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Systematic classification of colon and rectal cancer-associated signatures is critical for
the classification and prognosis of cancer patients. In this study, we identified a panel
of 29 colon and rectal cancer-associated signatures from bioinformatics analyses on
both TCGA and GEO datasets. Based on the signatures, we developed a machine
learning method to classify colon and rectal cancer into three immune subtypes named
High-Immunity Subtype, Medium-Immunity Subtype, and Low-Immunity Subtype,
respectively. Reconfirmed by different datasets, this classification was associated with
the tumor mutational burden (TMB) and many cancer-associated pathways. Compared
to Medium-Immunity and Low-Immunity, patients with High-Immunity Subtype have a
greater immune cell infiltration and better survival prognosis. In addition, a prognostic
signature of six differentially−expressed and survival-associated genes among the three
cancer subtypes (CERCAM, CD37, CALB2, MEOX2, RASGRP2, and PCOLCE2) was
identified by the multivariable COX analysis, which was further used to develop an
accurate model to predict the prognosis of colon and rectal cancer patients.

Keywords: Colon and rectal cancer, signature, prognosis, immunogenomic profiling, machine learning

INTRODUCTION

Colon and rectal tumors are among the most lethal and common malignancies after lung and
prostate cancer (Sanoff et al., 2007; Wilkinson et al., 2010; Bray et al., 2018). It has been estimated
that 53,990 new cases would be diagnosed in 2019 in the United States alone (Yothers et al., 2013).
Distant metastasis is the main factor affecting the overall survival (OS) of patients with colon
cancer, and prevention can reduce its incidence (Sanoff et al., 2007; Bray et al., 2018). Nevertheless,
mortality remains high in case of advanced disease (Wilkinson et al., 2010). In patients with locally
advanced or distantly metastatic colon cancer, conventional treatments are often insufficient to
achieve a curative effect (Pagès et al., 2018; Wang Y. et al., 2018). Consequently, early detection
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and monitoring of the development of colon cancer using
sensitive biomarkers could increase the proportion of patients
diagnosed before the onset of aggressive disease.

Immunotherapy is a significant part of precision medicine in
oncotherapy, enhancing the ability of the host immune system
to fight advanced cancer types (Becht et al., 2016; Gutting et al.,
2019). In recent decades, cutting-edge immunotherapies offered
the promise of alternative treatment methods for many types
of cancer (Sharma and Allison, 2015; Palucka and Coussens,
2016). Recent studies indicate that inhibiting immune checkpoint
receptors expressed on T cells can boost the elimination of
colon cancer cells in vivo. Furthermore, programmed cell death
protein 1 (PD-1) and cytotoxic T lymphocyte associated antigen-
4 (CTLA-4) have been proved as effective targets for the treatment
of patients with immunogenic tumors, especially in mismatch
repair-deficient colon cancer and melanoma (Brahmer et al.,
2012; Sasidharan Nair et al., 2018). Some studies also showed
that MSI tumor classification may be a predictive biomarker
for PD-1 inhibition because of its association with increased
expression of PD-1 and other immune-checkpoint molecules
(Basile et al., 2017; Chouhan and Sammour, 2018). At the same
time, multiple studies investigated tumor immunology in colon
cancer (Kather and Halama, 2019). The colon is not only one of
the most significant digestive organs, but also contains the largest
accumulation of immune cells in the body, which regulate this
very large immune barrier (Fletcher et al., 2018). Some studies
have showed that ulcerative colitis, which is partly considered
an autoimmune disease, can promote the development of colon
cancer, but the underlying signaling mechanism needs further
research (Bopanna et al., 2017; Lopez et al., 2018). Due to the
abundant immune cells in the colon cancer microenvironment
(Fridman et al., 2012), the type, density, and location of
diverse immune cells is a promising resource for predicting
the clinical outcomes. In addition, the evaluation of the extent
of tumor-infiltration by T-lymphocytes, macrophages and mast
cells could be considered as a significant biomarker for TNM
staging and prognosis (Yang et al., 2017; Han et al., 2018).
Indeed, the density of T-lymphocytes and mast cells should be
treated as a widely available prognostic biomarker in colon and
rectal cancer, which is related to their functions in immune
suppression, inflammation, and tumor development (Marech
et al., 2014; Lv et al., 2019). The cancer microenvironment
also commonly consists of stromal cells originating from the
mesenchyma, which can regulate immune cell trafficking and
activation to influence the prognosis of different cancer types
and disease stages (Greten et al., 2004; Koliaraki et al., 2015). In
order to promote the development of effective immunotherapy
strategies, it is important to investigate the immunomodulatory
role of the immune and stromal compartments of tumors. By
combining different immunotherapeutic methods with other
therapeutic approaches, and paying attention to the association
between immunotherapy response and the tumor mutation
burden (TMB), it is possible to significantly improve the efficacy
of cancer therapy.

