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It is increasingly appreciated that long non-coding RNAs (lncRNAs) associated with
alternative splicing (AS) could be involved in aggressive hepatocellular carcinoma.
Although many recent studies show the alteration of RNA alternative splicing by
deregulated lncRNAs in cancer, the extent to which and how lncRNAs impact alternative
splicing at the genome scale remains largely elusive. We analyzed RNA-seq data
obtained from 369 hepatocellular carcinomas (HCCs) and 160 normal liver tissues,
quantified 198,619 isoform transcripts, and identified a total of 1,375 significant AS
events in liver cancer. In order to predict novel AS-associated lncRNAs, we performed an
integration of co-expression, protein-protein interaction (PPI) and epigenetic interaction
networks that links lncRNA modulators (such as splicing factors, transcript factors, and
miRNAs) along with their targeted AS genes in HCC. We developed a random walk-
based multi-graphic (RWMG) model algorithm that prioritizes functional lncRNAs with
their associated AS targets to computationally model the heterogeneous networks in
HCC. RWMG shows a good performance evaluated by the ROC curve based on cross-
validation and bootstrapping strategies. As a conclusion, our robust network-based
framework has derived 31 AS-related lncRNAs that not only validates known cancer-
associated cases MALAT1 and HOXA11-AS, but also reveals new players such as
DNM1P35 and DLX6-AS1with potential functional implications. Survival analysis further
provides insights into the clinical significance of identified lncRNAs.

Keywords: long non-coding RNAs (lncRNA), alternative splicing, multi-graphic random walk, gene-regulatory
network analysis, random walk, hepatocellular carcinoma, integrative network analysis

INTRODUCTION

Alternative splicing (AS) events are frequently observed in tumorigenesis and serve as cancer-
driving genes. AS can originate from somatic mutations that disrupt splicing regulatory
mechanisms or influence the expression levels of splicing factors or transcription factors (Climente-
Gonzalez et al., 2017). Hence, AS-associated genes are recognized as important signatures for
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tumorigenesis and are of significance in developing therapeutic
targets for cancer clinical trial. For example, the SF3B1-targeting
compound spliceosome inhibitor E7107 has been implemented
in advanced tumor treatment (Eskens et al., 2013).

Studies from Zhang et al. (2016) and Romero-Barrios
et al. (2018) showed that long non-coding RNAs [generally
more than >200 nucleotides (nt) in length] are associated
with a variety of AS mechanisms. lncRNAs may interact
with specific alternative splicing factors (ASF) or with other
intermediate molecules that affect chromatin remodeling to
fine tune the splicing of target genes (Romero-Barrios et al.,
2018). For instance, our previous experimental study showed
that MALAT1 regulated the ASF, SRSF1 (SF2) in gastric cancer
cells (Wang et al., 2014; West et al., 2014). In addition, Ji
et al. (2014) reported that MALAT1 promoted tumor growth
and metastasis in colorectal cancer through the binding of
SFPQ in order to release the oncogene PTBP2. On the other
hand, LINC01133 has been reported to interact with splice
factor SRSF6 in patients suffering from colorectal cancer
(Kong et al., 2016) and non-small cell lung cancer (NSCLC)
(Zang et al., 2016).

Proteins that have multiple splicing regulators and that
promote the transformation of target genes generally get
triggered by transcriptional factors (TFs). For example, the
transcription regulator MYC, induces upregulation of hnRNP
A1/2, that, in turn, regulates alternative splicing events in
expressing the cancer-associated pyruvate kinase M2 (PKM2)
isoform (David et al., 2010; Koh et al., 2015). Since lncRNAs occur
specifically during pre-transcriptional or post-transcriptional
modifications, effectors (such as miRNAs, TFs, or ASFs) that
are away from their targets, act as cofactors or guides to alter
TF-promoter interactions.

Although studies have identified the correlation of
lncRNAs and AS to be important in cancer prognosis,
there still remains gaps within current studies as only a
few cancer-related AS events are known to be regulated by
lncRNAs. In addition, it was not clear how the lncRNAs
were linked to specific AS sites, hence, providing no evidence
to correlate clinical outcomes. Next-generation sequencing
technologies have helped identify ∼40K novel lncRNAs
cancer, whose regulatory functions in AS remain unknown
in tumorigenesis. Hence, computationally predicting novel
lncRNAs and associated alternative splicing events may help
in the comprehensive understanding of the HCC disease at
a systems level.

