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Alternative splicing of pre-mRNA contributes strongly to the diversity of cell- and tissue-
specific protein expression patterns. Global transcriptome analyses have suggested
that >90% of human multiexon genes are alternatively spliced. Alterations in the
splicing process cause missplicing events that lead to genetic diseases and pathologies,
including various neurological disorders, cancers, and muscular dystrophies. In recent
decades, research has helped to elucidate the mechanisms regulating alternative
splicing and, in some cases, to reveal how dysregulation of these mechanisms leads
to disease. The resulting knowledge has enabled the design of novel therapeutic
strategies for correction of splicing-derived pathologies. In this review, we focus primarily
on therapeutic approaches targeting splicing, and we highlight nanotechnology-based
gene delivery applications that address the challenges and barriers facing nucleic
acid-based therapeutics.

Keywords: splicing, RNA, gene therapy and therapeutic delivery, siRNAs, ASOs, SMaRT, gene editing,
nanoparticle

INTRODUCTION

The genome is the complete set of DNA that contains all the information necessary for the
development and survival of an organism. In humans, the genome is contained in 23 chromosome
pairs, comprising approximately 21,000 protein-coding genes and slightly over 3 billion DNA
base pairs in total. Although the human genome was sequenced approximately fifteen years ago,
there is still disagreement regarding the number of genes due to inconsistencies in the available
databases (Willyard, 2018). Regardless of the final count, the numbers of protein-coding genes
are similar between humans and worms (∼21,000 and ∼19,000, respectively), and the number
found in flies is not drastically lower (∼14,000); however, humans are more complex than these
other organisms. The explanation for this apparent paradox may be related to the large predicted
number of proteins encoded by the human genome (possibly more than 100,000) as a result of
regulatory processes such as alternative transcription, splicing, 3′-end formation, translation and
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posttranslational modifications. To date, there is no solid
evidence (based on, for example, mass spectrometry) to support
the existence of this level of complexity in the human proteome.
Thus, ambitious projects are being designed to identify and
characterize protein variant isoforms for each protein-coding
gene (Baker et al., 2017).

Alternative splicing (AS), the phenomenon by which a
single precursor (pre-) messenger RNA (mRNA) can generate
alternative mRNAs to yield proteins with related or different
functions, expands the protein information encoded by the
genome. Global transcriptome analyses have estimated that 95–
100% of multiexon genes undergo AS (Pan et al., 2008; Wang
et al., 2008). The best-known example of the considerable
transcriptome diversity resulting from this process is the
Drosophila Down syndrome cell adhesion molecule (Dscam)
gene, which may give rise to 38,016 cell-surface proteins
through AS (Wojtowicz et al., 2007). The functional genome-
wide consequences of AS are exemplified by the finding that
distinct alternative isoforms encoded by a single gene exhibit
distinct protein interaction profiles (Yang et al., 2016). Each
of these protein isoforms can be further processed through
posttranslational modifications to yield many more distinct
proteoforms (Smith et al., 2013) harboring new functions.
Recent technological and bioinformatics advances will help to
unambiguously decipher the specific sequence and amount of
each RNA molecule synthesized by a given cell (Hardwick et al.,
2019). In addition, AS approaches specifically designed for single-
cell RNA sequencing (scRNAseq) data are emerging, and these
approaches may greatly improve our understanding of isoform
usage at the single-cell level (Chen et al., 2019).

Alternative splicing in eukaryotes has considerable impacts on
a variety of biological pathways; therefore, it is not surprising that
AS is a highly orchestrated process involving multiple protein–
protein and protein–RNA interactions. The spliceosome, the
multiprotein complex that performs the splicing reaction, is
composed of a core of five uridine-rich small nuclear RNAs
(snRNAs; termed U1, U2, U4, U5, and U6) and 200 other
proteins. The spliceosome assembles on pre-mRNA to remove
noncoding introns through two sequential transesterification
reactions: the branching and exon ligation steps. Detailing all
the steps of the AS process is beyond the scope of this review,
and comprehensive reviews on the molecular choreography of
pre-mRNA splicing have been published elsewhere (Wahl et al.,
2009; Matera and Wang, 2014; Wan et al., 2019). In this review,
we briefly summarize some aspects of splicing regulation before
turning toward advances in therapies and nanodelivery systems
targeting splicing for the treatment of human disease.

The major forms of AS include exon skipping, alternative
3′ and 5′ splice site (SS) usage, intron retention, and mutual
exon exclusion (Figure 1). Other events that generate different
transcript isoforms include alternation of initial exons due to
alternative promoter usage and alternation of terminal exons
due to alternative polyadenylation. Recognition of exon/intron
boundaries for correct intron removal by the splicing machinery
requires the presence of several sequence elements on pre-
mRNA, including the 5′ and 3′ SSs, the branch point sequence
(BPS), and the polypyrimidine (Py) tract. In addition to these

core SS motifs, other cis-regulatory elements that recruit specific
RNA-binding proteins that either activate or repress the use
of adjacent SSs contribute to the fine-tuning and specificity
of this pre-mRNA processing event. These sites, known as
exonic splicing enhancers (ESEs) or silencers (ESSs) and intronic
splicing enhancers (ISEs) or silencers (ISSs), recruit specific trans-
acting proteins such as heterogeneous nuclear ribonucleoproteins
(hnRNPs) and serine/arginine (SR) proteins (Wu and Maniatis,
1993). AS can also be regulated at the levels of transcription
and chromatin structure, adding complexity to the molecular
mechanisms that govern splicing control. Two models have
been proposed to explain the link between transcription and
splicing. The first model, known as the recruitment model,
involves the recruitment of splicing factors to pre-mRNA through
RNA polymerase II (RNA Pol II) (McCracken et al., 1997). In
the second model, the kinetic model, the transcript elongation
rate influences AS (de la Mata et al., 2003; Montes et al.,
2012; Dujardin et al., 2014; Fong et al., 2014). Chromatin
structure, DNA methylation, histone marks, and nucleosome
positioning also impact AS by affecting transcription and/or
cotranscriptional splicing. An excellent review covering the
different levels at which AS is regulated has been published
previously (Naftelberg et al., 2015).

AS AND DISEASE

Defects in core spliceosome components, trans-acting splicing
regulatory factors, cis-regulatory signals, and the transcription
rate or changes in chromatin structure or marks can cause
multiple pathologies as a result of misprocessing of pre-mRNA,
highlighting the importance of RNA processing (Figure 2). To
date, 23,868 mutations responsible for human inherited disease
that have been reported in the Human Gene Mutation Database
(HGMD, accessed in February 2020) have consequences for
mRNA splicing (accounting for 8.7% of heritable disease-causing
mutations) (Stenson et al., 2012). This number is likely an
underestimate, since most of the reported mutations have been
identified by genomic DNA sequencing without consideration
that missense, nonsense and synonymous changes can affect
splicing, as reported previously for coagulation factor IX exon
5 (Tajnik et al., 2016). It has been estimated that up to 50%
of mutations that lead to heritable disease occur as a result of
errors in the RNA splicing process or its regulation (Lopez-
Bigas et al., 2005; Taylor and Lee, 2019). While we wait for
functional testing of predicted mutations, the development of
new and effective predictive algorithms for splicing effect analysis
is critical (Anna and Monika, 2018).

Recent advances in the development of novel technologies and
tools, such as next-generation sequencing and clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein-9 nuclease (Cas9) genome editing technology,
have greatly expanded the available information regarding RNA
missplicing events and their association with diseases. These
technologies have demonstrated the presence of many naturally
occurring genetic variants that affect AS and lead to phenotypic
variability and disease susceptibility among humans (Park
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FIGURE 1 | Types of AS. In the graphs, exons are represented by boxes, and introns are represented by lines. Dashed lines indicate AS events. The five main types
of AS are illustrated: exon skipping (A), alternative 5′ SS usage (B), alternative 3′ SS usage (C), intron retention (D), and mutually exclusive exons (E).

et al., 2018). For example, 371 splicing quantitative trait loci
(sQTLs), including sQTLs in known type 2 diabetes-associated
genes or in genes associated with beta cell function and glucose
metabolism in human pancreatic islets, have been identified;
these sQTLs may aid in elucidation of individual susceptibility
to type 2 diabetes (Fadista et al., 2014). Recently, Takata et al.,
analyzed RNA-seq data on human brain tissues from more
than 200 individuals in combination with genotype data and
identified approximately 1,500 sQTLs throughout the genome.
Interestingly, these researchers observed significant enrichment
of epigenetic mark variants that may influence transcriptional
activation and AS. In a comparative analysis of genome-wide
association study (GWAS) data, many of the observed variants
were found to be associated with various human diseases,
particularly schizophrenia (Takata et al., 2017).