In this study, we used the “Cell type Identification by
Estimating Relative Subsets of RNA Transcripts (CIBERSORT)”
algorithm, which employs support vector regression and has

already been employed for immune score model construction
in several cancer types (Newman et al., 2015; Zeng et al.,
2018). Furthermore, we classified both rectal and colon
cancer into three distinct subtypes: High-Immunity Subtype,
Medium-Immunity Subtype, and Low-Immunity Subtype using
immunogenomic profiling based on “Estimation of Stromal
and Immune cells in Malignant Tumors using Expression data
(ESTIMATE)” (Yoshihara et al., 2013; Vincent et al., 2015).
We employed CIBERSORT and ESTIMATE to evaluate the
proportions of immune cells and subtype-specific molecular
features in samples from 870 colon and rectal cancer patients
and 70 normal controls based on gene expression profiles
available in public databases. This investigation aimed to
assess the potential clinical utility of differentially expressed
genes form distinct subtypes for prognostic stratification and
their potential as biomarkers for targeted colon and rectal
cancer therapy. Additionally, we explored underlying functional
signaling mechanisms via bioinformatic analyses. The results of
this study lay a great promise and foundation for subsequent
in-depth immune-related studies for the precision treatment of
colon and rectal cancer.

MATERIALS AND METHODS

RNA-Sequencing Data and
Bioinformatics Analysis
Transcriptomic RNA-sequencing data of colon cancer and rectal
cancer patients were obtained from The Cancer Genome Atlas
(TCGA)1, which contained data from a colon adenocarcinoma
(COAD, n = 467) cohort and rectal adenocarcinoma (READ,
n = 172) tissues. The exclusion criteria were normal COAD and
READ samples and an OS of <30 days. Besides level 3 HTSeq-
FPKM data were transformed into TPM (transcripts per million
reads) for the following analyses. The TPM data for 430 patients
with COAD were employed for further analyses. Gene expression
datasets of colon cancer and rectal cancer patients obtained using
an GPL570 platform were searched against the gene expression
omnibus (GEO)2. The raw CEL files of matching microarray
data were processed using the robust multichip average algorithm
(Irizarry et al., 2003). Then, microarray presets could be mapped
to gene symbols according to the platform annotation file and
normalized employing a robust multi-array averaging method
using the “affy” and “simpleaffy” packages (Irizarry et al., 2003).

Implementation of Single-Sample Gene
Set Enrichment Analysis (ssGSEA)
The R package gsva was used for quantitative ssGSEA of
infiltrating immune cell types. The gene signatures of immune
cell populations could be applied to individual colon and rectal
cancer samples with the ssGSEA (Barbie et al., 2009; Bindea et al.,
2013). The enrichment levels of 29 immune signatures which
are related to innate immunity [CD56 bright natural killer (NK)
cells, NK cells, CD56dim NK cells, plasmacytoid dendritic cells

1https://cancergenome.nih.gov/
2https://www.ncbi.nlm.nih.gov/geo/
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(DCs), activated DCs, immature DCs, neutrophils, eosinophils,
monocytes, mast cells, and macrophages] and adaptive immunity
(activated B cells, immature B cells, activated CD4+ T cells,
effector memory CD4+ T cells, central memory CD4+ T cells,
central memory CD8+ T cells, effector memory CD8+ T cells,
activated CD8+ T cells, T follicular helper cells, NK T cells, Tγδ,
Th1, Th2, Th17, and Treg), were quantified in each sample based
on the ssGSEA score. Finally, hierarchical clustering of colon and
rectal cancer was conducted on the basis of ssGSEA scores of the
29 immune signatures.

Evaluation of Immune Cell Infiltration
Levels, Tumor Purity, and Stromal
Content in Colon and Rectal Cancer
Estimation of Stromal and Immune cells in Malignant Tumors
using Expression data was employed to analyze the stromal
content (stromal score), tumor purity, and immune cell
infiltration level (immune score) for colon and rectal cancer
sample (He et al., 2018).

Comparison of the Proportions of
Immune Cell Subsets Between Colon
and Rectal Cancer Subtypes
The transcriptomic RNA-sequencing data with standard
annotation were uploaded to the CIBERSORT web portal3, and
the algorithm was run employing the LM22 signature with 1000
permutations (Newman et al., 2015). The inferred fractions
of immune cell populations produced by CIBERSORT were
considered accurate if the CIBERSORT output had a p < 0.05
(Ali et al., 2016), and were considered eligible for further analysis.
The final CIBERSORT output estimates were normalized for
each sample to add up to one, enabling their direct interpretation
as cell fractions for comparison across different datasets and
immune cell types. For parts of each immune cell type, the
optimal cut-off value was made as the point with the most
important split (log-rank test) (Budczies et al., 2012).

