP, and (C) circRNA-TR,
respectively. The features are selected by their estimated feature importance in descending order. We choose the top 21, top 26, and top 15 features for the above
three classifiers, with MCC values of 0.994, 0.981, and 0.985, respectively.

TABLE 4 | Performance evaluation of three binary classifiers on datasets circMI, circRBP, and circTR, respectively.

Classifier Dataset ROC SE SP ACC MCC F1 PRE

circRNA-miRNA circMI 0.981 0.986 0.976 0.981 0.994 0.981 0.977

circRNA-RBP circRBP 0.990 0.991 0.990 0.990 0.981 0.991 0.991

circRNA-TR circTR 0.992 0.988 0.997 0.992 0.985 0.992 0.997

the choice (0.5, 0.6, 0.7, 0.8, 0.9), bagging fraction from the choice
(0.5, 0.6, 0.7, 0.8, 0.9), reg_alpha from the choice (0.001, 0.01,
0.03, 0.05), and reg_lambda from the choice of (0.001, 0.01, 0.03,
0.05). The proposed methods are binary classification problems,
we used “binary” of “objective” and “auc” of ‘metric’ with 100
times iteration and “stopping patience” of 10.

Considering that the grid-search for all the parameters
requires a large computation cost, we adjusted the above
parameters in batches to maximize the value of AUC under 5-
fold cross-validation. We took the optimal hyperparameters for
the model once the performance does not improve. The tuned
optimal parameters were regarded as the input parameters to
tune the next parameters. We first tuned the parameters of
learning rate and number of leaves. Then, we adjusted the feature
fraction and bagging fraction. Next, we tuned the regularization
parameter including alpha and lambda. The combination of
the optimal parameters for circLGB from the learning rate
of 0.1 were, number of leaves of 60, feature faction of 0.5,
bagging fraction of 0.6, reg_alpha of 0.01 and reg_lambda of
0.001. The determination of the optimal parameters of circRNA–
miRNA, circRNA–RBP and circRNA-TR classifiers were as
follows: learning rate of (0.1, 0.1, 0.1), number of leaves of (20,
40, 35), feature faction of (0.6, 0.6, 0.6), bagging fraction of (0.6,
0.6, 0.5), reg_alpha of (0.01, 0.001, 0.01), and reg_lambda of
(0.03, 0.001, 0.01).

Performance Evaluation
To evaluate the performance of our models and to compare with
existing state-of-the-art methods, sensitivity (SE), specificity (SP),

FIGURE 8 | Histograms showing the performance of circRNA-miRNA,
circRNA-RBP and circRNA-TR classifiers in terms of ROC, SP, SE, ACC, F1,
and PRE on the independent testing dataset.

precision (PRE), F1 score (F1), ACC, and MCC were calculated.
These indicators are widely used to measure the quality of binary
classification defined as follows:

SE =
TP

TP + FN
(1)
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SP =
TN

TP + FP
(2)

PRE =
TP

TP + FP
(3)

F1 = 2×
SN × PRE
SN + FRE

(4)

ACC =
TP + TN

TP + FP + TN + FN
(5)

MCC =
(TP × TN)− (FN × FP)

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(6)

where TP, TN, FP, and FN represent the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
Receiver Operating Characteristic (ROC) curves were employed
to visualize the performance between different methods together
with the area under ROC curve (AUC).

RESULTS

circLGB for circRNA Identification
The Effect of Three New Sequence-Derived Features
We first examined whether A-to-I, A-to-I density or IRES could
be used as effective features for circRNA identification. To this
end, we trained circLGB with these features on the circlncRNA
dataset under 10-time 5-fold cross-validation. As shown in
Figure 3, two observations can be made: (i) circLGB trained using
IRES achieved the highest SE value of 0.632. (ii) circLGB trained
with A-to-I achieved more optimal performance than those using
A-to-I density or IRES. These results indicated that no single
feature contains enough useful patterns and characteristics for
classifying circRNAs.