Mutations that occur in genes encoding fundamental
components of the splicing machinery have been described in
many splicing-related diseases. However, the frequency of these
mutations is low, probably because their effects are incompatible

with life. Disease-associated mutations that occur within introns
lead to intron retention or to exon skipping upstream or
downstream of the mutated SSs without affecting the coding
sequence. In contrast, exonic mutations may or may not affect the
coding sequence depending on the type of mutation (silent versus
missense or nonsense) and can also alter the splicing pattern.
Thus, mutations in introns or exons may disrupt RNA secondary
structure or disrupt or create de novo cryptic SSs or de novo
splicing silencers and enhancers, leading to dysregulation of AS.
Mutations or quantitative changes in proteins with regulatory
functions during the splicing process can also lead to aberrant
splicing, affecting many RNA transcripts at the same time
(Havens et al., 2013).

With regard to cancer, genomic studies have identified
frequent and recurrent mutations in genes that code for pre-
mRNA splicing factors in both hematological malignancies (e.g.,
myelodysplastic syndrome [MDS], acute myeloid leukemia, and
chronic lymphocytic leukemia) (Yoshida et al., 2011) and solid
malignancies (e.g., breast cancer, lung cancer, pancreatic cancer
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FIGURE 2 | Defective control in pre-mRNA splicing leads to human diseases. Diagram showing how defects in (A) core spliceosome components, (B) trans-acting
splicing regulatory factors and cis-regulatory signals, (C) the transcription rate, and (D) chromatin structure or marks can disrupt splicing regulation to cause human
disease via misprocessing of pre-mRNA.

and uveal melanoma) (Imielinski et al., 2012; Harbour et al.,
2013; Bailey et al., 2016; Nik-Zainal et al., 2016). These findings
suggest a potential relationship between certain spliceosome
gene mutations and carcinogenesis. For MDS, SF3B1, SRSF2,
U2AF1, and ZRSR2 are the four most commonly mutated splicing
factor genes, although mutations in other splicing factor genes
have also been observed (Taylor and Lee, 2019). Although the
underlying mechanisms and contributions of splicing factors
in cancer pathogenesis have not been elucidated, and although
more work is needed to understand the splicing alterations
observed in cancer cells, these data identify novel opportunities
for development of splicing-based cancer therapies.

Recent advances in the treatment of some diseases have
led to improvements in patient prognosis and life expectancy.
For example, spinal muscular atrophy (SMA) type 1, which is
considered to be most serious at an early age, can currently be
treated with Zolgensma R©. Zolgensma R© is a new gene therapy-
based drug approved by the United States Food and Drug
Administration (FDA) that improves the quality of life and life
expectancy of infants with SMA type 1. Although this treatment
can cure this deadly inherited disease, the Swiss multinational

corporation Novartis AG has established a sale price of 2.1
million dollars for a single intravenous administration. This
drug is by far the most expensive pharmacological treatment in
existence today.

Identification of splicing mutations has significantly advanced
our understanding of how splicing dysregulation contributes
to disease pathogenesis and of how splicing, a key pre-mRNA
processing event, can be targeted for therapeutic applications.
In Supplementary Table 1, we provide a list of the most
frequent splicing-related human diseases that could be targeted
for gene therapy. To learn more, readers are directed to several
comprehensive reviews covering human diseases caused by RNA
missplicing that have been published elsewhere (Cieply and
Carstens, 2015; Daguenet et al., 2015; Chabot and Shkreta, 2016;
Scotti and Swanson, 2016).

THERAPEUTIC APPROACHES

Designing effective therapeutic strategies to overcome the
consequences of aberrant splicing events on disease states
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remains a major challenge. Gene therapy has emerged as
a promising pharmacotherapeutic option for patients with
diseases of genetic origin. Hence, targeting of aberrant RNA
splicing is a logical approach for directly correcting disease-
associated splicing alterations without affecting the genome.
Other approaches, such as targeting splicing reactions to disrupt
the expression of disease-related proteins or targeting exon
junctions mutated mRNA to disrupt protein coding, can be used
to reframe and rescue protein expression (Havens et al., 2013).

Several strategies have been designed to manipulate the
splicing process, including spliceosome-mediated RNA trans-
splicing (SMaRT) and the use of antisense oligonucleotides
(ASOs), bifunctional oligonucleotides, small-molecule
compounds, and modified snRNAs (Figure 3). All of these
approaches have been used to correct the effects of RNA
misprocessing. In recent years, genome editing techniques
involving zinc finger (ZF) proteins (ZFPs), transcription
activator-like nucleases (TALENs) and CRISPR/Cas9 systems
have become new treatment avenues for correction of splicing
defects (Hsu et al., 2014; Fernandez et al., 2017; Knott and
Doudna, 2018).

RNA Editing Approaches
Antisense Oligonucleotides (ASOs)
Antisense oligonucleotides strategies use short synthetic single-
stranded DNA molecules that are complementary to a specific
pre-mRNA sequence to alter the splicing process. ASO binding
to a target pre-mRNA in the nucleus sterically blocks the
recruitment of trans-acting proteins to the pre-mRNA sequence
at the target site (Figure 3A).

ASOs can be designed to target (i) the SS, thereby
redirecting splicing to an adjacent site; (ii) auxiliary sequences
(enhancers or silencer elements) within the immature transcript,
thereby modifying the outcome of the splicing reaction (by
blocking or promoting splicing); and (iii) RNA bases, thereby
stabilizing/destabilizing regulatory structures and modifying the
splicing outcome (Havens et al., 2013; Sune-Pou et al., 2017).

Splicing-related ASOs that act according to the first two
mechanisms mentioned above by promoting or redirecting
splicing are also called splice-switching oligonucleotides (SSOs).
These short, 15- to 30-nucleotide-long sequences sterically block
important motifs in pre-mRNA (i.e., SSs and/or regulatory
sequences) to prevent RNA–RNA base-pairing or protein–RNA
binding interactions between spliceosome components and pre-
mRNA without promoting degradation of the RNA transcript
while altering splicing outcomes (Havens and Hastings, 2016).
The nucleotides of an SSO are chemically modified (e.g., into
morpholino antisense oligomers) such that the RNA-cleaving
enzyme RNase H is not recruited to degrade the pre-mRNA–
SSO complex (Summerton, 1999). This property differs from the
RNase H activity exerted by conventional ASOs, which inhibits
gene expression by degrading the target pre-mRNA. Chemical
modifications of ASOs are also crucial because they stabilize
the ASOs in vivo and improve their cellular uptake, release and
binding affinity for their targeted RNA sequences; unmodified
oligonucleotides are highly susceptible to degradation by
circulating nucleases and are excreted by the kidneys. Examples
of these chemical modifications include changes to the phosphate

backbones and/or sugar components of the oligonucleotides,
such as the use of a phosphorothioate backbone (first-generation
ASOs) (Eckstein, 2014), the use of locked nucleic acid chemistry
for bridging of the sugar furanose ring (Campbell and Wengel,
2011), alterations at 2′ positions of the ribose sugar ring (2′-O-
methylation [2′-OMe] and 2′-O-methoxyethylation [2′-MOE])
(second-generation ASOs) (Geary et al., 2001), and the addition
of phosphorodiamidate morpholinos (third-generation ASOs)
(Summerton, 1999).

The clinical application of this technology has resulted in
the commercialization of VitraveneTM (fomivirsen), which, in
1998, became the first ASO approved by the FDA for the
treatment of AIDS-related cytomegalovirus retinitis; MacugenTM

(pegaptanib), approved by the FDA in 2004 for the treatment of
neovascular age-related macular degeneration; and KynamroTM

(mipomersen), approved by the FDA in 2013 for the treatment of
homozygous familial hypercholesterolemia. These products have
been withdrawn from the market for commercial reasons owing
to an overall small patient population and competing alternative
drugs, such as statins in the case of familial hypercholesterolemia
(Sharma and Watts, 2015). The first published report on the use
of ASOs as a splicing-targeting therapeutic tool was published
by Dominski and Kole in 1993. These authors restored correct
splicing in thalassemic pre-mRNA by using a 2′-OMe ASO
(Dominski and Kole, 1993). Since then, many ASO strategies
have been designed to modify splicing for the treatment of
several diseases, and some of them are currently in clinical trials.
Only two ASOs are already FDA approved (Supplementary
Table 2). Exondys 51TM (eteplirsen) was the first drug in its
class to be approved by the FDA (in September 2016) under the
Accelerated Approval Program to treat patients with Duchenne
muscular dystrophy (DMD). Exondys 51TM belongs to the third
generation of phosphorodiamidate morpholino ASOs and is
specifically indicated for patients who have a confirmed mutation
of the dystrophin gene amenable to exon 51 skipping. This
mutation affects approximately 13% of the population with
DMD. Recently, Vyondys 53TM (golodirsen), a DMD drug that is
highly similar to eteplirsen except that involves exon 53 skipping
rather than exon 51 skipping, was denied by the FDA in August
2019 because of the risk of infections related to intravenous
infusion ports and renal toxicity seen in preclinical studies.
A similar decision was reached in January 2016 for the promising
drug KyndrisaTM (drisapersen). This drug was intended for
the treatment of patients with DMD amenable to exon 51
skipping but failed to demonstrate substantial effectiveness. The
pharmaceutical company BioMarin invested over $66 million in
the development of drisapersen; as a consequence of the denial,
BioMarin also discontinued the development of three follow-on
products of drisapersen, BMN 044, BMN 045, and BMN 053.
These products were in mid-stage trials for specific forms of the
muscle-wasting disease.