Identification of Differentially Expressed
Genes
The statistical software R (version3.5.2) and the Bioconductor
linear model package for microarray data “limma”4 were used
to identify the differentially expressed genes (DEGs) between
the High-Immunity Subtype and Low-Immunity Subtype
(FDR < 0.05) colon and rectal cancer tissues in TCGA (He
et al., 2018). DEGs were defined by a p-value < 0.05 and
|log2FoldChange| > 1. For genes corresponding to multiple
probe sets, the average data of the multiple probes were used as
the gene expression values (Wei et al., 2018). The values of genes
over 20% of the total samples were eliminated (Qin et al., 2012).
After pre-processing the data, the Wilcoxon signed rank test was
used to select significant DEGs using the “limma” package in
Bioconductor (He et al., 2018).

3http://cibersort.stanford.edu/
4http://www.bioconductor.org/

Identification of Colon Cancer
Subtype-Specific Gene Ontology and
Networks
The step-by-step method of the weighted gene co-expression
network analysis (WGCNA) in R was employed to identify
the gene modules (gene ontology) and construct the module
and network that were significantly related with the genes
highly correlated with immune cell infiltration based on
gene co-expression analysis (He et al., 2018). The adjacency
matrix and the topological overlap matrix (TOM) was used to
calculate according to the corresponding soft threshold, and the
corresponding dissimilarities between each gene were calculated.
We employed the dynamic tree cut method, and the branches of
the hierarchical cluster tree would be cut to identify modules.

Gene Set Enrichment Analysis
H: Hallmark gene sets; C2: curated gene sets [including Kyoto
Encyclopedia of Genes and Genomes (KEGG)]; C5: Gene
Ontology (GO) gene sets; C7: immunologic signatures gene sets
v6.2 collections were downloaded from Molecular Signatures
Database as the target gene sets with which GSEA performed
using the software gsea-3.0. The whole transcriptome of all tumor
samples was used for GSEA, and only gene sets with NOM
p < 0.05 and FDR q < 0.05 were considered as significant.

Survival Analysis
The R package clusterProfiler was employed to conduct gene
functional enrichment analyses to identify biological themes
among gene clusters (Yu et al., 2012). The R package
survival receiver operating characteristic (ROC) was used to
calculate the AUC of the survival ROC curves to validate
the performance of the prognostic signature (Sun, 2017; Lin
et al., 2019). Kaplan–Meier curves were plotted to verify the
statistical relationship between genes and the OS of the high-
risk group and low-risk groups from the TCGA datasets with
the log-rank tests. Using multivariate Cox proportional hazard
regression to identify prognostic clinicopathologic factors for
OS in colon and rectal cancer patients. They were utilized
to verify the differences of survival between the patients in
the two different risk groups. The six-gene signature and
nomogram were developed from the final (forward and backward
elimination methods) Cox model to predict the OS of colon
and rectal cancer patients. Besides the performance of the
prediction model was validated internally and externally by
bootstrap method. Bootstrap-corrected OS rates were calculated
by averaging the Kaplan-Meier estimates based on 2000
bootstrap samples.

RESULTS

Immunogenomic Profiling Identifies
Three Colon and Rectal Cancer Subtypes
Figure 1 shows a schematic representation of the process
for selecting colon and rectal cancer samples. A total of
735 patients with complete overall survival information were
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FIGURE 1 | Flow diagram of the analysis procedure: data collection, preprocessing, and analysis. DEGs, differentially expressed genes; ROC, receiver operating
characteristic; TCGA, The Cancer genome atlas; GEO, Gene Expression Omnibus.

included from TCGA, GSE17536, and GSE109057. A total of 29
immune-associated gene sets, representing diverse immune cell
types, functions, and pathways, were analyzed in the datasets via
the ssGSEA scores (Yoshihara et al., 2013; Vincent et al., 2015)
to quantify the enrichment levels of immune cells, pathways or
functions in the colon and rectal cancer samples. The ssGSEA
scores of the 29 gene sets from these microarray datasets were
then used to conduct hierarchical clustering, which revealed three
types of colon and rectal cancer (Figure 2). We classified the
three clusters as: High-Immunity Subtype, Medium-Immunity
Subtype, and Low-Immunity Subtype, and the immune scores
were higher in High-Immunity Subtype and lower in Low-
Immunity Subtype (Yoshihara et al., 2013; Vincent et al., 2015).
In addition, we found that tumor purity and stromal score
of the three colon and rectal cancer subtypes had opposite
trends (Figure 2).

Composition of Immune Cells in Three
Colon and Rectal Cancer Subtypes
The result showed that the High-Immunity Subtype have
significantly higher immune scores than Low-Immunity Subtype