In this study, we established an innovative technology
for propagating molecular networks called the random walk-
based multi-graphic (RWMG) model. The RWMG model
simultaneously integrates sophisticated biological connections
among lncRNA targets [such as transcription factors (TF),
alternative splice factors (ASF), and microRNAs] based on
both biophysical interaction networks and their co-expression
profiles within a single analytical framework. When comparing
conventional random walk algorithms that considers equal
proportion of all input genes, our flexible and scalable method
can be formulated to rank a subset of lncRNAs based on
literature survey. In addition, the method we propose has better

accuracy than other previously defined “shortest path” network-
based algorithms, with advantages of overcoming “noise” and
“incomplete” dimensional heterogenicity from the data.

In addition, previous published reports on comparing tumor
and normal tissues are generally limited to normal adjacent
tissues (NAT). However, these tissues are not truly “normal” as
they are usually surrounded by tumor contaminations. Therefore,
many potential cancer biomarkers involved in AS may be
missed. Hence, to increase the performance of such analysis,
we combined healthy liver tissue samples that were downloaded
from GTEx along with expression data from TCGA.

MATERIALS AND METHODS

Data Description and Project Design
The framework of the underlying biological hypothesis and
model assumption for this project is described in Supplementary
Figures S1A,B. The analysis in this manuscript relied on using
multi-omics data. We downloaded gene expression data for 110
normal liver samples from the GTEx and TCGA along with
clinical information for 369 liver tumors and 50 normal samples
from the UCSC Xena database1. The sequencing platform
for obtaining gene expression was Illumina HiSeq 2000, and
pre-processing of raw data was done following the UCSC’s
Xena Toil (Vivian et al., 2017) method in order to quantify
gene and transcript isoform expression. Annotation of coding
and non-coding genes was obtained using GENCODE v23
(Harrow et al., 2012).

Identification of HCC Tumor Non-coding
Genes (lncRNAs or Pseudogenes) From
TCGA and GTEx RNA-seq Data
We performed a method of trimmed mean of M-values (TMM)
normalization for RNAseq data (Robinson and Oshlack, 2010)
so that the expression level for lncRNAs and pseudogenes
are comparable. The TMM normalized data was further
transformed to log2-counts per million for our linear model.
HCC differentially expressed (DE) lncRNAs and pseudogenes
between tumor and normal samples (T/N) were analyzed by R
package limma (Smyth, 2005) with a statistical cutoff (p< 1.0E-04
and fold-change > 2). The identification of DE miRNAs had been
reported in our previous work (Wang et al., 2018). The identified
HCC-specific expressed features (lncRNAs, pseudogenes, and
miRNAs) are expected to represent potential key mechanisms
in liver neoplasm.

Analysis of Alternative Splicing Isoforms
and Functional Consequence
In order to analyze alternative splice isoforms, we first
discarded those isoforms that contained nil values on
abundance levels across all the samples. We used R package
“IsoformSwitchAnalyzeR” to analyze individual isoform switches

1http://xena.ucsc.edu/
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from T/N comparison and their biological processes (Vitting-
Seerup and Sandelin, 2017, 2018). Differentially switched
isoforms between T/N were determined by the following criteria:
difference in isoform fraction (dIF) > 0.1 and FDR-corrected
q-value < 0.05. The functional consequences of switched
isoforms were further analyzed for protein-coding potential
(CPAT) (Wang et al., 2013), Nonsense-mediated decay (NMD)
status, protein domains (Pfam) (Finn et al., 2015; Potter et al.,
2018), and open reading frames (ORF). We used the cutoff 0.364
as suggested to distinguish coding and non-coding isoforms
in CPAT analysis. On the other hand, NMD is a process that
recognizes mRNAs carrying a premature termination codon
(PTC) and that triggers their degradation in order to prevent the
synthesis of dysfunctional proteins. AS that controls expression
of genes is an important process facilitating mRNA degradation
in specific isoforms and could lead to NMD (Cuccurese et al.,
2005). Since exon structure of all isoforms in a given gene are with
isoform switching capabilities, we obtained their corresponding
spliced nucleotide sequence and corresponding coding sequence
from ORF positions (Weischenfeldt et al., 2012). The alternative
splicing (AS) patterns of switching isoforms were predicted by
spliceR (Vitting-Seerup et al., 2014) to include alternative 3′
acceptor sites (A3), alternative 5′ donor sites (A5), exon skipping
(ES), mutually exclusive exons (MEE), AS at TF start sites
(ATSS), AS at termination site (ATTS), and intron retention (IR).
Gene enrichment analysis of features that compared normal vs.
tumor samples were performed by following the statistical testing
of Fisher’s exact-test. P-values were corrected for multiple testing
using the Benjamin–Hochberg scheme with an FDR < 0.05.