In December 2016, the FDA approved SpinrazaTM

(nusinersen), the first drug approved for the treatment of
SMA the first drug approved for the treatment of SMA
(Lorson et al., 1999; Monani et al., 1999). SpinrazaTM is
a 2′-OMe phosphorothioate ASO that targets an intron
7 internal SS within SMN2 pre-mRNA, inducing exon
7 inclusion and producing a functional SMN protein.
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FIGURE 3 | Schematic representation of different splicing-targeting strategies for gene modification. (A) siRNA-, ASO-, and SSO-based strategies (a, b, and c in the
figure, respectively) for pre-mRNA editing. (B) Bifunctional oligonucleotides contain one small sequence complementary to the pre-mRNA (targeting domain) and
another region (effector domain) that recruits specific regulatory factors to modulate the splicing outcome (TOSS and TOES). (C) Three types of SMaRT approaches
are depicted: 5′ trans-splicing, 3′ trans-splicing, and IER, which target the 5′ end, 3′ end, or internal portion of a mutated target pre-mRNA, respectively. See the text
for further details on these RNA splicing-editing mechanisms. (D) Schematic representation of the general strategy for correction of splicing defects using modified
snRNAs. The cartoon shows the restoration of a mutated 5′ SS of an intron using a modified U1 snRNA.

Notably, because ASOs generally do not cross the blood–
brain barrier, repeated intrathecal nusinersen delivery is
required. This requirement is highly disadvantageous and
makes administration challenging, especially for infants
(Verma, 2018).

Investigational ASOs for Huntington’s disease (HD),
amyotrophic lateral sclerosis (ALS) and transthyretin
(TTR) amyloidosis, such as RG6042, tofersen and inotersen,
respectively, are currently in phase III clinical trials. RG6042
(previously known as IONIS-HTTRx) reduces the concentration
of mutant huntingtin (HTT) levels in the cerebrospinal
fluid of patients with HD without causing serious adverse
events (Tabrizi et al., 2019). Tofersen (previously known as
BIIB067) targets superoxide dismutase (SOD1) in ALS patients,
reducing SOD1 concentrations in spinal fluid to preserve motor
neurons and slow the progression of the disease. Inotersen
is a 2′-MOE-modified ASO that reduces the production
of TTR and improves disease course and quality of life in
early hereditary TTR amyloidosis polyneuropathy (ATTR)
(Mathew and Wang, 2019).

The development of the ASO milasen is an example of how
cutting-edge medicine can be used with great speed for patient-
customized treatment of a rare and fatal neurodegenerative

disease (ceroid lipofuscinosis 7, CLN7, a form of Batten’s disease).
Researchers at Boston Children’s Hospital identified a novel
mutation in a 6-year-old girl, designed and produced an ASO,
and obtained FDA approval for its clinical deployment in less
than one year (Kim et al., 2019).

ASOs are also applicable to cancer treatment. For instance,
Dewaele et al., used ASO-mediated exon skipping to decrease
the expression of MDM4, a splice isoform produced in cancer
cells (Dewaele et al., 2016). Similarly, Hong et al. preclinically
and clinically evaluated a chemically modified ASO termed
AZD9150 that targets the STAT3 gene, a transcriptional activator
and oncogenic mediator of the JAK-STAT signaling pathway
(Hong et al., 2015). Ross et al. described the use of an ethyl-
containing ASO (AZD4785) to downregulate KRAS mRNA,
which is mutated in approximately 20% of human cancers, and
demonstrated its efficacy in preclinical KRAS mutant lung cancer
models (Ross et al., 2017).

Antisense oligonucleotides have been validated as therapeutic
agents; however, because of the high cost associated with
these products, improvements must be made to prevent health
insurance companies from denying patients access. For instance,
Exondys 51TM is priced at $300,000 per patient per year even
though the efficacy of this drug is controversial.
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Bifunctional Oligonucleotides
Bifunctional oligonucleotides are ectopic modulators of AS
used to control the patterns of splicing of specific genes.
In brief, these oligonucleotides contain two parts: (i) an
antisense portion targeting a specific sequence and (ii) a
nonhybridizing tail or effector domain that recruits acting factors
(targeted oligonucleotide enhancer of splicing [TOES] or targeted
oligonucleotide silencer of splicing [TOSS]) (Brosseau et al.,
2014) (Figure 3B). Oligonucleotides containing binding site
sequences for the splicing repressor hnRNP A1/A2 have been
used to reprogram AS via TOSS. The oligonucleotides were
positioned upstream of a 5′ SS to interfere with U1 snRNP
binding and repress SS use (Villemaire et al., 2003). Dikson
et al. used a TOSS with hnRNPA1 tails to block the inclusion
of exon 8 in SMN2, thereby favoring exon 7 inclusion and
restoring the functionality of the protein (Dickson et al., 2008).
Similarly, bifunctional TOES, whose tail of enhancer sequences
recruits activating proteins such as positively acting SR proteins,
has been used to increase the splicing of refractory exon 7 in
SMN2 in fibroblasts derived from patients with SMA (Skordis
et al., 2003; Owen et al., 2011). This approach is mechanistically
different than ASO approaches, although both can be used for
stimulating the inclusion of exon 7 in SMA. Whereas ASOs such
as SpinrazaTM block the binding of splicing factors to intron 7,
causing exon 7 inclusion, bifunctional TOSS/TOES is intended
to direct exon 7 inclusion and thus restore protein expression.

Small Interfering RNAs (siRNAs)
In 1998, another related technology emerged with the discovery
of the siRNA pathway, which can be used to silence the expression
of genes (Fire et al., 1998). The discovery of RNA interference
(RNAi), in which double-stranded RNA (dsRNA) is hybridized
with a specific mRNA sequence to induce its silencing or
degradation, was a major scientific breakthrough for which Craig
Mello and Andrew Fire were recognized with the Nobel Prize in
Physiology and Medicine in 2006. This discovery revolutionized
the way scientists study gene function and offered an innovative
strategy for the treatment of diseases, particularly those of genetic
origin, as demonstrated for the first time by Elbashir et al. (2001).
Through this strategy, administration of synthetic 21- to 25-
nucleotide duplexes with overhanging 3′ ends (siRNAs) can be
used to suppress the expression of endogenous and heterologous
genes (Figure 3A). Although many classes of small RNAs have
emerged, three main categories are widely recognized: siRNAs;
microRNAs, or miRNAs; and piwi-interacting RNAs, or piRNAs.
These RNA types differ in structure, biological roles, associated
effector proteins and origins (Dana et al., 2017). Physiologically,
in cells, siRNAs help to maintain genomic integrity by preventing
the action of foreign nucleic acids, including those of viruses,
transposons and retrotransposons and transgenes, while miRNAs
act as posttranscriptional endogenous gene regulators (Meister
and Tuschl, 2004). piRNAs have been implicated in the silencing
of retrotransposons at both the posttranscriptional and epigenetic
levels as well as other genetic elements in germlines, particularly
those activated during spermatogenesis (Siomi et al., 2011).
Upon delivery into cells, siRNAs are bound by a multiprotein
component complex, known as the RNA-induced silencing

complex (RISC), in the cytoplasm; the two strands are then
separated, and the strand with the RISC hybridizes with the
target mRNA. After that step, Argonaute-2 (Ago2), a catalytic
component of the RISC, drives mRNA cleavage (Dana et al.,
2017). Since siRNA-mediated targeting of aberrant splicing
isoforms is widely used as an RNAi technology, only siRNA
approaches will be discussed in detail in this section (Figure 3A).