in colon and rectal cancer (Figures 3A,B). Mann–Whitney
U test. ∗∗p < 0.01; ∗∗∗p < 0.001; p ≥ 0.05, not significant.
Besides the levels of TMB were similar with immune scores
in High-Immunity Subtype and Low-Immunity Subtype, which
showed that the TMB was associated with different Immunity
types Figures 3C,D. Kruskal–Wallis rank sum test. ∗∗p < 0.01;
∗∗∗p < 0.001; p ≥ 0.05, not significant. Owing to the
significant value of 29 immune-associated gene, we tended to
establish a comprehensive exploration of these genes’ molecular
characteristics. The result of genetic alterations testing showed
that Missense Mutation was commonly occurring type of
mutation (Figure 3E). Besides We embarked on the immune
cell constitution in colon and rectal cancer tissues versus normal
colon tissues in Figure 4B. From the results, the fractions of M1
macrophages, activated CD4+ memory T cells, M1 macrophages,
activated NK cells, and neutrophils were consistently higher in
the High-Immunity Subtype than in the Low-Immunity Subtype
in colon cancer. The fractions of activated CD8+ memory T cells,
B cells and Plasma cells were consistently higher in the High-
Immunity Subtype than in the Low-Immunity Subtype in rectal
cancer. And a summary of the immune cell composition in tumor
cases showed that macrophages M1, macrophages M2, mast cells,
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FIGURE 2 | Hierarchical clustering of colon and rectal cancer yields three stable subtypes in four different datasets named High-Immunity Subtype,
Medium-Immunity Subtype and Low-Immunity Subtype. Tumor purity, Stromal score, and Immune score were evaluated by ESTIMATE. (A) The colon cancer
patients in TCGA-COAD database. (B) The rectal cancer patients in TCGA-READ database. (C) The colon cancer patients in GSE17536 database. (D) The colon
cancer patients in GSE109057 database.

T cells and neutrophils were most common immune cell fractions
in colon and rectal cancer in Figures 4A,D. Besides different
types of immune cells affect each other’s fractions, macrophages
M0 in high fractions may decrease the fractions of activated
CD8+ memory T cells (Figures 4C,E).

Expression of Genes on Immune Cells
Showed Significantly Higher Expression
Levels in High-Immunity Subtype
We found that the expression of most HLA genes were
significantly higher in High-Immunity Subtype than in Low-
Immunity Subtype (Kruskal-Wallis test, P < 0.001) (Figure 5).
Besides the expression of various immune cell subpopulation
marker genes (Yoshihara et al., 2013) were the highest in High-
Immunity Subtype and the lowest in Low-Immunity Subtype,
such as CD8A (CD8+ T cells), TNFSF14 (APC co stimulation),
CD79A (B cells), CD28 (Tumor Infiltrating Lymphocyte),
and CD28 (T cell co-stimulation) in colon and rectal cancer
(Figure 5). ANOVA test. P < 0.01; ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

Identification of Subtype-Specific
Pathways, and Gene Ontology of Colon
and Rectal Cancer
We employed the GSEA to indent the KEGG pathways
and gene ontology enriched in High-Immunity Subtype and
Low-Immunity Subtype (Figures 6A,B). Notably, the positive

regulation of humoral immune response, up-regulation of mast
cell activation associated with immune response, regulation
of T-helper 1,2 cell differentiation and establishment of T
cell polarity. Besides the pathways on Immunity moderation
were highly increased in High-Immunity Subtype and included
antigen processing and presentation pathways, NF-kappa B
signaling, p53 signaling pathway, VEGF signaling pathway,
Hippo signaling pathway, PI3K-Akt and mTOR signaling
pathway and MAPK signaling pathway, which proved that the
immune activity was promoted in High-Immunity Subtype. And
some previous study proved that the promotion of PI3K-Akt
and MAPK cascades positively associated with the elevated of
various immune pathways (Sun, 2017). Besides the immune
scores were related with colon cancer Stage. The immune scores
of Stage IV was lower than Stage I. Based on the selection
criteria after preprocessing the raw data, we identified the
DEGs of High-Immunity Subtype and Low-Immunity Subtype
in TCGA-COAD and TCGA-READ. 2378 DEGs between High-
Immunity Subtype and Low-Immunity Subtype colon cancer
were identified in TCGA-COAD dataset. The DEGs were
analyzed for co-expression network analysis with employing
the WGCNA package, and finally, a total of 18 modules were
identified. The ME in the brown, yellow, red and pink modules
showed significantly higher association with cancer progression
than other modules. And more, the four modules with cancer
development was identified as the clinically significant module,
which was selected for further analysis (Figures 6C,E–F).
Kaplan–Meier curves for OS based on three colon cancer
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FIGURE 3 | Three Immunity subtypes show differential phenotypes. (A,B) Comparison of the immune cell infiltration levels between three colorectal cancer
subtypes. Mann–Whitney U test. (C,D) Comparison of the TMB levels between three colorectal cancer subtypes. Kruskal–Wallis rank sum test. **p < 0.01;
***p < 0.001; p ≥ 0.05, not significant. (E) Mutation landscape of immune-related genes.

immune subtypes. The High-Immunity Subtype had the best
survival, whereas other classes were associated with poor
outcome (Figure 6D). Log-rank test, p = 0.008. We screened hub
DEGs with excellent biomarker potential to evaluate prognosis
between three immunity types in colon cancer. A forest plot of
expression profiles based on multivariate Cox regression analysis
revealed that this immune-based prognostic index could be a
significant tool for the assessment of colon cancer prognosis
(Figure 6G). And the expression of six DEGs were higher
in High-Immunity Subtype than in Low-Immunity Subtype in
colon cancer (Figure 6H). ANOVA test ∗∗P< 0.01; ∗∗∗P< 0.001.