Construction of AS-Associated lncRNA
Epigenetic Regulatory Interaction
Subnetworks in HCC
We collected physical interaction information of lncRNAs
and associated targeted genes through database searching
and text mining. These interactions were evidenced from
experimental validations, neighboring gene pairs, gene fusions,
and co-occurrence of lncRNAs that connect with miRNA-,
TF-, ASF-, and switched genes. Furthermore, HCC lncRNA-
target networks were compiled from the following resources:
Chiu et al. (2018), miWalker2.0 (Dweep and Gretz, 2015),
STARBASE v2 (Li et al., 2013), and lncRNA-disease (Bao et al.,
2018) that were analyzed from several high-throughput assays,
including ENCODE enhanced version of the crosslinking
and immunoprecipitation assay (eCLIP) and chromatin
immunoprecipitation sequencing (ChIP-seq) data (Consortium,
2004). HCC-specific miRNA-target networks have been
described in our previous published results (Wang et al., 2018);
TF-target predicted interaction networks were manually curated
from the following databases and publications: Chiu et al. (2018)
(Supplementary Table S5), HTRIdb (Bovolenta et al., 2012),
Whitfield (Whitfield et al., 2012), and TRANSFAC (Matys et al.,
2006) that were based on combined evidence from ENCODE
ChIP-Seq assays and positioned weighted matrix (PWM) for
TF motif analysis.

Features that were enriched in AS regulatory pathways
were collected from pathCards (Belinky et al., 2015), KEGG
spliceosome (Kanehisa and Goto, 2000), NCBI Biosystems
mRNA processing (Geer et al., 2009), REATOME mRNA
splicing pathway, and processing of capped intron-containing
pre-mRNA pathway (Croft et al., 2010). These features were
involved in an essential component of splicing factors or non-
snRNA spliceosome required for the second catalytic step
of pre-mRNA splicing. Among these collected 335 splicing
regulator genes, 86 were experimentally validated as alternative
splicing factors (ASF). ASF and target gene interactions
were manually confirmed from SpliceAid 2 (Giulietti et al.,
2012), ASF motif analysis from SFmap (Paz et al., 2010),
a subset of RNA-binding protein network by Chiu et al.
(2018) (Supplementary Table S6), and STRING database
(Franceschini et al., 2012).

Finally, identified HCC-DE lncRNAs, pseudogenes, and
miRNAs were mapped to the global regulatory networks to
construct HCC-specific sub-networks that contain switched
genes as the targets or TF/ASF as the co-effectors of non-
coding RNA regulators.

Construction of HCC lncRNA-AS
Regulatory Networks at Isoform Level
Pearson correlation was used to estimate the lncRNA co-
expression relationships at isoform level. We only included
connections for the pairs of lncRNA and protein-coding
genes, with absolute correlation coefficient greater than 0.75
and FDR p < 0.05. The types of protein were either TFs,
ASFs, or genes with isoform switches. lncRNAs that were
negatively correlated with their targeted protein-coding genes
were predicted to be inhibitors, while positive correlation
indicated activators.

Random Walk Multi-Graphic Model for
the Integration of Heterogeneous
Interaction Networks
Random walk multi-graphic (RWMG) model is an integrative
application of random walk with restart (RWR) algorithm on
multiple layers of heterogeneous network. Our framework is
encoded with data sets for the same cohort of patients including:

(1) Co-expression network, which is a bipartite graph
containing the association between n lncRNA and
l AS genes.

(2) Epigenetic regulatory network, which is also a bipartite
graph containing the association between n lncRNA and k
AS genes (p6= l). Note: the Epigenetic regulatory network
and Co-expression network share the same set of n
lncRNA nodes, but the AS genes of the two networks are
partially distinct.

(3) Splicing pathway PPI networks, which is an m × m AS
gene–AS gene interaction network with m nodes. The node
set is the union of distinct AS genes from the Co-expression
and Epigenetic regulatory networks with size m. There is no
information about interaction between lncRNA.
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We first create an extended graph G(V, Ek) with N nodes
for each given network, where V is the union of n lncRNA
and m AS gene nodes and N = n + m, k = 1,2,3, which
represent co-expression, epigenetic, and splicing pathway PPI
networks, respectively. In addition, these were merged into one
undirected association network MG(V, E), E = UEk. Multiple
edges are allowed to connect between any two nodes based
on the relationship defined from networks. Merged network
with the overlapped node features and the union of edges will
augment each individual network with missing connections. We
let A denote the adjacency matrix of a (weighted) molecular
interaction multi-graph network MG(V, E). Edge

(
i, j
)
∈ E, 1 ≤

i, j ≤ N is weighted by the connectivity score between these

vertices. The connectivity score

Ei,j =
∑3

k=1[Ek]ij
3

is the average of all included edge scores connecting nodes i,j. It
is the edge weight to shape the adjacent matrix A.