These siRNA approaches can be used to target aberrant
splicing isoforms for therapeutic applications (Sune-Pou et al.,
2017). Indeed, siRNAs targeting exonic/intronic sequences close
to alternative exon or exonic/intronic junction sequences can
induce degradation of alternatively spliced and aberrant mRNAs
without affecting the expression of normal mRNAs. Such
targeting approaches have been used for diseases such as Ullrich
congenital muscular dystrophy (UCMD) (Bolduc et al., 2014),
growth hormone deficiency (GHD) type II diseases (Ryther
et al., 2004) and several cancers. In the context of cancer, it has
been observed that the occurrence of specific splice variants is
increased during tumorigenesis and that the splicing regulatory
machinery is abnormal in many malignant cells (Hayes et al.,
2006). Bolduc et al. designed different siRNAs targeting the most
frequent mutation that causes exon 16 skipping in the COL6A3
gene and tested the siRNAs in vitro in UCMD-derived dermal
fibroblasts. These siRNAs resulted in specific knockdown of the
mutant allele and increased the abundance and quality of collagen
VI matrix production (Bolduc et al., 2014). Similarly, Ryther et al.
used siRNAs to specifically degrade exon 3-skipped transcripts in
a GHD type II disease (Ryther et al., 2004). Finally, Hayes et al.
have shown that siRNA-mediated downregulation of SR protein
kinase 1 (SRPK1), which is significantly upregulated in tumors
of the pancreas, breast and colon, decreases cell proliferation
and increases apoptosis. Moreover, the sensitivity of tumor cells
to chemotherapeutic agents such as gemcitabine and cisplatin
increases upon treatment with this siRNA (Hayes et al., 2006).

In October 2016, the development of revusiran, an siRNA
designed for the treatment of ATTR amyloidosis, was suspended
after a randomized double-blind placebo-controlled phase III
trial of its efficacy and safety, ENDEAVOUR, demonstrated
that the siRNA caused greater mortality than a placebo (18
of 206 enrolled patients). However, in August 2018, the FDA
approved OnpattroTM (patisiran), the first siRNA-based drug for
the treatment of hereditary TTR-mediated amyloidosis (hATTR)
(Supplementary Table 2). Hence, siRNA-based technology has
shown promising therapeutic results and the possibility of
translation into clinical use.

Small-Molecule Compounds
Small-molecule compounds can also be used to modulate RNA
expression. Some molecules are capable of binding specific
three-dimensional RNA structures, thereby preventing their
translation or function. Furthermore, these compounds can also
modify splicing factor activity (by affecting posttranslational
modifications of splicing factors) or directly alter splicing
events. Compared with oligonucleotide-based therapeutics,
these compounds are easier to deliver to target sites and
normally have lower toxicity profiles. However, small-molecule
compounds frequently act through unknown mechanisms,
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resulting in a lack of information, and have less target
specificity than other therapeutic formulations, thus potentially
exhibiting more nonspecific and off-target effects. While
oligonucleotides (ASOs, TOSS, TOES and siRNAs) can very
specifically and efficiently modulate particular RNA targets
upon complementary recognition of the RNA sequences, small
molecules can recognize specific three-dimensional structures
and overcome known oligonucleotide drawbacks, e.g., poor
pharmacological properties.

Some small molecules have already been approved for
use in clinical practice for applications other than splicing
defect correction. For example, digoxin and other prescribed
cardiotonic steroids, routinely used in the treatment of heart
failure, have been described as modulators of AS (Stoilov
et al., 2008). Pentamidine and Hoechst 33258 also modulate
AS in myotonic dystrophy (DM) by disrupting MBNL1 binding
to CUG in vitro and in vivo (Warf et al., 2009; Parkesh
et al., 2012). The histone deacetylase sodium butyrate, which
is known to upregulate the expression of splicing factors, has
been demonstrated to increase CFTR transcript levels, leading
to activation of CFTR channels and restoration of their function
in CFTR-derived epithelial cells (Nissim-Rafinia and Kerem,
2006). It has also been reported that the plant cytokinin kinetin
improves IKBKAP mRNA splicing in patients with familial
dysautonomia (FD) (Axelrod et al., 2011).

Some small-molecule splicing modulators have been evaluated
in clinical trials for the treatment of solid tumors and
leukemia. For instance, E7107 (pladienolide B) is a splicing
modulator whose preferential cytotoxicity is positively influenced
by some antiapoptotic BCL2 family genes, such as BCL2A1,
BCL2L2 and MCL1. Furthermore, Aird et al. have reported
that combinations of E7107 and BCLxL (BCL2L1-encoded)
inhibitors enhance cytotoxicity in cancer cells (Aird et al.,
2019). Notably, E7107 was the first compound of a new class
of anticancer agents targeting the spliceosome. Specifically,
E7107 interacts with subunit 1 of SF3b to block the normal
splicing of oncogenes. Unfortunately, the development of
E7107 was suspended after phase I clinical trials due to
an unacceptable profile of adverse events. Herboxidienes,
spliceostatin A, meayamycin B and sudemycin D6/K have
also been shown to exhibit antitumoral activity in vivo by
targeting the SF3b subunit of the spliceosome (Lin, 2017).
Recently, Carabet et al. reported VPC-80051 as the first small-
molecule inhibitor of hnRNPA1, which plays an important
role in cancer by controlling the transcriptional levels of the
oncoprotein c-Myc (Carabet et al., 2019). Thus, small molecules
that selectively inhibit hnRNP A1-RNA interactions can be
designed for the treatment of tumors expressing cancer-specific
alternatively spliced proteins. Similarly, highly specific inhibitors
of the RNA helicase Brr2, which is an essential component of
the spliceosome, have been designed for therapeutic purposes
(Iwatani-Yoshihara et al., 2017).

Recently, the Massachusetts-based pharmaceutical company
Skyhawk Therapeutics invested $100 million in the development
of small-molecule compounds capable of correcting misspliced
exon skipping related to cancer and neurological diseases.
Novartis and Roche have also independently developed two

different splicing-modulating compounds for the treatment of
SMA: branaplam and risdiplam, respectively. Both molecules
enhance exon 7 inclusion to increase the levels of functional SMN
protein. Branaplam, also known as LMI070, is an orally available
drug that was designed by Novartis using a high-throughput
phenotypic screening approach with approximately 1.4 million
compounds. Currently, this molecule is in a phase II clinical trial
that is expected to be completed in July 2020.

Risdiplam (Ratni et al., 2018) is a brain-penetrant orally
administered drug that is currently being evaluated in patients
with SMA in four multicenter clinical trials (NCT02913482,
NCT02908685, NCT03032172, and NCT03779334). This drug is
a splicing modulator that increases exon 7 inclusion in the SMN2
gene, thereby increasing the levels of SMN protein throughout
the organism. Furthermore, this drug is being studied for use in
patients of all age ranges with SMA types 1, 2, and 3.

All these examples demonstrate the applicability of small
molecules for splicing event modulation and suggest that
these molecules are useful as complements and alternatives to
oligonucleotides.

SMaRT
Spliceosome-mediated RNA trans-splicing is a gene-
reprogramming system based on the trans-splicing process
that can be used for therapeutic applications. The trans-splicing
methodology is designed to correct aberrant mRNAs by replacing
the entire coding sequence upstream or downstream of a target
SS. Three different components are involved: the target mRNA,
the spliceosome machinery and the pre-trans-splicing molecule
(PTM), also known as the RNA trans-splicing molecule (RTM).
The first two components are present in cells, while the third
must be provided exogenously. Trans-splicing is induced
between the exogenous RNA and the endogenous pre-mRNA,
producing a chimeric RNA with the wild-type sequence (without
mutation/s). To achieve successful correction, the PTM must
be correctly designed with the following regions: a binding
domain (complementary to the pre-mRNA), a splicing domain
(incorporating 5′ and 3′ SS, intronic BPS and Py sequences)
and a coding domain (containing the wild-type coding region)
(Wally et al., 2012; Berger et al., 2016; Figure 3C).