Correlation of Immune Cells Proportion
With Six-Gene Signature Expression
To further confirm the correlation of six-gene signature
expression with the immune microenvironment, and 22 kinds
of immune cell profiles in COAD samples were constructed. The
results from the difference and correlation analyses showed that
lots kinds of immune cells were correlated with the expression

of six-gene signature (Figure 7 and Supplementary Figures S1,
S2). Among them, T cells and Macrophages positively correlated
with CALB2, CD37, CERCAM, MEOX2, RASGRP2, PCOLCE2
expression. The blue line in each plot was fitted linear model
indicating the proportion tropism of the immune cell along
with six-gene signature expression, and Pearson coefficient was
used for the correlation test. These results further supported
that the levels of six-gene signature expression affected the
immune activity.

Prognostic Value of Overlapped DEGs
Between High-Immunity Subtype and
Low-Immunity Subtype in Colon and
Rectal Cancer
According to the multivariate Cox regression analysis, we
established a prognostic signature to divide the colon cancer
and rectal cancer patients into two groups with discrete clinical
outcomes with regards to OS (Figure 8). The prognostic index
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FIGURE 4 | Composition of immune cells in three colon and rectal cancer subtypes and correlation analysis. (A) Barplot showing the fractions of 22 immune cells of
colon cancer patients in TCGA-COAD database. Column names of plot were sample ID. (B) Comparison of the proportions of immune cell subsets between colon
cancer subtypes in TCGA-COAD. ANOVA test, P values are shown. *P < 0.05; **P < 0.01; ***P < 0.001; p ≥ 0.05, not significant. (C) Heatmap showing the
correlation between immune cells of colon cancer cases in TCGA-COAD database. The shade of each tiny color box represented corresponding correlation value
between two cells. (D) Barplot showing the fractions of 22 immune cells of colon cancer patients in TCGA-READ database. Column names of plot were sample ID.
(E) Comparison of the proportions of immune cell subsets between rectal cancer subtypes in TCGA-READ database. ANOVA test, P values are shown. *P < 0.05;
**P < 0.01; ***P < 0.001; p ≥ 0.05, not significant. (F) Heatmap showing the correlation between immune cells of colon cancer cases in TCGA-READ database.
The shade of each tiny color box represented corresponding correlation value between two cells.
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FIGURE 5 | Three colon and rectal cancer subtypes show differential phenotypes. (A) Comparison of the expression levels of HLA genes between colon cancer
subtypes in TCGA-COAD database. ANOVA test. (B) Comparison of the expression levels of genes on immune cells between colon cancer subtypes in
TCGA-COAD database. (C) Comparison of the expression levels of genes on immune cells between rectal cancer subtypes in TCGA-READ database. ANOVA test
P < 0.01; *P < 0.05; **P < 0.01; ***P < 0.001.

formula for colon cancer was as follows: Risk scores = [Status of
CERCAM× (0.3314)]+ [Status of CD37× (−0.5627)]+ [Status
of CALB2× 0.2474]+ [Status of MEOX2× (−0.5889)]+ [Status
of RASGRP2 × (1.0606)] + [Status of PCOLCE2 × (0.6738)].
This prognostic index based on the immune subtypes could
be a valuable tool for distinguishing among colon and rectal
cancer patients on the base of potential discrete clinical outcomes.
We calculated the risk scores of hub genes and divided the
patients into a high-risk group and a low-risk group on the
basis of the median risk score in colon and rectal cancer. The
correlation of gene expression and survival status is shown in
Figures 8A–D. The results of survival analysis proved that the

OS of the high-risk group was significantly lower than that of
the low-risk colon cancer patients (log-rank test, p < 0.001).
The area under the ROC curve was 0.731 in colon cancer,
which indicated a moderate power of the prognostic signature
based on DEGs between the high-immunity subtype and low-
immunity subtype in survival monitoring. The predictive power
of this index for the OS of colon and rectal cancer patients
was investigated in the validation cohort (Figures 8E–H). The
results of this prognostic index suggested a significant difference
between the high-risk group and low-risk group with regard
to the OS of rectal cancer patients in the validation cohort
(log-rank test, p < 0.05). A nomogram for predicting the
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FIGURE 6 | Identification of colon and rectal cancer subtype-specific pathways, gene ontology, DEGs and networks. (A) Gene ontology enriched in High-Immunity
Subtype and Low-Immunity Subtype of colon cancer in TCGA-COAD database. (B) KEGG pathways enriched in High-Immunity Subtype and Low-Immunity
Subtype of colon cancer in TCGA-COAD database. (C) Heatmap of the correlation between MEs and clinical traits of colon cancer. (D) Kaplan–Meier curves for OS
based on three colon cancer immune subtypes. The High-Immunity Subtype had the best survival, whereas other classes were associated with poor outcome
(log-rank test, p = 0.008). (E,F) Comparison of the immune cell infiltration levels between Stage and M-Stage in colon cancer. Wilcoxon rank sum or Kruskal–Wallis
rank sum test served as the statistical significance test. **p < 0.01; ***p < 0.001. (G) Forest plot of hazard ratios showing the prognostic values of five hub genes
with multivariable Cox analyses. (H) Comparison of the expression levels of five hub genes between colon cancer subtypes in TCGA-COAD database. ANOVA test.
**P < 0.01, ***P < 0.001.