To achieve better performance, the combination of these
three new features was modeled in circLGB. As depicted in
Figure 3, IRES combined with A-to-I outperformed any other
combinations of two features, reaching AUC value of 0.886.
Interestingly, though A-to-I density alone showed relatively poor
performance, it gained great progress by incorporating with A-to-
I or IRES, reaching AUC values of 0.803 and 0.798, respectively.
circLGB achieved an overall AUC of 0.894 using these three
features. So, we added them with commonly used features to
train our model. As expected, circLGB trained using 191 features,
achieved better performance than that on 188 features, reaching
AUC values of 0.999 and 0.977, respectively (Figure 4A). Similar
results on other evaluation metrics can be found in Figure 4B.
Together, the addition of three new features can boost the
prediction ability of circLGB.

Feature Importance Analysis for circLGB
Next, we adopted the proposed optimization strategy to enhance
the feature representation ability. Figure 5A depicts the SFS
curve of MCC of circLGB on the circlncRNA dataset by adding
features one by one from the ranked feature list (Supplementary
Table S3). Apparently, it increased quickly as the features were
integrated. The MCC reached a relatively high value of 0.946

when adding the top 54 features. However, the performance
fluctuated when incorporating more features. This implied that
the improvement of the low-ranked features is not obvious,
and they even lead to a decline of the performance. Moreover,
we compared the performance of circLGB using the top 1
to top 5, top 54 and all features under 10-time 5-fold cross-
validation. Obviously, the performance of circLGB trained on
the selected feature sets improved when gradually adding the
top ranked features (Figure 5B). The predictive results using
the optimal features showed comparable performance with those
using 191 features, reaching ROC values of 0.996 and 0.999,
respectively. Therefore, these 54 features were regarded as the
optimal features.

Supplementary Figure S2 illustrates the feature importance
distribution of the optimal features based on the importance
scores. There were 30 graph features, 10 sequence-based features,
9 conservation scores, and 5 ATOSAAI features (ATOS, A-
to-I, A-to-I density and IRES) amongst them. This result was
consistent with a recent study that shows that graph features are
the most predictive features for circRNA detection (Chen et al.,
2018). We noted that A-to-I density, A-to-I, and IRES features,
respectively, were ranked in the 3rd, 26th, and 49th place, which
verified their superior ability in identifying circRNA.

Comparison With Learning-Based Methods
We compared the performance of circLGB with six machine
learning algorithms including GBDT, XGBoost, RF, SVM, SGD,
and GNB on the circlncRNA dataset using the optimal features
under 10-time 5-fold cross-validation. All the machine learning
methods were run under their optimal parameters for fair
comparisons. As shown in Figure 6A, of the seven algorithms
tested here, circLGB was the most predictive, with ROC of
0.996. Moreover, circLGB outperformed others with remarkable
ACC, MCC, SE, SP, F1, and PRE values of 0.973, 0.946, 0.958,
0.988, 0.972, and 0.987, respectively (Figure 6B). Furthermore,
we compared circLGB with two state-of-the-art predictors (e.g.,
circDeep and PredcircRNA) on the CIRCdeep dataset. For fair
comparison, we randomly separated the dataset into a training
dataset, a validation dataset, and an independent testing set with
75, 10, and 15%, respectively. Overall, circLGB achieved the most
powerful predictive ability, with ACC, MCC, and F1 values of
0.998, 0.995, and 0.998, respectively (Table 2).