Depending on the targeted region of the pre-mRNA, SMaRT
can be divided into (i) 5′-trans-splicing, which targets the 5′
portion; (ii) 3′-trans-splicing, which targets the 3′ portion; and
(iii) internal exon replacement (IER), which targets an internal
portion of the pre-mRNA (Figure 3C). SMaRT approaches have
been used in models of cystic fibrosis (CF) (Song et al., 2009),
hemophilia A (Chao et al., 2003), SMA (Coady and Lorson, 2010),
retinitis pigmentosa (RP) (Berger et al., 2015), frontotemporal
dementia with parkinsonism-17 (FTDP-17) and tauopathies
(Rodriguez-Martin et al., 2005, 2009). The results have shown
that this technology can successfully reprogram gene expression
and offers promising gene therapy applications. However, trans-
splicing approaches require the use of vectors for the delivery
of the PTM into cells. Therefore, selection of a good delivery
vector is critical for future treatment approaches based on this
technology (Wally et al., 2012). SMaRT offers multiple advantages
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as a gene therapy tool; however, it needs to be better understood
and optimized in order to increase its overall efficiency.

Modified snRNAs
Exon-specific U1 snRNAs (ExSpe U1s) are modified U1 snRNAs
complementary to intronic regions downstream of the 5′ SS that
can be used to eliminate the skipping of some exons caused by
different mutations (Figure 3D). ExSpe U1s have been tested in
different models and have shown potential for use in therapeutic
applications (Dal Mas et al., 2015). In one study, different ExSpe
U1s were tested for the treatment of SMA, CD and hemophilia
B in SMN2 exon 7, CFTR exon 12 and F9 exon 5 models,
respectively (Fernandez Alanis et al., 2012). Similar approaches
have been reported for ATP8B1 deficiency (van der Woerd et al.,
2015), FD (Donadon et al., 2018b), Sanfilippo syndrome type C
(Matos et al., 2014), Fanconi anemia (Mattioli et al., 2014), RP
(Tanner et al., 2009), thalassemia (Gorman et al., 2000), severe
coagulation factor VII (FVII) deficiency (hemophilia A, HA)
(Pinotti et al., 2008; Donadon et al., 2018a; Balestra et al., 2019b),
CDKL5-deficiency disorder (CDD) (Balestra et al., 2019a), Seckel
syndrome (Scalet et al., 2017), and hereditary tyrosinemia type I
(HT1) (Scalet et al., 2018).

Other modified versions of spliceosomal snRNAs have also
been tested for their usefulness in restoration of base pairing
to the mutated SS. For example, combined treatment with
mutation-adapted U1 and U6 snRNAs has been used to correct
mutation-induced splice defects in exon 5 of the BBS1 gene
(Schmid et al., 2013); this gene is implicated in Bardet-Biedl
syndrome, which causes retinal degeneration and developmental
disabilities. Another example of a modified oligonucleotide is U7
snRNA, which participates in histone pre-mRNA maturation by
recognizing the sequence of the histone 3′ untranslated region.
Changes in the target sequence can be introduced to convert this
snRNA into an antisense tool capable of blocking splicing signals
and inducing exon skipping or inclusion (Brun et al., 2003). This
strategy has been used to design artificial U7 snRNAs to enhance
exon 23 skipping of mutated dystrophin in DMD (Brun et al.,
2003; Goyenvalle et al., 2004).

The modified snRNA approach is based on engineered
variants of small coding genes and has various advantages. Its
main advantages are the possible exploitation of virtually any
viral vector and the fact that, based on its molecular mechanisms,
it does not alter the physiological expression of the target gene.

Genome Editing Approaches
ZFPs
Zinc finger proteins are powerful and widely studied tools for
efficient establishment of targeted genetic modifications (Cristea
et al., 2011). ZFPs designed for therapeutic use consist of ZF
arrays in which every ZF element recognizes three bases of
a DNA sequence through an α-helix structure (Figure 4A).
Examples include zinc finger nucleases (ZFNs) that cleave DNA
and zinc finger transcription factors (ZFP-TF) that modulate gene
expression (Wild and Tabrizi, 2017).

Zinc finger nucleases were the first endonucleases designed
for genome editing. In one such application, the association of
ZF domains with the DNA cleavage domain of the restriction

protein FokI leads to breakage of a specific region in the
DNA sequence (Porteus and Baltimore, 2003). To this end, two
different ZFNs must recognize adjacent sequences separated by
a spacer sequence where the break will be located. After this
step, DNA repair pathways such as nonhomologous end joining
(NHEJ) or homologous recombination (HR) with a codelivered
exogenous DNA template lead to the establishment of a modified
sequence in which the targeted mutation is corrected (Cristea
et al., 2011). Unfortunately, the use of ZFNs has some limitations,
including high cost, off-target effects due to low specificity, and
inappropriate interaction between domains.

Zinc finger nucleases can be used as therapeutic tools
to correct genetic mutations associated with splicing-related
diseases. The main advantage of ZFNs is that the correction
of mutations is permanent; thus, continuous administration is
not needed. For instance, Ousterout et al., applied ZFNs for
permanent deletion of exon 51 of the dystrophin gene for the
treatment of DMD (Ousterout et al., 2015). Other authors have
designed ZFPs targeting CAG repeats to decrease the levels of
mutant HTT for therapeutic purposes in HD (Garriga-Canut
et al., 2012; Zeitler et al., 2019).

The current and completed clinical trials of ZFN therapies (13
in total1, accessed in February 2020) focus on three major areas:
cancer (1 clinical trial), blood disorders (thalassemia, hemophilia
B and sickle-cell disease: 3 clinical trials), infectious diseases
(human immunodeficiency virus [HIV]: 7 clinical trials) and
orphan diseases (mucopolysaccharidosis: 2 clinical trials).

TALENs
These genome editing tools are chimeric nucleases engineered
by fusion of the DNA-binding domain of the bacterial protein
TALE with the catalytic domain of the restriction endonuclease
FokI (Schornack et al., 2006; Figure 4B). Recognition of a specific
DNA sequence is performed by the binding domain, which is
composed of monomeric tandem repeats of 33–35 conserved
amino acids; within this domain is a variable region known as
the repeat variable diresidue (RVD) located at residues 12 and
13. The RVD is responsible for binding to a specific nucleotide.
Similar to ZFNs, TALENs work as pairs, recognizing sequences
separated by 12–25 bp to promote cleavage of the DNA by
the FokI endonuclease. The advantage of TALENs compared to
ZFNs is decreased cytotoxicity due to reduced off-target effects
(Sun and Zhao, 2013).

Fang et al. used TALENs in vivo for the treatment of
β654-thalassemia in a mouse model. The TALENs targeted the
mutation site, corrected aberrant β-globin RNA splicing, and
ameliorated the β-thalassemia phenotype in β654 mice (Fang
et al., 2018). TALENs have also been designed for the treatment
of HD (Fink et al., 2016) and DMD (Li et al., 2015). The current
trials on TALEN therapies (5 in total1, accessed in February 2020)
are focused entirely on cancer.

CRISPR/Cas9
The development of CRISPR/Cas9 technology is considered one
of the most important breakthroughs of the last decade. This

1https://clinicaltrials.gov
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FIGURE 4 | Schematic representation of genome editing approaches. The three gene editing systems described in the main text are illustrated: ZFPs (A), TALENs
(B), and CRISPR/Cas9 (C).

nucleic acid immune system was first discovered in bacteria
and archaea more than thirty years ago (Ishino et al., 1987;
Hermans et al., 1991; Mojica et al., 1993). In 2012, Jennifer
Doudna and Emmanuelle Charpentier suggested that this system
could be used for RNA-programmable genome editing (Jinek

et al., 2012). After that study, Feng Zhang and George Church
performed the first in vitro studies in eukaryotes demonstrating
the genome editing capacity of the CRISPR/Cas9 system in
mouse and human cells (Cong et al., 2013; Mali et al., 2013).
Since these seminal reports, many researchers have contributed
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to the molecular understanding, technological development and
medical applications of this gene editing system (Lander, 2016).

The CRISPR/Cas9 gene editing system requires
administration of two main elements into a cell: (i) a small
molecule of RNA (guide RNA [gRNA]) with a sequence
complementary to that of the target mutation intended for
editing and (ii) an endonuclease CRISPR-associated system
(Cas) that allows the cleavage of the specific sequence under
the guidance of gRNA binding (Figure 4C). Although many
Cas9 orthologs have been investigated, the most widely used
is Cas9 from Streptococcus pyogenes. In most eukaryotic cells
and after cleavage, two repair pathways, NHEJ and homology-
directed repair (HDR), are used to correct CRISPR-mediated
breaks. The application areas of CRISPR/Cas9 technology go
beyond genome editing, and many comprehensive reviews
discussing the potential and specific applications of this system
in science and medicine have been published (Adli, 2018 and
references therein).