3- and 5-year OS was established based on the independent
variables (Figure 9A). The age, Stage-T, Stage-M, Immunity Type
and Six-gene model were further included in the nomogram.
A weighted total score calculated from these factors was applied
to predict the 3- and 5-year OS of the colon cancer patients.
The nomogram cohort was divided into 4 equal groups for
validation. The error bars represent the 95% CIs of these
estimates. A closer distance between two curves suggests higher
accuracy (Figure 9B).

The Six-Gene Signature Had Potential to
Be Indicators of Immune
Microenvironment Modulation
Given the levels of prognostic index risk were negatively
correlated with the survival, GSEA was employed in the high-
risk and the low-risk groups compared with the median level
of risk scores. As shown in Figure 10A and Supplementary

Table S2, for GO collection defined by MSigDB the genes in high-
risk group were mainly enriched in immune-related activities,
such as the regulation of cytokine, 2 type response and mast cell
mediated immunity. For KEGG collection defined by MSigDB,
multiple immune functional singling pathways genes sets were
enriched in the high-risk group (Figure 10B and Supplementary
Table S2). For HALLMARK collection defined by MSigDB, the
genes were enriched in tumor progression-related pathways,
including angiogenesis, apoptosis, IL6-JAK and P53 singling
pathway (Figure 10C and Supplementary Table S2). For the
immunologic gene sets collection defined by MSigDB, multiple
immune functional gene sets were enriched in the high-risk
group (Figure 10D and Supplementary Table S2).

DISCUSSION

Although the significance of classification based on immune
signatures in tumor immunotherapy has been established, the
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FIGURE 7 | The correlation between immune cell proportion and the expression of six signature genes. The scatter plot showed the correlation of immune cell
proportion with the six-gene signature expression (p < 0.05). The blue line in each plot was fitted by a linear model indicating the proportion tropism of the immune
cell along with six-gene signature expression, and the Pearson coefficient was used for the correlation test.

functions and clinical significance of hub genes have not
been explored in colon and rectal cancer. This genome-wide
profiling study identified and classified DEGs in colon and
rectal cancer, which promotes our understanding of their clinical
significance and illuminates potential molecular characteristics.
The results show that colon and rectal cancer could be
classified into three stable subtypes, a High-Immunity Subtype,
Medium-Immunity Subtype, and Low-Immunity Subtype, which
were reproducible and predictable. The High-Immunity colon
and rectal cancer subtype was enriched in immune response
activating and regulating cancer-associated pathways, including
the Toll-like receptor signaling pathway, B cell receptor signaling
pathway, PI3K-Akt signaling pathway, and NF-κB signaling
pathway. Notably, the NF-κB signaling pathway is associated
with immune signatures in colon cancer, and it plays a
significant role in mediating tumor immunity (Sun, 2017).
Moreover, it has a significant negative correlation with the
proliferation and differentiation of immune cells as well as
the synthesis of immunoglobulins (Su et al., 2017; Wang and
Xia, 2018). Additionally, the PI3K-Akt signaling pathway can
affect the production of cytokines by T cells and participate
in immunosuppression, while mTOR plays a significant role in
regulating cell proliferation and protein synthesis, which makes

it a promising target for cancer treatment (Lucas et al., 2016;
Zheng et al., 2018). The immune signature of the Immunity
Low colon cancer subtype was decreased, but enriched in
type I interferon receptor binding and serine phosphorylation
of STAT protein, which is associates with the regulation of
oncogene transcription in tumor apoptosis, proliferation, and
angiogenesis (Yu et al., 2009; Li et al., 2017; Zhang et al.,
2018). These results indicate the existence of potential positive
or negative associations between activation of signaling pathways
and immunity in colon and rectal cancer.