circMRT for Predicting circRNA
Regulatory Interactions
Feature Importance Analysis for circMRT
We first compared the performance of the proposed classifiers.
As indicated in Table 3, sequence-based features were more
important than other groups of features for each classifier.
The regulation information features had strong discriminating
power for predicting circRNA–TR interactions. Supplementary
Tables S4–S6 present the ranked feature list of circRNA–miRNA,
circRNA–RBP, and circRNA–TR classifiers on datasets circMI,
circRBP, and circTR, respectively. Some interesting conclusions
can be drawn: (i) The predicted results of circRNA-miRNA
interactions were strongly influenced by ALU and miRNA. (ii)
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FIGURE 9 | Visualization of the circRNA-associated interactions according to databases ENCORI, TRCirc and Interactome. (A) Visualization of the
has_circ_0033725 associated with miRNAs interactions. (B) Visualization of the has_circ_001886 associated with RBPs interactions. (C) Visualization of
has_circ_0006111, has_circ_0008173, has_circ_0012351, has_circ_0014408, has_circ_0025154, has_circ_0035174, has_circ_0080641, and has_circ_0088103
associated with TR interactions. (D) Visualization of has_circ_0004915 associated with miRNAs and RBPs interactions.

Junction and repeat features contributed most for the circRNA–
RBP classifier. (iii) Junction and methylation were the most
predictive for the circRNA–TR classifier. (iv) Conservation scores
ranked in the top seven features of all three classifiers. Therefore,
conservation information was very predictive to distinguish
circRNA regulatory interactions.

To avoid overfitting, we performed the proposed feature
optimization strategy to obtain the representative features for
each classifier. Figure 7 depicts the MCC curves of these
classifiers by gradually integrating features from the ranked
feature list. It can be observed that the maximum MCC values
of circRNA–miRNA, circRNA–RBP, and circRNA–TR classifiers
were 0.994, 0.981, and 0.985 (Table 4) when the top 21, 26, and 15
features from their own ranked feature list were used. Therefore,

circRNA associated with miRNA, RBP, and TR were predicted
using the proposed classifiers with their own optimal features.

Performance Evaluation of circMRT on the
Independent Test Set
In this section, we focused on measuring the generalizability
of circMRT for unseen data. For this purpose, we evaluated
the performance of circMRT on the constructed independent
test set. This dataset was split into 60, 20, and 20% classes,
subsequently being used as the training set, validation set, and
testing set, respectively. As depicted in Figure 8, circRNA-TR
classifier exhibited the best predictive power, with the maximal
ROC and ACC values of 0.890 and 0.929. The circRNA-RBP
classifier was the second most predictive, with ROC and ACC of
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FIGURE 10 | Screenshots show the prediction of hsa_circ_0009178. Users can submit query sequence in the following four steps: (1) Click the START button to be
taken to the prediction page. (2) Input the hsa_circ_0009178 sequence into the input box and then click the Submit button to make prediction. (3) Click the Submit
button to upload hsa_circ_0009178 sequence. (4) The web server returns the prediction result “circRNA”İ with a probability score of 0.926 in the Gray box.

0.735 and 0.736, respectively. The circRNA-miRNA classifier also
performed well, but with relatively lower ROC and ACC.

Taking has_circ_0033725 as an example, our circMRT
predicted that it has interactions with miRNAs. According to the
ENCORI database, has_circ_0033725 has interactions with 16
miRNAs (Figure 9a). circMRT predicted that has_circ_001886
has association with RBP. Databases ENCORI and Interactome5

shows that has_circ_001886 has interactions with AGO2,
EIF4A3, FMRP, HUR, IGF2BP1, IGF2BP2, IGF2BP3, and
LIN28A (Figure 9b). circMRT suggested that circRNAs
has_circ_0006111, has_circ_0008173, has_circ_0012351,
has_circ_0014408, has_circ_0025154, has_circ_0035174,
has_circ_0080641, and has_circ_0088103 have associations
with TR. According to the TRCirc database, all the above
circRNAs have interactions with CTCF (Figure 9c). Moreover,
has_circ_0004915 was predicted to have interactions with
miRNA and RBP. From ENCORI, has_circ_0004915 has
interactions with AGO2, FUS, HNRNPC, PTB, has_miR_19b-
3p, has_miR_19a-3p, has_miR_2681-5p, has_miR_320c,
has_miR_320b, has_miR_320d, and has_miR_4429 (Figure 9d).
More details can be found in the Supplementary Material.