Several studies have used CRISPR/Cas9 to correct splicing-
related defects. Yuan et al. used a CRISPR-guided cytidine
deaminase to successfully correct mutations associated with
splicing-related diseases. These researchers used this tool to
restore the expression and function of the protein dystrophin in
DMD patients (Yuan et al., 2018). Foltz et al. used CRISPR/Cas9
to generate corrected induced pluripotent stem cells (iPSCs) from
fibroblasts with a mutation in the PRPF8 splicing factor from
patients with RP. These researchers were also able to differentiate
each of these clones into retinal pigment epithelial cells with
a nearly normal phenotype, highlighting the power and utility
of this genome editing tool (Foltz et al., 2018). Dastidar et al.
used CRISPR/Cas9 to excise a CTG-repeat expansion of the
DMPK gene, abnormal length of which leads to sequestration
of muscle blind-like (MBLN) splicing factors, and achieved
correction efficiencies of up to 90% in myotonic dystrophy
type-1 (DM1) iPSCs. These results support the use of this
tool in developing new therapies for the treatment of DM1
(Dastidar et al., 2018). CRISPR/Cas9 has also been used to treat
the neurodegenerative disease X-linked dystonia-parkinsonism
(XDP) by excising the SINE-VNTR-Alu (SVA) retrotransposition
in intron 32 of the TAF1 gene in multiple pluripotent stem
cell-derived neuronal lineages. An XDP-specific transcriptional
signature with normalized TAF1 expression levels was achieved
in these cells (Aneichyk et al., 2018). Kemaladewey et al.
demonstrated in vivo systemic delivery of an adeno-associated
virus (AAV) carrying CRISPR/Cas9 genome editing components
in a mouse model of congenital muscular dystrophy type 1A
(MDC1A) to correct a pathogenic SS mutation in LAMA2 pre-
mRNA in order to include exon 2. The LAMA2 gene encodes
the α2 chain of the most abundant laminin isoform of the basal
lamina (Laminin-211), and restoration of full-length LAMA2
expression by CRISPR/Cas9 improves muscle histopathology and
function (Kemaladewi et al., 2017). These observations, together
with those described in a follow-up report by the same authors,
validate the use of this gene editing technology as a therapeutic
strategy for MDC1A (Kemaladewi et al., 2019). Thus far, trials
using CRISPR therapies (27 in total1, accessed in February 2020)
have focused mainly on cancer. Very recently, Stadtmauer et al.

reported data from the first phase I clinical trial on cancer
immunotherapy combined with CRISPR. The results of the trial
demonstrated that it is feasible and safe to apply this technology
for cancer immunotherapy (Stadtmauer et al., 2020).

Despite the targeting specificity of Cas9, off-target DNA
cleavage activity can occur. In addition, many recent reports
have suggested that CRISPR/Cas9 might unintentionally
generate alternatively spliced products, large genomic deletions,
translocations and inversions; this is a matter of concern that
should be further evaluated prior to the clinical application of
this technology (Smith et al., 2018).

A modification of the CRISPR/Cas9 system termed the base
editing system (BEs) has expanded the arsenal of tools for genome
modification. Unlike CRISPR, the BEs can introduce precise
base changes without introducing double-strand breaks (DSBs)
and, in the case of HDR, without the requirement of a template
donor (Hess et al., 2017; Rees and Liu, 2018). Two classes of
BEs have been developed: the cytosine BEs (CBEs) (Komor et al.,
2016) and the adenine BEs (ABEs) (Gaudelli et al., 2017); these
systems include cytidine deaminases and evolved Escherichia
coli TadA, respectively. Osborn et al. applied the ABEs to an
in vitro model of primary fibroblasts extracted from recessive
dystrophic epidermolysis bullosa (RDEB) patients. Compared
with HDR using a donor template, the ABEs efficiently corrected
two COL7A1 mutations with minimal indels (Osborn et al.,
2020). Recently, Song et al. also systemically delivered an ABEs
and a single gRNA (sgRNA) to edit a point mutation in the
FAH gene in an adult mouse model of HTI. The results showed
improvements in liver histology in ABEs-treated mice, and the
correction of the point mutation was confirmed by sequencing,
indicating restoration from the diseased to the normal phenotype
in vivo (Song et al., 2020). The enormous potential of this
technique is related to the fact that conversion of A·T to G·C
base pairs in genomic DNA makes it possible to correct almost
half of the 32,000 point mutations that cause genetic diseases
(Gaudelli et al., 2017).

Some of the strategies presented in this section are feasible
treatment options for several diseases. Although the potential
of nucleic acids (DNA or RNA) as drugs immediately became
obvious decades ago, the actual development of nucleic acid-
based medicines has faced major and evident hurdles. For
instance, nucleic acids are highly susceptible to degradation by
endogenous nucleases. Some of these nucleic acids, such as short
oligonucleotides in their native form, have a very short half-
life, even before they are filtered out through the kidneys. Large
DNA/RNA constructs with highly negative charges cannot cross
the vascular endothelium, dense extracellular matrix and cell
and nuclear membranes to reach their intracellular DNA, pre-
mRNA or mRNA targets. Moreover, off-target effects of many
DNA/RNA therapeutic tools can lead to devastating adverse
reactions. Finally, some of these tools can be immunogenic.
Although chemical modifications can improve pharmacokinetic
and pharmacodynamic properties, the ability of these promising
therapeutic tools to efficiently deliver DNA/RNA in order to
modify sufficient numbers of cells for therapeutic benefits
is still the limiting factor for the translation of preclinical
models to standard clinical care. This ongoing challenge, which
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is considered the Achilles heel of gene therapy (Somia and
Verma, 2000), is beginning to be overcome through the use of
nanotechnologies. These technologies use complexes of nucleic
acids or encapsulate the nucleic acids in nonviral vectors, such
as liposomes, lipids, and polymeric or inorganic nanoparticles, to
enhance safe delivery to the target site. Next, we will focus on the
application of nanotechnologies for gene delivery and discuss the
advantages and problems associated with nanotechnology-based
systems. Addressing the problems will dismantle the barriers
facing nucleic acid-based therapeutics.

NANOMEDICINE

In recent decades, various vectors and tools have been developed
for gene therapy. In addition, the advent of new gene editing
therapies, such as CRISPR/Cas9, has sparked investigation into
appropriate gene delivery systems, including viral vector and
transposon-based vector systems. Nanostructures are nanoscale-
sized particles capable of transfecting cells and releasing cargoes
such as small molecules, DNA, RNA and peptides to exert
pharmacological effects. These nonviral vectors have received
considerable attention due to their advantages compared to
viral systems, which have been the most common choices for
gene delivery. Several good reviews have extensively explained
the differences between these types of vectors (Chira et al.,
2015; Ramamoorth and Narvekar, 2015; Foldvari et al., 2016).
The main advantage of nonviral gene delivery systems is their
low immunogenicity, as high immunogenicity can impair viral
transduction efficacy. Insertional mutagenesis is also a recognized
safety concern associated with viral vectors intended for use in
gene therapy (Hacein-Bey-Abina et al., 2003; David and Doherty,
2017), and viral integration is recognized as a common outcome
of applications that utilize AAVs for genome editing (Hanlon
et al., 2019). The major advantages of viral vectors include
strong and prolonged transgene expression, broad cell tropism,
and thorough understanding of viral gene function. Compared
with viral systems, nanoparticle-mediated nucleic acid delivery
systems have the advantages of weak immunogenicity, lack of
integration and absence of potential for viral recombination, all
of which translate to improved safety (Yin et al., 2014). The
development processes and manufacturing capacity for clinical-
grade nanoparticles are also advantages of nanoparticle-based
methods versus viral methods. Nanotechnologies are applicable
to a large cohort of patients (Paliwal et al., 2014)., and several
nanoparticle-based formulations are already on the market.
For example, the siRNA-based drug Onpattro R©, used for the
treatment of the polyneuropathy hATTR in adults via inhibition
of the production of the disease-causing protein, is encased
in lipid nanoparticles for delivery into the body. However,
the transfection efficiency of nanoparticle-based systems is
comparatively poor, and poor transfection efficiency is the main
limitation for this and other nonviral methods. For this reason,
AAV vectors are the most commonly used vectors for nucleic-
acid delivery. A good overview of the current status of the clinical
translation of viral and nonviral systems for gene therapy has
recently been published (Kaemmerer, 2018).