The immune context plays a significant role in tumorigenesis
and progression, and these insights could influence tumor
immunotyping and clinical treatment (Dumauthioz et al., 2018;
Locy et al., 2018). Our results showed that the High-Immunity
Subtype had stronger immune cell infiltration and anti-tumor
immune activity, such as high levels of macrophages, B cells
and cytotoxic T cells. Many studies attempted to assess the
density of CD8+ and CD3+ lymphocytes in the tumor proper via
IHC staining, but the obtained data could not comprehensively
reflect the immune cell infiltration and anti-tumor immune
activities (Qin et al., 2013; Wong et al., 2018). CIBERSORT was
employed to evaluate the proportions of 22 immune cell subsets
in colon and rectal cancer, which indicated that CD8+ T cells,
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FIGURE 8 | The Survival analysis and prognostic performance of the six-gene signature of colon and rectal cancer. (A) The Kaplan–Meier test of the risk score for
the overall survival of colon cancer between high-risk and low-risk patients in TCGA-COAD database (log-rank test, p < 0.001); (B) The prognostic value of the risk
score showed by the time-dependent receiver operating characteristic (ROC) curve for predicting the 5 years overall survival. in TCGA-COAD database; (C) Risk
score curve of the six-gene signature of colon cancer in TCGA-COAD database; (D) Heatmap showed the expression of six genes by risk score of colon cancer in
TCGA-COAD database; (E) The Kaplan–Meier test of the risk score for the overall survival of rectal cancer between high-risk and low-risk patients in TCGA-READ
database (log-rank test, p < 0.001); (F) The prognostic value of the risk score showed by the time-dependent receiver operating characteristic (ROC) curve for
predicting the 5 years overall survival in TCGA-COAD database; (G) Risk score curve of the six-gene signature of rectal cancer in TCGA-READ database;
(H) Heatmap showed the expression of six genes by risk score of rectal cancer in TCGA-READ database.
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FIGURE 9 | (A) Nomogram for predicting 3- and 5-year OS in colon cancer. To calculate probability of OS, first determine the value for each factor by drawing a
vertical line from that factor to the points scale. “Points” is a scoring scale for each factor, and “total points” is a scale for total score. Then sum all of the individual
values and draw a vertical line from the total points scale to the 3-, and 5-year OS probability lines to obtain OS estimates. (B) The nomogram cohort was divided
into four equal groups for validation. The gray line represents the perfect match between the actual (y-axis) and nomogram-predicted (x-axis) survival probabilities.
Black circles represent nomogram-predicted probabilities for each group, and X’s represent the bootstrap-corrected estimates. Error bars represent the 95% CIs of
these estimates. A closer distance between two curves suggests higher accuracy.

M2 macrophages, M1 macrophages, M0 macrophages and mast
cells were present4 in higher numbers in the High-Immunity
Subtype than in the Low-Immunity Subtype, which confirmed
the elevated anti-tumor immune activity in the High-Immunity
Subtype. Macrophages represent the first line of defense against
foreign pathogens, recognizing a wide range of endogenous and
exogenous ligands via important effectors in innate immunity

(Duluc et al., 2009; Rhee, 2016). However, M2 macrophages
can release pro-angiogenic molecules and growth factors that
promote cancer development, as well as inhibit the antitumor
immunity of T cells and NK cells (Pollard, 2004; Lewis and
Pollard, 2006; Sica et al., 2006), which is in agreement with the
findings of this study. In addition, somatic mutations in tumor
DNA could give rise to neoantigens recognizable and targetable
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FIGURE 10 | GSEA for samples with high-risk and low-risk based on the prognostic index of six-gene signature. (A) The enriched gene sets in GO collection by the
high-risk sample. Each line representing one particular gene set with unique color, and up-regulated genes located in the left approaching the origin of the
coordinates, by contrast the down-regulated lay on the right of x-axis. Only gene sets with NOM p < 0.05 and FDR q < 0.05 were considered significant. And only
several leading gene sets were displayed in the plot. (B) The enriched gene sets in KEGG by samples with high-risk sample. And only several leading gene sets were
displayed in the plot. (C) Enriched gene sets in HALLMARK collection by samples of high-risk sample. Only several leading gene sets are shown in plot. (D) Enriched
gene sets in C7 collection, the immunologic gene sets, by samples of high-risk sample. Only several leading gene sets are shown in plot.

by the immune system with major histocompatibility complex
(MHC) (Wong et al., 2018). As a measure of somatic mutations
in cancer cells, TMB is useful in estimating tumor neoantigenic
load (Rhee, 2016), and thus critical for the identification of
patients likely to respond to immune checkpoint blockade (Wong
et al., 2018). In this study, the level of TMB is significantly
higher in High-Immunity Subtype than in Medium-Immunity
Subtype and Low-Immunity Subtype, confirming the relationship
between TMB and immunity.

To investigate the molecular mechanisms and clinical value
of potential targets, we established an immune-based prognostic
index to develop a convenient and reliable protocol for
monitoring the immune status and clinical outcomes in colon
and rectal cancer patients. The index is based on the fractions