Each entry Bij in the transition probability matrix B, which
stores the probability of a transition from node j to node i, is
computed as

Bij =
Aij∑N
k=1 Akj

FIGURE 1 | Hepatocellular carcinoma (HCC)-specific long non-coding RNAs (lncRNAs) (A) and pseudogenes (B) that are differentially expressed in tumor and
normal samples.
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FIGURE 2 | Genome-wide transcript analysis for switched isoforms between tumor vs. normal comparison HCC. (A) Global distribution of whole genome
transcriptions based on GENCODE annotation. The percentage of coding and non-coding genes is about half and half. (B) Distribution of the HCC-switched
isoforms in coding and non-coding region. About 95% of switched isoforms are from protein-coding genes. (C) Distribution of differential isoform fraction (dIF)
stratified by coding or non-coding isoform types. The most significantly switched isoforms (dIF > 0.2) are highlighted. (D) Illustration of alternative splicing event types
for the switched isoforms and distribution of isoform gain (increased dIF) or loss (decreased dIF) in each types. (E) Enrichment analysis for alternative splicing types in
isoform fraction gain or loss. Intron retention (IR) and alternative splicing at termination site (ATSS) categories are enriched in loss switches, while A5 and A3 are
significantly enriched in gain. (F) Distribution of dIF changes with or without IR and A3 events. Isoforms showed less usages in IR type and more usage in A3 type.
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Therefore, we can write the RWMG model on a multi- and
heterogeneous- graph MG(V, E) as:

pt+1
= (1− α)Bpt + αps

where vectors pt+1 and pt are N-dimensional column vectors
where pt[i] denotes the probability of being at node i and t
iteration, and α is the probability of restart (we set α = 0.5 in
this paper). ps is an N-dimensional column vector with n lncRNA
and m AS gene with ps (seed) = 1 and others are 0. After a restart
step, the particle can go back either to a seed lncRNA feature or
to a seed AS gene. We implemented the RWR algorithm on the

final multi-graphic network by R package dnet and igraph (Csardi
and Nepusz, 2006; Fang and Gough, 2014). Network visualization
was performed by R package visNetwork (Guerrieri, 2015). Those
genes with known roles in regulating AS network will be set
as the “seed” nodes in advance to predict the “new” lncRNAs,
based on move probabilities from the current node to any of their
randomly selected neighbors.

To evaluate our approach’s sensitivity, we simulated different
random walk strategies for optimization. We created a list of
experimentally validated AS-associated genes as “gold-standard”
true positive genes (TPG) curated from the careful literature

FIGURE 3 | (A) Overview of the number of switched isoforms predicted to have functional consequences. (B) Visualization of switched isoform structure. Taking a
splicing factor gene, SNRPF, for example, its isoform ENST00000553192.5.1 showed opposite switching pattern compared to others. In addition, three out of five
isoforms showed differential isoform expressions, although no difference for the overall gene expression.
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review and randomly selected genes as the “gold-standard” true
negative (TNG). We chose the “best” model that has the most
candidates significantly enriched in the “gold-standard” gene list.
In reality, the number of TPG is much smaller compared to TNG.
To avoid bias from highly imbalanced data between these two
sets, we performed a bootstrap resampling technique by selecting
an equal number of data as TNG. This process was repeated 10
times, and the overall performances were calculated by the mean
value of these performances.

Survival Analysis for Prognostic
Confirmation of Identified Pathogenic
lncRNAs and Pseudogenes
To confirm the pathogenic characteristics of identified lncRNAs
and pseudogenes, univariate Cox proportional model was used
to evaluate the association of selected genes with overall survival
outcomes. Kaplan–Meier plots and log-rank test statistics were
used to visualize the high- and low-risk groups. The cutoff of the
high- and low-risk group was determined by the median value of
the normalized count of selected genes.

RESULTS

Differentially Expressed lncRNAs and
Pseudogenes in HCC
We identified 369 DE lncRNA genes and 171 DE pseudogenes
from T/N comparison (Supplementary Table S1). The
visualizations of DE lncRNAs and pseudogenes were shown
in volcano plots (Figure 1). According to literature survey,
many DE lncRNAs, such as MALAT1, CDKN2B-AS1, and
HOTTIP, have been reported to be associated with liver cancers
(Kunej et al., 2014; Quagliata et al., 2014; Guerrieri, 2015). In
addition, we highlighted several important pseudogenes, such
as HNRNPA1P4 and HNRNPA1P21, which are heterogeneous
nuclear ribonucleoproteins A1 (hnRNPs) that play key roles in
the regulation of alternative splicing. Furthermore, we performed
DE analysis as an initial screen step to narrow the focus of the
HCC-specific non-coding genes associated with AS for the
downstream network analysis.