Several formulations based on nanoparticles have
demonstrated sustained expression of transported cargoes
and long-term achievement of biological effects (Cohen et al.,
2000; Shi et al., 2014). Nanoparticles can also achieve successful
tissue-specific delivery of biomolecules through different
strategies. For example, incorporation of specific antibodies
into the nanoparticle surface has enabled effective targeting of
nanoparticles to the brain and lung endothelium (Kolhar et al.,
2013) for the treatment of many types of cancer, inflammation
dysfunction, and infectious disease (Cardoso et al., 2012).
Specific chemical components have also been incorporated into
nanoparticles to increase delivery of biomolecules to targeted
cells. Incorporation of phosphatidylserine (PS), cholesteryl-
9-carboxynonanoeate (9-CCN) (Maiseyeu et al., 2010), or
folate into targeted nanoparticles (Krzyszton et al., 2017) has
been shown to increase uptake by macrophages to help treat
atherosclerosis and rheumatoid arthritis.

Nanoparticles exist in different forms and can be divided
into different classes based on their compositions and properties:
polymeric nanoparticles, liposomes, lipid nanoparticles, and
inorganic nanoparticles (Figure 5).

Polymeric Nanoparticles
Polymeric nanoparticles are based on a polymeric matrix.
The most frequently used polymers are poly-lactide-coglycolide
(PLGA), polyhydroxyalkanoates (PHAs) and CDs (CDs) (Zhang
et al., 2018). PLGA is a biodegradable and biocompatible polymer
formed by units of lactic acid and glycolic acid. This excipient
is approved by the FDA and has been extensively used to
develop nanoparticles (Zakharova et al., 2017). The grade of
the polymer depends on the ratio between lactic acid and
polyglycolic acid (PGA), which can affect the final characteristics
of the nanoparticle. For example, polymers with higher glycolide
contents have shorter deterioration times due to their more
hydrophilic and amorphous characteristics. On the other hand,
polymers with higher lactic content are more hydrophobic, thus
exhibiting longer deterioration times (Schliecker et al., 2003).
Frequently, PLGA is mixed with other polymers to improve
the characteristics of the resulting nanoparticles. For example,
polyethylenimine (PEI) is commonly incorporated to improve
the transfection efficiency of nanostructures (Xie et al., 2016;
Wang et al., 2018). PEI is a polycationic polymer capable of
condensing DNA and RNA into stable nanostructures, primarily
via electrostatic interactions. However, several studies have
revealed that this polymer is cytotoxic, as elegantly discussed
by Hunter more than a decade ago (Hunter, 2006). Thus, the
translation of PEI-based nanoparticles to clinical applications
is limited. Another polymer frequently mixed with PLGA is
polyethylene glycol (PEG) (Zhang et al., 2014). PEG is a
nonionic biocompatible polymer coated onto the surfaces of
nanoparticles that prevents recognition and destruction of these
carriers by the mononuclear phagocyte system (MPS), thereby
increasing the plasma half-lives of the nanoparticles (Mustafa
et al., 2017). Furthermore, PEGylation of nanoparticles improves
their stability by reducing intermolecular aggregation and the
accessibility of the target site (Gref et al., 2000). PLGA-based
nanoparticles can also be functionalized with ligands such as
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FIGURE 5 | Schematic representation of different types of nanoparticles. (A) Polymeric nanoparticles, (B) liposomes, (C) lipid nanoparticles, and (D) inorganic
nanoparticles.

antibodies and Fab fragments to improve cellular targeting
(Kennedy et al., 2018).

Polyhydroxyalkanoates are polyesters produced by
microorganisms through, for example, bacterial fermentation
of sugars or lipids. Because they are biodegradable and
biocompatible polymers, PHAs have been used as bioimplant
materials for medical and therapeutic applications for more than
thirty years (reviewed in Zhang et al., 2018). Different types of
PHAs can be used for nanoparticle formulation. There are 2 types
of PHAs with different chain lengths: short-chain-length PHAs
(scl-PHAs), which are composed of 3 to 5 carbon atoms, and
medium-chain-length PHAs (mcl-PHAs), which are composed
of 6 to 16 carbon atoms. There is also a subtype of PHAs that
includes copolymers of scl-mcl PHAs of 4 to 12 carbon atoms
(Hazer and Steinbuchel, 2007). PHA-based nanoparticles have
been used to deliver biomolecules for anticancer (Lu et al., 2011;
Fan et al., 2018; Radu et al., 2019) and antibacterial applications
(Castro-Mayorga et al., 2014, 2016; Mukheem et al., 2018).
Nanocarriers fabricated from PHA−grafted copolymers have
also been developed for efficient siRNA delivery (Zhou et al.,
2012); these formulations are safe siRNA carriers for gene
therapy. A review discussing the use of PHA-based nanovehicles
as therapeutic delivery carriers has been recently published
(Lin, 2017).

CDs are cyclic oligosaccharides extensively used in
pharmaceutical and biomedical applications. These molecules
can be divided into 3 groups: α-CDs (6 subunits of glucose),
β-CDs (7 subunits of glucose) and γ-CDs (8 subunits of glucose).
CDs are biocompatible products approved by the FDA that are
currently present in marketed formulations (Jambhekar and

Breen, 2016). The cyclic structure of CDs results in a hydrophobic
lumen and a hydrophilic surface. This characteristic allows the
use of CDs for multiple purposes, such as the vectorization of
lipophilic drugs (Fine-Shamir et al., 2017). Furthermore, CDs can
penetrate cells and release their cargoes through, for example,
pH-dependent mechanisms (Tardy et al., 2016). CD-based
nanoparticles have also been used for gene delivery. For example,
Zuckerman et al. developed CD nanoparticles containing siRNAs
for the treatment of chronic kidney diseases. Additionally, these
researchers reported the functionalization of these nanoparticles
with mannose or transferrin for enhanced nanoparticle uptake
(Zuckerman et al., 2015).

Liposomes
Liposomes were some of the first nanostructures to be developed
for drug delivery. Liposomes were developed in the 1960s and
are currently present in marketed formulations such as Doxyl R©,
Myocet R© and Caelix R©. At present, no liposome-based marketed
formulations for gene delivery exist. Liposomes are nanoscale
particles with a lipid bilayer composition that forms a spherical
structure inside an aqueous compartment. In aqueous solution,
liposomes form colloidal dispersions. The main components
of liposomes are phospholipids, such as phosphatidylcholine
(PC), phosphatidylethanolamine (PE), PS, phosphatidylinositol
(PI) and phosphatidyl glycerol (PG), and cholesterol, which can
be incorporated into the phospholipid membrane to increase
liposome stability (Bozzuto and Molinari, 2015). Other excipients
can be used to improve the properties of liposomes or to
endow them with new characteristics suitable for gene delivery.
For example, dioleoylphosphatidylethanolamine (DOPE) is
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used to produce pH-sensitive liposomes, and the cationic
lipids N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium
chloride (DOTMA) and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-
trimethylammonium chloride (DOTAP) are used to formulate
liposomes with cationic charges to facilitate the incorporation of
DNA and RNA. In addition, polymers and carbohydrates, such as
PEG and monosialoganglioside (GM1), can be incorporated into
nanoparticle formulations to improve their in vivo half-lives and
stability (Daraee et al., 2016b).

Many published studies have shown the efficacy of liposomes
in delivering RNA or DNA into cells. For example, Dorrani et al.
developed a liposome formulation with DOTAP and sodium
cholate (NaChol) as edge-activators that is capable of efficiently
delivering siRNA through skin layers after topical administration,
demonstrating that liposomes are good candidates for the
treatment of skin diseases such as melanoma (Dorrani et al.,
2016). Qiao et al. developed a formulation incorporating
mannosylated zwitterionic-based cationic liposomes (man-
ZCLs) that increases the endosomal/lysosomal escape of
nanostructures to enable administration of a DNA vaccine for
HIV, providing a new, safe and effective HIV vaccination method
that can be tested in future studies (Qiao et al., 2016). Recently,
a four-component liposome formulation with DOTAP, DOPE,
PEG, and cholesterol was used to transfect Cas9/sgRNA with
high efficacy in order to knock out targeted genes in vivo
(Hosseini et al., 2019).

Lipid Nanoparticles
Lipid nanocarriers are some of the most promising nonviral
tools for gene therapy. Currently, the only medicine approved
by the FDA and European Medicines Agency (EMA) that uses
nanostructures to deliver RNA is Onpattro R© (mentioned in
section “Small Interfering RNAs (siRNAs)”); Onpattro R© is a
lipid nanoparticle-based drug product that transports patisiran,
an siRNA molecule for the treatment of TTR amyloidosis
(Rizk and Tuzmen, 2019).