of six genes identified among the differentially expressed
genes from the stable High-Immunity and Low-Immunity
subtypes, all of which were up-regulated in the High-Immunity
Subtype. However, the potential molecular mechanisms of
these genes remain poorly understood. Few studies on the
function and mechanism of CERCAM in colon and rectal
cancer have been published. CD37 belongs to the tetraspanin
SUPERFAMILY that is widely expressed and forms complexes
with other tetraspanins and MHC class II on mature B cells
(Xu-Monette et al., 2016). Some studies indicated that CD37 may
be associated with various different cellular processes, including
migration, adhesion, proliferation of lymphocytes and survival,
and it is significant for interactions between T- and B-cells as
well as for immunoglobulin G/immunoglobulin A production
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(van Spriel et al., 2004, 2009; van Spriel, 2011; Beckwith et al.,
2015). Cells with high expression of CALB2 (Calbindin-2) were
derived from primary colon tumors, and it could be a diagnostic
marker for malignant mesotheliomas (Chu et al., 2005; Blum
et al., 2018). Furthermore, CALB2 could be a modifier of 5-
fluorouracil sensitivity, promoting cell death in colorectal cancer
cells through activation of the intrinsic apoptotic pathway
following treatment with this chemotherapy agent (Stevenson
et al., 2011). The Mesenchyma MEOX2 (Homeobox 2) was
previously shown to be related to malignant progression and
clinical prognosis in lung cancer, hepatocellular carcinoma,
laryngeal carcinoma and gliomas (Tachon and Masliantsev,
2019). Furthermore, MEOX2 was also found to regulate the
migration and proliferation of endothelial cells with NF-
kB downregulation (Patel et al., 2005). Additionally, MEOX2
promoter sequences have been treated as part of a test for cancer-
specific DNA methylation cluster markers in colorectal cancer,
and it may regulate the resistance to chemotherapeutics such
as cisplatinum (De Carvalho et al., 2012; Ávila-Moreno et al.,
2014). RASGRP2 (RAS guanyl releasing protein 2), is a guanine-
nucleotide-exchange-factor that can activate small GTPases, such
as Ras and Rap (Irizarry et al., 2003). Additionally, RASGRP2 was
identified as a high-avidity target antigen for CD4+ T cells, and
its expression is thought to be upregulated by HLA-DR to activate
and propagate autoreactive CD4+ T cells (Jelcic et al., 2018).
Moreover, RASGRP2 is related to immune-mediated thrombosis
and thrombocytopenia, and mediates platelet and T-cell adhesion
with integrin-independent neutrophil chemotaxis via integrin-
mediated activation of Rap1 (Cifuni et al., 2008; Carbo et al.,
2010). Some studies have also shown that RASGRP2 could
promote the migratory, invasive and proliferative capacity
in vitro, as well as confer chemoresistance in prostate cancer,
metastatic melanoma, and colon cancer (Yang et al., 2008;
Wang et al., 2017; Wang L.X. et al., 2018). The upregulation
of PCOLCE2 expression leads to enhanced extracellular matrix
organization, which has in turn promotes cancer cells adhesion,
and may be employed to predict tumors with a propensity for
developing metastasis in lung cancer, gynecological cancers or
rectal cancer (Thutkawkorapin et al., 2016; Adhikary et al., 2017;
Lim et al., 2017; Zhang and Wang, 2019). Furthermore, we
established the nomogram to predict the survival more accurately
for colon cancer patients with visualization results, which can
further improve the compliance and therapeutic effect of patients.
For example, a 70-year-old (43 points in the model) colon cancer
patients with T3 stage (65 points), M0 stage (0 points), High-
Immunity Subtype (0 points) with high-risk (42 points) has a
total of 150 points, resulting in the estimated 3-, 5-year OS of
about 65.0 and 55%. The 3- and 5-year OS of patients with High-
Immunity Subtype were both remarkably improved combined
with low six-gene signature risk.

There are a number of limitations to this study. For example,
we screened the genes by identifying overlapping DEGs from
different stable immune subtypes. Although these genes were
able to identify the stable immune subtypes of colon and rectal
cancer and their prognostic powers was validated in this study,
the results are based on RNA-sequencing data, lacking functional
validation of the target genes. This should be addressed in

future studies. Furthermore, only limited data were used for
performance evaluation and it is necessary to collect more
datasets for a more comprehensive evaluation. Because of the lack
of in vitro or in vivo experiments, the reliability of the analysis of
molecular mechanism could be limited. And some prospective
study could be carried out to validate the findings of this
retrospective study. Functional experiments for the validation of
the identified DEGs and corresponding downstream signaling
pathways are needed to therapeutic targets and reveal novel
diagnostic for colon and rectal cancer. Although the multivariate
Cox proportional hazards regression analysis was employed
widely to identify key factors involved in the establishment of
a prognostic model, several machine learning algorithms might
achieve better prediction results, such as Decision Tree, Naïve
Bayes, and Random Forest. We will test these algorithms in
the future. In the future, many questions remain to be solved
on cancer immune therapy, including the correlation between
immunogenomics, proteomics, and metabolomics, which can be
used to understand the immunological changes in rectal and
colon cancer. We hope that our systematic analysis will be of
great help in promoting risk stratification, therapeutic decision-
making in patients with colon and rectal cancer.

CONCLUSION

This study demonstrates the utility of colon and rectal cancer
immune subtypes based on immune signatures in the diagnosis,
treatment evaluation, and prognosis. The proposed DEGs models
could assist in formulating more efficient therapeutic strategies
for improving the personalized management of colon and rectal
cancer patients.
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