Identification of Significant Switched
Isoforms and Prediction of Alternative
Splicing Patterns
From the expression levels of isoform when comparing tumor
and normal samples, we identified 1,375 isoforms that had
switching properties and that mapped to 1,078 unique genes.
Among these switched isoforms, 1,251 were protein-coding
isoforms, and 124 were non-coding isoforms that included
antisense, lncRNA and pseudogenes (Supplementary Table S2).
We found that the proportion of switching rate for coding genes
was much higher than that for non-coding genes (Fisher’s exact
test, p = 8.4e-08) (Figures 2A,B). In order to visualize the splicing
composition of these switched isoforms, we broke down the
dIF distribution according to isoform types such as lncRNA,

antisense, and pseudogenes with the most significant switched
isoforms (dIF > 0.2 or dIF < -0.2) highlighted in Figure 2C.

Figure 2D shows the eight splicing patterns for switched
isoforms stratified by isoform usage gain or loss in the tumor.
Some of the switched isoforms are predicted to have multiple
AS events in HCC (Supplementary Table S3). Interestingly,
we observed a global phenomenon that the AS events are not
equally used—most prominently illustrated by the use of ATSS
in HCC, where there was more losses than the gain of amino
acid coding exons. It should be taken into consideration that
IR and ATSS were enriched in significant low isoform usage in
tumor, but A5 and A3 were significantly enriched in the gain
isoform (Figure 2E). Here, IR events were of particular functional
interest since they represented the largest changes in isoforms.
As we show in the violin plots, the enriched IR and A3 splicing
groups reported significant opposite directions of isoform usages
between T/N samples (Figure 2F).

Analysis of Functional Consequences for
Switched Isoforms
The overview of switched isoforms impacting the biological
function alterations in HCC is shown in Figure 3A. The number
of protein domain gains was comparable to domain loss, but
is significantly more than domain “switch.” Here, the “switch”
term indicates both a gain and a loss occurrence. Also, switching
resulting in ORF gain was significantly more than ORF loss. For
the Gene Ontology analysis, both gain and loss switched isoforms
were associated with different types of metabolic processes.

TABLE 1 | Statistic summary of splicing factor genes with alternative
switched isoforms.

Isoform_id Gene_id Gene_name dIF q_value

ENST00000555295.1 ENSG00000100836.10 PABPN1 0.182 1.10E–32

ENST00000459687.5 ENSG00000100410.7 PHF5A 0.172 6.07E–18

ENST00000411938.1 ENSG00000128534.7 LSM8 0.169 2.49E–19

ENST00000553192.5 ENSG00000139343.10 SNRPF 0.152 6.22E–21

ENST00000297157.7 ENSG00000164610.8 RP9 0.145 2.68E–19

ENST00000491106.1 ENSG00000060688.12 SNRNP40 0.128 4.28E–19

ENST00000560313.2 ENSG00000090470.14 PDCD7 0.124 2.17E–06

ENST00000301785.5 ENSG00000214753.2 HNRNPUL2 0.116 1.19E–28

ENST00000402849.5 ENSG00000100028.11 SNRPD3 0.113 1.67E–11

ENST00000535326.1 ENSG00000110107.8 PRPF19 0.103 1.79E–07

ENST00000597776.1 ENSG00000130520.10 LSM4 0.102 2.31E–34

ENST00000472237.5 ENSG00000132792.18 CTNNBL1 0.102 5.80E–13

ENST00000548994.1 ENSG00000075188.8 NUP37 0.101 1.68E–11

ENST00000564651.5 ENSG00000102978.12 POLR2C 0.1 3.01E–14

ENST00000505885.1 ENSG00000096063.14 SRPK1 −0.108 1.94E–11

ENST00000404603.5 ENSG00000100028.11 SNRPD3 −0.109 2.30E–15

ENST00000540127.1 ENSG00000214753.2 HNRNPUL2 −0.116 2.99E–48

ENST00000367208.1 ENSG00000182004.12 SNRPE −0.13 1.79E–31

ENST00000527554.2 ENSG00000100697.14 DICER1 −0.139 2.98E–21

ENST00000595761.1 ENSG00000213024.10 NUP62 −0.157 3.62E–31

ENST00000488937.1 ENSG00000136875.12 PRPF4 −0.159 6.94E–12

ENST00000559051.1 ENSG00000090470.14 PDCD7 −0.163 9.60E–15

ENST00000216252.3 ENSG00000100410.7 PHF5A −0.216 4.30E–21
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KEGG analysis showed that the isoform loss in tumor tissue was
associated with virus infection, hepatitis C, etc, while isoform gain
in the tumor is associated with base excision repair, apoptosis, etc.
(Supplementary Table S2).