Lipid nanoparticles were developed to address important
drawbacks of other lipid-based systems, such as instability and
the necessity for use of surfactants and other toxic substances;
to increase loading capacity; and to resolve other problems
related to manufacturing and scale-up processes (Muller et al.,
2000). Lipid nanoparticles can be divided into 2 categories:
solid lipid nanoparticles (SLNs) and nanostructured lipid carriers
(NLCs) (Gordillo-Galeano and Mora-Huertas, 2018). Both types
of nanoparticles use lipid excipients that are biocompatible and
biodegradable. These structures are highly attractive for clinical
applications due to their simple and inexpensive manufacturing
processes that do not require organic solvents and can be easily
scaled up; their high stability; and their ability to be administered
through different routes, such as the parenteral, pulmonary, oral
and topical routes (Uner and Yener, 2007).

Solid lipid nanoparticles have been developed for gene
delivery since 2000. The structure of SLNs can help to
protect the drug or RNA/DNA against external agents and
can enable modified and/or targeted release (Muller et al.,
2000). SLNs are manufactured with solid lipid excipients.
The most common excipients include stearic acid, cholesterol

derivatives (e.g., cholesteryl oleate), glyceryl monostearate,
glyceryl behenate, cetylpalmitate, glycolipids, tripalmitine and
tristearin. Other essential excipients that are incorporated into
these formulations are surfactants and cosurfactants, such
as Pluronic R© compounds (i.e., Pluronic F68), Poloxamer R©

compounds (i.e., Poloxamer 188), Brij R©, Tween 80, and
Span 20. Cationic molecules can also be incorporated in
formulations to provide a positive surface charge (forming
cationic SLNs [cSLNs]) in order to facilitate the formation
of SLNplexes with DNA/RNA. The most commonly used
cationic excipients are octadecylamine, benzalkonium chloride,
cetrimide (DTAB), DOTAP, N,N-di-(β-stearoylethyl)-N,N-
dimethyl-ammonium chloride (Esterquat 1 [EQ1]) and
stearylamine (de Jesus and Zuhorn, 2015). To improve
the efficacy of this type of vector, other excipients, such as
protamine (Limeres et al., 2019), can be incorporated into
the formulation. There are many examples of the use of SLNs
for gene therapy. For example, Apaolaza et al. developed a
formulation incorporating hyaluronic acid for transfection
of cells with a plasmid containing the RS1 gene. Intravitreal
administration of this formulation induced the expression of
the protein retinoschisin in photoreceptors of Rs1h-deficient
mice, leading to structural improvements in degenerated
retinas (Apaolaza et al., 2016). Rassu et al. designed SLNs
capable of carrying BACE1 siRNA to the brain after nasal
administration for the treatment of Alzheimer’s disease. These
researchers formulated nanoparticles with RVG-9R, a type of
cell-penetrating peptide (CPP) that facilitated the transcellular
pathway in neuronal cells. Furthermore, the researchers coated
the nanoparticles with chitosan, which provided extra protection
to the siRNA and increased the mucoadhesiveness of the
particles, thereby increasing the residence time in the nasal cavity
(Rassu et al., 2017).

Nanostructured lipid carriers were first developed several
years after SLNs. In contrast to SLNs, which involve solid lipids,
NLCs involve liquid lipids; the use of liquid lipids increases the
stability and drug loading capacity of the nanoparticles (Uner
and Yener, 2007). The liquid lipids most commonly used to
formulate NLCs are oleic acid and caprylic/capric triglycerides.
Other lipids used are canola stearin and myristyl myristate. The
other excipients are the same as those used for SLNs. A study
by Taratula et al. has demonstrated the high loading capacity
and gene delivery potential of NLCs. The authors developed a
multifunctional NLC-based system containing a drug (paclitaxel
or doxorubicin), two different types of siRNA, and a modified
synthetic analog of luteinizing hormone-releasing hormone
(LHRH) to increase specificity for local targeted delivery to
lung tumors (Taratula et al., 2013). Similarly, Chen et al. have
shown the capability of NLCs to coencapsulate plasmids and
temozolomide, an anticancer drug. Those authors tested the
system in vitro and in vivo for efficient delivery to malignant
glioblastoma cells for the treatment of malignant gliomatosis
cerebri (Chen et al., 2016).

Inorganic Nanoparticles
Inorganic nanoparticles include nanostructures that are
manufactured using inorganic materials, such as gold, silicon
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and iron oxide; carbon materials; layered double hydroxide
(LDH); or calcium phosphate (Xu et al., 2006). The easy surface
functionalization, good target delivery and controlled release
of these nanoparticles are their main advantages. Some of the
most widely used inorganic nanostructures are gold nanoparticles
(AuNPs). This type of nanoparticle is used in the biomedical field
for different applications, such as biodetection, biodiagnostics,
and bioelectronic or therapeutic agent development. Among
the advantages of these nanoparticles are their size- and
structure-dependent visual and electronic characteristics and
high surface/volume ratios and the capability to functionalize
their surfaces due to their high affinities for different functional
groups (Giljohann et al., 2010; Daraee et al., 2016a). One
example of an AuNP-based gene delivery system was recently
developed by Jia et al. (2017). The authors surface-conjugated
AuNPs with thiol-modified antago-miR155, an RNA antagonist
to a potent promoter of proinflammatory type 1 macrophage
polarization (miR155) that plays an important role in diabetic
cardiomyopathy. In vivo administration of the AuNP complex
resulted in the incorporation of nucleic acids into macrophages
via phagocytosis and led to reduced inflammation, reduced
apoptosis and restoration of cardiac function. AuNPs have also
been used to deliver Cas9 ribonucleoprotein and donor DNA
in vitro and in vivo and to correct the DNA mutation in the
dystrophin gene that causes DMD (Lee et al., 2017).

Oxide nanoparticles can be classified into two important
groups: silicon oxide nanoparticles and iron nanoparticles (Xu
et al., 2006). Mesoporous silica nanoparticles (MSNs) have been
extensively investigated with regard to gene delivery. Indeed,
RNA can be loaded onto the surfaces of small pore-sized MSNs,
thereby enabling RNA delivery into cells. Furthermore, RNA
and drugs can be loaded onto the same large pore-sized MSNs;
thus, large pore-sized MSNs have the capacity to deliver two
therapeutic agents at the same time. Sun et al. developed core-
shell hierarchical MSNs (H-MSNs); doxorubicin can be loaded
into the core mesopores, and siRNAs that downregulate the
expression of P-gp to reverse multidrug resistance (MDR) can be
loaded into the shell mesopores. The specific release of siRNA
into the microtumor environment enables inhibition of MDR,
and the subsequent release of doxorubicin enhances this effect
(Sun et al., 2017).

Iron nanoparticles can be made of different materials, such
as magnetite (Fe3O4) and maghemite (Fe2O3). The intrinsic
magnetic properties of these nanoparticles can be used for gene
or drug delivery. For example, an external magnetic field can
be used to guide the nanoparticles to a specific zone of the
body for drug release. Furthermore, a magnetic field can be
applied to a cell culture dish to enhance cell transfection by
magnetic nanoparticles in a procedure known as magnetofection
(Estelrich et al., 2015). Despite the difficulties encountered in
translating the magnetofection technique to clinical applications,
advanced studies have demonstrated that iron nanoparticles can
be applied for ex vivo delivery of chemically modified RNA
(cmRNA), opening the door to continuing studies on gene
therapy applications (Badieyan et al., 2017).

CONCLUDING REMARKS

In 1993, the Nobel Prize in Physiology and Medicine was awarded
to Phillip Sharp and Richard Roberts for their discovery of
adenoviral RNA splicing (Berget et al., 1977; Chow et al., 1977).
This discovery had notable consequences for elucidation of gene
expression regulation and the evolution of eukaryotic cells. More
than forty years after this seminal discovery, we have a deep
understanding of the molecular mechanisms that control this
important regulatory process, and we have recently begun to
unravel the molecular links that connect faulty splicing with
many human disorders. This knowledge has enabled the design
of innovative therapeutic strategies intended to correct splicing
defects. Many tools based on nucleic acid gene repair have
been tested with positive results, and many more tools warrant
further development. The field is moving notably quickly, but
we have attempted to provide a general overview of the main
developments. However, as important as it is to decipher the
mechanisms that govern the connections between missplicing
and pathologies and to apply these findings in the clinic, research
on the safe transport of therapeutic biomolecules into cells
and to their targets is equally important. Further development,
characterization and testing of engineered technologies for
targeted delivery and controlled release of DNA and RNA
directly into cells with clinical applications are needed, as the
demand for innovative nucleic acid delivery systems continues to
grow. Nanoparticles possess considerable potential for use in the
controlled delivery of therapeutic agents to specific target sites
for splicing-based treatments. Conducting related research is a
challenging task, as basic scientists must interact and collaborate
with nanotechnology experts. Funding opportunities should
emphasize such collaboration as a way forward for grant support.
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