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As cancer remains one of the main threats of human life, developing efficient cancer

treatments is urgent. Anticancer peptides, which could overcome the significant side

effects and poor results of traditional cancer treatments, have become a new potential

alternative these years. However, identifying anticancer peptides by experimental

methods is time consuming and resource consuming, it is of great significance to develop

effective computational tools to quickly and accurately identify potential anticancer

peptides from amino acid sequences. For most current computational methods, feature

representation plays a key role in their final successes. This study proposes a novel

fast and accurate approach to identify anticancer peptides using diversified feature

representations and ensemble learning method. For the feature representations, the

information is encoded from multidimensional feature spaces, including sequence

composition, sequence-order, physicochemical properties, etc. In order to better model

the potential relationships of peptides, multiple ensemble classifiers, LightGBMs, are

applied to detect the different feature sets at first. Then the obtained multiple outputs

are used as inputs of the support vector machine classifier, which effectively identifies

anticancer peptides. Experimental results on cross validation and independent test sets

demonstrate that our method can achieve better or comparable performances compared

with other state-of-the-art methods.

Keywords: anticancer peptides, feature representation, ensemble learning, pseudo amino acid composition,

system biology

INTRODUCTION

Cancer has become a common disease in humans, and it often leads to a higher mortality rate,
especially in developing and developed countries (Ortega-Garcia et al., 2020). The complexity and
heterogeneity of cancer are major obstacles for anticancer therapy development (Kasak and Laan,
2020; Umbreit et al., 2020). Traditional cancer treatments, such as radiation therapy, targeted
therapy and chemotherapy, often fail to distinguish cancer cells from normal cells. Traditional
surgery could not guarantee the precise removal of the diseased part, which is seriously harmful
to the patient’s body (An et al., 2019). At the same time, the risk of recurrence after surgery is
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high. In addition, cancer cells have developed resistance to
traditional anticancer drugs due to their overuse. Overall,
traditional treatment methods have obvious side effects and poor
results. In view of these problems, there is an urgent to discover
and design novel cancer treatments and anticancer agents to fight
against this deadly disease (Esfandiari Mazandaran et al., 2019;
Sima et al., 2019; Bahuguna et al., 2020).

In recent years, peptide-based therapy has become a potential
method of cancer treatments. This method can target and kill
cancer cells while do not impair the normal cells (Harris, 2020).
Anticancer peptides (ACPs) with short amino acid sequences
can avoid the disadvantages of traditional cancer treatments.
They generally have the characteristics of high specificity, high
tissue penetration, low production cost, toxic under normal
physiological functions, ease of synthesis and modification, etc.
And natural ACPs are safer than synthetic drugs (Feng and
Wang, 2019). The electrostatic interactions between ACPs and
cancer cell membranes are considered to be one of the main
factors for the selective killing of cancer cells (Lin et al., 2018;
Naguib et al., 2018). They are believed to play a vital role in the
selective toxicity of ACPs to cancer. Currently, many approved
peptide-based drugs are being evaluated in various stages of
clinical trials (Tesauro et al., 2019; Brunetti et al., 2020). As more
and more ACPs are identified and verified by experiments, it is
found that most ACPs are derived from protein sequences (Tyagi
et al., 2013). However, the discovery of novel ACPs from wet-
lab experimentation is laborious, time-consuming and expensive.
So, it is essential to develop efficient computational methods to
rapidly identify potential ACPs from the peptide sequences.

In the past decade, the accurate identification of ACPs from
peptide sequences remains an open research topic in the field
of bioinformatics and immunoinformatic. Machine learning
methods have been widely used to identify ACPs in many
researches. It mainly includes two key techniques which are
feature representation and classifier. For feature representation,
if the features of peptide sequences are well-extracted, it will be
easier to precisely predict the ACPs (Jing et al., 2019). At present,
some tools in the prediction of ACPs have been developed.
The first computational tool is called Anti-CP (Tyagi et al.,
2013), which encoded peptides with sequence-based features
and binary profiles to predict ACPs based on Support Vector
Machine (SVM). In another work, Hajisharifi et al. considered
two kinds features from the local correlation and Chou’s pseudo
acid amino composition (PseAAC) to improve the prediction
of ACPs (Hajisharifi et al., 2014). ACPP used an improved
feature encoding method via three type of protein relatedness
measure, integrating compositional information, centroidal and
distributional information of amino acids (Vijayakumar and
Lakshmi, 2015). iACP has referred that membrane interactions
are related to their conformation or the order of amino acids.
And, it can get better results through cross validation and
optimizing the g-gap dipeptide componentsmethod compared to
the previous predictors (Chen W. et al., 2016). Li et al. indicated
that the different types of feature combinations can improve the
prediction for ACPs (Chen W. et al., 2016). MLACP constructed
features using amino acid composition, atomic composition,
dipeptide composition, and physicochemical properties and