Importantly, we confirmed 20 genes with switched isoforms
that were involved in AS regulatory functions (Table 1).
Figure 3B shows one example of AS factor, SNRPF and its
isoform structures, gene expression, and isoform usage when

FIGURE 4 | (A) Visualization of lncRNA–AS co-expression network integrated by AS event types (i.e., A3, IR, ES) at the isoform expression level. (B) Illustration of
lncRNA–AS comprehensive network derived from gene level co-expression network and regulatory network involved with co-effectors miRNA, TF, and alternative
splicing factors (ASF) interactions.
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FIGURE 5 | (A) ROC curve for the predictive model evaluation. pPerf1 [area under curve (AUC) = 0.923] with the “seed” genes showed a better performance than
pPerf2 (AUC = 0.751) without the “seed” genes. (B) Trade-off between the sensitivity and specificity with the number of top n genes. We can see that the best cutoff
is n = 150, as the 1TPR/1FPR value decreases very fast in the beginning and approaches smaller changes for n around 150.

comparing tumor vs normal. SNRPF is a core component of
U small nuclear ribonucleoproteins that are key components of
the pre-mRNA processing spliceosome. We found no significant
difference for SNRPF gene expression; on the contrary, it
had opposite directions in expression pattern for transcript
ENST00000553192. The above evidences showed that genes
with switched isoforms were often functionally important in
tumorigenesis and had been ignored from previous reports.

Prediction of AS-Correlated Non-coding
RNAs at Both Transcript and Gene Level
In order to identify which lncRNAs were associated to switched
isoforms at the transcript level, we constructed a co-expression
network that comprised lncRNA and genes with switched
isoforms. Different from traditional gene level co-expression
network, the connections between lncRNA and genes with
multiple splicing isoforms could be singular or multiple when
interacting between molecules. The lncRNAs-switched isoform
connections are summarized in Supplementary Table S3. The
relationships between lncRNAs and genes with enriched AS
patterns is illustrated in Figure 4A.

However, since the lncRNA regulation mechanism involved in
AS events was comprehensive, AS regulation may not directly
be reflected from expression abundance, but through physical
interaction or DNA/RNA binding sites. LncRNAs could influence
gene-splicing patterns by inhibiting and activating the expression
of ASFs, or through transcription factors that indirectly interact
with splicing factors and ultimately cause changes in AS factor-
targeted gene expression. Hence, constructing a comprehensive
gene regulatory network that includes TF, AS regulators, and
lncRNAs could allow better understanding of the mechanism
of AS in cancers.

Figure 4B illustrates the HCC lncRNAs–AS network with
interactors such as TFs, ASFs, and miRNAs based on evidence
from publicly available resource and gene-level co-expression
analysis. Only lncRNAs that directly altered AS gene expression

or indirectly altered AS genes through TF, ASF, or miRNAs
were included for downstream RWMG analysis. Supplementary
Table S4 provides the prediction of all AS-related genes ranked by
RWMG-predicted score. Supplementary Table S6 provides the
total number of nodes and edges for the three types of networks.

Computational and Clinical Validation for
Predicted Pathogenic lncRNAs Involved
in AS Regulation
The ROC curve shown in Figure 5A contains an optimized
averaged area under curve (AUC) value from 0.751 to 0.923 based
on bootstrapping algorithm. In order to select the best number of
top n ranked genes that corresponded to a fair tradeoff between
sensitivity and specificity, we selected a cutoff based on the trend
of the changes at 1TPR/1FPR that exhibited a sudden drop
(Figure 5B). We also see from the figure that n = 150 is the best
number for selecting genes. The top ranked lncRNAs associated
with AS functions are described in Table 2.

Among the top predicted lncRNAs that were involved in AS,
we further confirmed their clinical significance. As a result of
univariate survival analysis screening, a total of 51 lncRNAs
and 24 pseudogenes were found to be associated with HCC
overall 5-year survival, respectively (Supplementary Table S5).
Figures 6A,B show the top 10 significant genes based on the Cox
proportional regression model. Figures 6C,D show the survival
curve and distribution of CDKN2B-AS1 and UBE2SP1.

DISCUSSION

In the last decade, studies have investigated the association of
splicing isoforms and lncRNA profiles from deep sequencing
technologies. For instance, it has been known that some small
nuclear uridine (U)-rich RNAs (snRNPs) are core components
of the pre-mRNA processing spliceosome and can collaborate
with some splicing factors that are encoded by heterogeneous
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TABLE 2 | Statistic summary of predicted top-ranked non-coding RNAs
associated with alternative splicing (AS) ranking by random walk-based
multi-graphic (RWMG) score.