5https://circinteractome.nia.nih.gov/

Availability of Online Webserver
For the convenience of researchers, we have developed an
easy-to-use webserver that implements our circLGB, which is
freely accessible through http://www.circlgb.com. The following
description provides a step-by-step instruction on how to use
the webserver to obtain the prediction result. First, users need
to submit the query sequence into the input box or upload a
FASTA sequence file to make a prediction. Note that the input
sequence must only contain the following four canonical bases
“A,” “C,” “G,” and “T.” The FASTA formatted sequence begins
with a single line description, followed by lines of sequence data.
The definition line is distinguished from the sequence data by
a greater-than “>” character at the beginning. The rest of the
definition line must contain five columns including sequence
name, chromosome, start position, end position, and strand.
Second, click the Submit button to upload the query sequence
(FASTA file) for prediction. Upon submitting the sequence, the
software will extract the features for the given sequence from
a server. The Prediction page will show the job description
including job ID, job name, email address, and job state. The
web server will return the prediction result in the Gray box
when the job is completed. Figure 10 shows an example for
using the web server.
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DISCUSSION

Here we present two machine learning-based methods, circLGB
and circMRT, to classify circRNA from other lncRNAs and
to predict its regulatory interactions using diverse sources of
sequence-derived features, respectively. The feature section is
important, in addition to the modeling approach for predicting
activity. In recent years, considerable research efforts have been
made in identifying circRNA, thus generating several groups
of features for RNAs representation. Inspired by these studies
(Pan and Xiong, 2015; Chen et al., 2018), we integrated the
commonly used sequence features to generate the feature space
of circLGB. To achieve optimal performance, A-to-I and A-to-I
density, and IRES features were modeled in the circLGB model.
The success of circLGB lies in the enriched representative features
and powerful machine learning model incorporating the feature
optimization strategy. Compared to existing tools, circLGB has
the following merits: (i) It successfully integrates three new
features that can enhance the discrimination ability for circRNA
detection. (ii) It takes advantage of the feature optimization
strategy to determine the most important features, thus reducing
the feature dimensions and avoiding overfitting. (iii) circLGB
provides a user-friendly webserver to identify circRNA for a new
query RNA sequence.

Many studies focus on the interactions between circRNAs and
miRNAs (e.g., TargetScan, miRanda), RBPs (e.g., ENCORI), and
TRs (e.g., TRCirc). However, there is a lack of a comprehensive
human circRNA regulatory information database. circMRT is
an efficient computational ensemble machine learning model
for simultaneous prediction of circRNA potential interacted
miRNAs, RBPs, and TRs, further facilitating interpretation and
its functional mechanisms. circMRT incorporates several features
from other freely available web resources and toolkits, such
as UCSC, TRCirc, and GraphProt. It enables the user to find
the potential regulatory interactions for an unseen circRNA
sequence. Together, circMRT will accelerate our efforts to
understand the roles of circRNAs in biological processes related
to health and disease.

Several future improvements are expected. First, we have
currently designed circLGB and circMRT only for human
circRNAs. They will be expanded to include other species in the
future. Second, manual design of proper RNA sequence features
will definitely enhance the prediction ability of models. Here,
we use the commonly used sequence-derived features as well
as explore three new features for RNA sequence representations
and show that feature engineering really boosts the performance.
Future directions can combine feature engineering and feature
selection strategies for improving the prediction performance.
Third, the number of the available training sample sizes have
great influence on the predictive performance. However, after

removing the duplications, the sample sizes of circRNA–miRNA,
circRNA–RBP, and circRNA–TR interactions are relatively small,
which brings a challenge for an unseen query sequence.
Consequently, appropriate data augmentation techniques await
exploration. Finally, though circLGB and circMRT achieve the
desired performance for circRNA identification and prediction
of its regulatory interactions, both of them rely heavily on the
considerable domain expertise to design the feature extractor.
We believe that simple and modern deep learning models will
contribute to enhancements for these issues.
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