developed SVM and random forest (RF) methods to predict
ACPs (Manavalan et al., 2017). SAP employed 400D features
with g-gap dipeptide information and feature selection to identify
ACPs (Xu et al., 2018). ACPred-FL can orderly extract effective
features from sequence-based feature and a group of SVM
models (Wei et al., 2018). mACPpred explored seven feature
encodings and a two-step feature selection method to exclude
irrelevant features (Ge et al., 2016; Boopathi et al., 2019). Then,
the obtained features are input into SVM classifier to gain
the predicted result. In addition, a special repository named
CancerPPD was collected and created with the manually verified
ACPs from the published literature, patents and other databases
(Tyagi et al., 2015). It provides a wealth of information related
to the peptide for research and experimental personnel to use
for reference such as its origin, the nature of the peptide,
anticancer activity, terminal modification, conformation, etc.
The information is helpful to understand the comprehensive
properties of ACPs. And it also provides a reference for the design
and identification of ACPs (Lin et al., 2015).

In this paper, we propose a novel two-step prediction
model EnACP to accurately identify the ACPs. At first, feature
representation is composed of four categories: amino acid
composition, autocorrelation, pseudo amino acid composition
and profile-based features (Chen et al., 2018). Each type includes
a few modes. Finally, 19 kinds of feature patterns are generated.
For each feature pattern, LightGBM (Light Gradient Boosting
Machine) classifier is employed to generate the initial prediction
(Ke et al., 2017). The former predicted results as the new
features are input to SVM classifier to get the final prediction.
Cross validation results showed that the proposed EnACP model
performed better than the previous methods. Furthermore,
EnACP achieved comparable performances compared with the
existing methods on a new independent dataset. EnACP is
available at https://github.com/greyspring/EnACP.

MATERIALS AND METHODS

Dataset
In this study, we use two groups of ACP datasets from the
existed literatures to evaluate the performance of the proposed
method. For them, one dataset is used to test the cross-validation
performance compared with the existing models (Hajisharifi
et al., 2014). The other with an independent test dataset can better
measure the generalization capability of the model (Boopathi
et al., 2019).

For the two datasets, one is called ZH dataset including
138 ACPs and 206 non-ACPs for the 5-fold cross-validation
test. The other is from mACPpred for the independent test.
In mACPpred dataset, the training dataset consists of 266
ACPs and 266 non-ACPs, and the independent dataset consists
of 157 ACPs and 157 non-ACPs. The two group datasets
have the low redundancy which were processed to prevent
homology bias and high similarity in the related literatures.
Amino acid frequency distribution of ACP and non-ACP in the
two datasets are shown in Figure 1. The sequences containing
not 20 natural amino acids are eliminated. From Figure 2, most
of the peptide sequences are between 5 and 50 in length in the
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FIGURE 1 | Amino acid frequency distribution on cross-validation and

independent datasets. The number of 20 amino acids are counted in

mACPpred and ZH datasets. The horizontal axis represents the abbreviation of

20 amino acids. The ordinate represents the number of amino acids.

two datasets especially in mACPpred-ACP and ZH-non-ACP.
For mACPpred-non-ACP and ZH-ACP, their ratio is 94.6 and
96.4%, respectively.

Features Representation
There are 19 kinds of features in total used in this study, three of
which belong to amino acid composition, four of which belong to
autocorrelation features, four of which belong to pseudo amino
acid composition, and eight of which belong to profile-based
features (Liu et al., 2015, 2017; Liu, 2019).