Gene. symbol Ranking Score Types

LINC00675 1 0.00368174 LincRNA

CTD-2171N6.1 2 0.002824633 LincRNA

HOTTIP 3 0.002677841 Antisense

DNM1P35 4 0.002483954 Antisense

LEF1-AS1 5 0.002397948 Antisense

AP006285.7 6 0.002123275 LincRNA

WARS2-IT1 7 0.002081091 Antisense

LINC00355 8 0.002063983 LincRNA

RP11-81H3.2 9 0.002032482 LincRNA

HOXA11-AS 10 0.002028198 Antisense

RP11-261N11.8 11 0.002005615 Antisense

RP3-355L5.4 12 0.001938399 Antisense

RP11-138J23.1 13 0.001929433 LincRNA

RP11-525K10.3 14 0.001923733 Antisense

RP11-495P10.7 15 0.001917542 LincRNA

DLX6-AS1 16 0.00188837 Antisense

RP11-356C4.5 17 0.001861006 LincRNA

CDKN2B-AS1 18 0.001856714 Antisense

RP11-495P10.5 19 0.001834267 LincRNA

SFTA1P 20 0.001751498 LincRNA

PRSS51 21 0.001750058 Antisense

MALAT1 22 0.001672339 LincRNA

FEZF1-AS1 23 0.001669135 Antisense

RP4-530I15.9 24 0.001619806 Antisense

RP11-158M2.5 25 0.001618054 Antisense

CTD-2374C24.1 26 0.001617345 LincRNA

PWRN1 27 0.001605646 LincRNA

CTC-573N18.1 28 0.001534221 LincRNA

RP11-284F21.9 29 0.001527715 LincRNA

RP11-3J1.1 30 0.001523171 LincRNA

FENDRR 31 0.001509286 LincRNA

nuclear ribonucleoprotein complex subunits (hnRNPs) in order
to fine tune complex splicing regulations (Romero-Barrios et al.,
2018). Impressively, we found a number of core snRNP isoforms
including SNRPE, SNRPD3, SNRPD3, SNRPF, and SNRNP40
that were switched even though their expression was not
necessarily DE when comparing tumor vs. normal specific to
HCC progression. SNRNP40 catalyzes the removal of introns
from pre-messenger RNAs. Similarly, an hnRNP U like protein
HNRNPUL2 that also has a scaffold attachment factor, plays an
important role in the formation of a “transcriptional” complex
binding through the scaffold attachment region and causes
chromatin remodeling.

The primary mechanisms involving lncRNAs in AS
modulation can be classified into three ways that include:
(i) lncRNAs that directly influence isoform expression through
activation or inhibition mechanism; (ii) lncRNAs that form
RNA–RNA duplexes with pre-mRNA molecules, and (iii)
lncRNAs that affect target AS genes through indirectly inhibiting
or promoting the expression of splicing factors or through

transcript factors. However, most previous studies only focus on
individual genes and/or isoform switches regulated by lncRNAs.
More comprehensive interactions can be detected at the isoform
level besides the gene level. Our predictions identified several
candidates that were either oncogenes or tumor suppressors
and lncRNAs whose somatic alterations were associated with AS
at both isoform and gene level in addition to showing clinical
significance in HCC patients.

At the transcriptional level correlation network, we found that
majority of lncRNA isoforms were correlated with more than one
AS event, among which some were showing opposite roles in
the AS regulations. In addition, we can see that many lncRNAs
may partially compete with the same AS event. For example,
the pseudogenes of UBE2S, which are UBE2SP1, UBE2SP2,
and UBE2MP1, are significantly correlated with FEN1’s intron
retention and Alternative 5′ donor site mechanisms (Figure 4A).
The FEN1 gene plays an important role in removing 5’
overhanging flaps and the 5–3 exonuclease activities involved
in DNA replication and repair (Wang et al., 2017), while the
UBE2S is involved in ubiquitination and subsequent degradation
of VHL, which results in an accumulation of HIF1A (Jung et al.,
2006). However, the reason for pseudogenes being associated
with FEN1 is not yet clear. Further research in regard to perform
experimental validation for predicted mechanisms from our
analysis is necessary. Taken together, these results confirmed
that the identified lncRNAs need to be better investigated in
experimental settings. Our results provided a better resolution of
AS-correlated lncRNAs at the isoform level.

AS events are mainly regulated by splicing factors, which
bind to pre-mRNAs and influence exon selection and splicing
site choice. Moreover, TFs activate or suppress the expression
of ASF. Importantly, we found ASF that may have switched
isoforms. A switched ASF RP9, which can be bound by the proto-
oncogene PIM1 product, a serine/threonine protein kinase, also
can cause its target PIM1 to get switched. Although TFs were
usually thought for a long time to encode a single protein that
changes the expression of their target genes, more and more TFs
are now found to be alternatively spliced (Marcel and Hainaut,
2009). Here, we also found a group of TFs in the ETS family
(E26 transformation-specific), which are ETS1, ETS2, ETV3,
ELF4, which were switched simultaneously. These ETS genes
have been confirmed to be associated with cancer through gene
fusion (Tomlins et al., 2005) and are involved in a wide variety
of regulatory functions such as cell migration, proliferation,
and cancer progression (Sharrocks, 2001; Lee et al., 2005).
Interestingly, the ETS1 targets splicing factor QKI, and ETV3
targets splicing factor CELF1. Furthermore, lncRNA FAM99B
is predicted to be associated within the ETS family genes,
and their low expression is associated with HCC patients that
had poor prognosis.

The association of CDKN2B-AS1, also known as ANRIL,
with HCC has been reported in several studies (Hua et al.,
2015; Chiu et al., 2018; Ma et al., 2018). CDKN2B-AS1 has
both linear and circular isoforms, and their functions are
different. For example, its linear isoform can regulate the
c-myc-enhancer-binding factor RBMS1 (Hubberten et al., 2018),
while its circular isoform is confirmed to be an important AS
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FIGURE 6 | Survival analysis for the identified lncRNA and pseudogenes involved in AS mechanisms. Hazard ratio plots from Cox regression analysis for top 10
lncRNAs (A) and top 10 pseudogenes (B) associated with overall survival. K–M curves for a lncRNA, CDKN2B-AS1 (C), and a pseudogene, UBE2SP1 (D) using the
median value as the cutoff. High expressions of both genes are significantly associated with poor prognosis.

regulator that causes skipping of exons (Holdt et al., 2016)
and are mainly found in cardiovascular disease (Burd et al.,
2010; Sarkar et al., 2017). However, this is the first time
we found that ANRIL can activate alternative splicing genes
in liver cancer. A potential explanation could be because of
being functionally related to lipid metabolism and a majority
of liver cancer subtypes. In addition, the prognostic value of
CDKN2B-AS1 was revealed in our project. However, how exactly
CDKN2B-AS1 controls this gene splicing is not yet clear. Further
experimental validation is warranted. We identified HAND2-
AS1 gene to show consistent alternative splicing pattern at the
start sites and termination site for METTL7B especially at the
isoform level. METTL7B is a membrane-associated protein that
resides in hepatic lipid droplets. An explanation for this is
that HAND2-AS1 activates the METTL7B spliced isoform lipid
disordered and is associated with HCC, which was not reported
before. Gene-level RWMG network analysis further revealed
that both CDKN2B-AS1 and HAND2-AS1 can influence AS
either through TFs and ASFs some of which include HAND2-
AS1 TFs (i.e., ETS1, SP1, E2F7) or ASFs (i.e., SRSF7, SFRP1,
HNRNPK); and CDKN2B-AS1-associated TFs (SP4, E2F7) and
ASF (SRSF1, SRSF2).

In this project, we extended a previous existing algorithm
into multiplex and heterogeneous networks. The research
community can explore different layers of the epigenetic
regulatory network, expression correlation network, and protein
interaction network. A recent Nature Review paper by Cowen
et al. (2017) also suggested that the “network-propagation”

method was a “powerful” and “accurate” refined approach
in the network biology, since it is capable of dealing
with “noise” and “incomplete” observations by simultaneously
considering all possible paths among vertices. Analyzing these
heterogeneous data together will significantly improve the
prediction accuracy of our method. By using this gene-
ranking strategy, potentially spurious predictions (false positives)
that are supported by a single (shortest) path are down-
weighted, and true high-ranked genes that are potentially missed,
even though they are well connected to the prior list (false
negatives), are promoted.

To our best knowledge, this is the first attempt to predict
lncRNA regulations on AS using a rigorous, multi-graphic
approach by the integration of large-scale and complex networks.
Of interest for potentially limiting the accuracy of random walk
and network propagation methods are an incomplete collection
of known lncRNAs, especially pseudogenes, used to supervise
prediction of new candidates. As such, we addressed several
unique challenges associated with these dataset complexities
in each step. For example, in the data preprocessing steps,
we carefully address the challenges by collecting as many as
experimentally verified and predicted lncRNAs that were taking
account of AS. In our statistical modeling steps, we specifically
addressed the robustness of complex data integration, especially
for non-informative or noisy datasets. Also, we investigated
several random walk strategies by trying different groups of
vertices such as lncRNAs, ASFs, and TFs as a starting point to
optimize our models.
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However, the lncRNA regulatory mechanism is complicated,
as its mechanism differs with different stages, such as the pre-
mRNA or post-mRNA stage. Therefore, the major limitation of
this article is we were not able to consider other comprehensive
mechanisms at different stages, such as recognition of the
splicing site can be modulated by cis-regulatory sequences,
known as splicing enhancers or silencers, which contribute to
the generation of two or more alternatively spliced mRNAs
from the same pre-mRNA. Also, lncRNA determines AS patterns
through chromatin remodeling mechanism and shapes the three-
dimensional genome organization. We will focus on interpreting
these molecular mechanisms of lncRNA and associated AS at
different stages of HCC in the near future.
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