Amino Acid Composition

Basic kmer (Kmer) (Liu et al., 2008) is a very simple feature
extraction method that represents any peptide sequence as a
vector consisted of occurrence frequencies of k neighboring
amino acids. Distance-based Residue (DR) (Liu et al., 2014b)
extracts features from sequence by counting the occurrence
frequencies of all possible residue pairs within a certain distance.
Just like the DR method, the method of Distance-Pairs and
reduced alphabet scheme (Distance Pair) (Liu et al., 2014a)
also extracts features from sequence by counting the occurrence
frequencies of residue pairs within a certain distance, except that
the residue types are reduced by clustering.

FIGURE 2 | Peptide length distribution of ACP and non-ACP on mACPpred

and ZH datasets. The horizontal axis represents the number of statistics. The

ordinate represents the length of the peptide sequence.

Autocorrelation Features

A peptide sequence P is often formulated in the following format,
with the N-terminus at the left, and the C-terminus at the right.

P = R1R2R3···RL

where R1 represents the 1st amino acid, R2 represents the 2nd
amino acid, and so forth.

Given a physicochemical index of amino acids, The Auto
covariance (AC) (Cao et al., 2013) approach measures the
correlation between two residues separated by distance d, which
can be calculated as:

AC(u, d) =
L−d
∑

i=1

(

Iu(Ri)− Iu
) (

Iu(Ri+d)− Iu
)

/
(

L− d
)

where u indicates the physicochemical index, Iu(Ri) means the
index value of Ri, and Iu is the average index value along the
whole sequence:

Iu =
L

∑

i=1

Iu(Ri)/L

The Cross covariance (CC) (Cao et al., 2013) approach measures
the correlation between two residues separated by distance d

Frontiers in Genetics | www.frontiersin.org 3 July 2020 | Volume 11 | Article 760

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ge et al. Identification of Anticancer Peptides

based on two different physicochemical indices, which can be
calculated by:

CC(u, v, d) =
L−d
∑

i=1

(

Iu(Ri)− Iu
) (

Iv(Ri+d)− Iv
)

/
(

L− d
)

where u and v indicate two different indices, Iu(Ri)(Iv(Ri)) means
the index value of Ri, and Iu(Iv) is the average index value along
the whole sequence.

Auto-cross covariance (ACC) (Cao et al., 2013) is the
combination of AC and CC. Physicochemical distance
transformation (PDT) (Liu et al., 2012) is a sequence-based
method, in which any peptide sequence is firstly encoded as a
series of numbers by amino acid index (AAindex) (Kawashima
et al., 2008), and then a fixed length vector is extracted through
distance transformation.

Pseudo Amino Acid Composition

Parallel correlation pseudo amino acid composition (PC-
PseAAC) (Chou, 2001) is an approach that takes the sequence-
order information into account and represents any peptide
sequence as:

P = [x1 x2 x3 · · · x20 x20+1 · · · x20+λ]

where

xu =























fu
20
∑

i=1
fi+w

λ
∑

j=1
θj

(1 ≤ u ≤ 20)

wθu−20
20
∑

i=1
fi+w

λ
∑

j=1
θj

(20+ 1 ≤ u ≤ 20+ λ)

where fi(i = 1,2,. . . ,20) is the occurrence frequency of the 20
native amino acids in the peptide; the integer λ represents the
highest tier of correlation along the sequence; w is the weight
factor ranging from 0 to 1; θj(j=1, 2, . . . , λ) is the j-tier correlation
factor that is defined as:

θj =
1

L− j

L−j
∑

i=1

2
(

Ri,Ri+j

) (

1 ≤ j ≤ λ
)

Where the correlation function is given by

2
(

Ri,Rj
)

=
1

3

{

[

H1(Ri)−H1(Rj)
]2 +

[

H2(Ri)−H2(Rj)
]2

+
[

M(Ri)−M(Rj)
]2

}

where H1(Ri), H2(Ri), and M(Ri) are the standardized
hydrophobicity value, hydrophilicity value, and side-chain
mass of Ri, respectively.

Series correlation pseudo amino acid composition (SC-
PseAAC) (Chou, 2005) is a variant of PC-PseAAC that represents
any peptide sequence as:

P = [x1 · · · x20 x20+1 · · · x20+λ x20+λ+1 · · · x20+2λ]

where

xu =























fu
20
∑

i=1
fi+w

2λ
∑

j=1
θj

(1 ≤ u ≤ 20)

wθu−20
20
∑

i=1
fi+w

2λ
∑

j=1
θj

(20+ 1 ≤ u ≤ 20+ 2λ)

where fi(i=1,2,. . . ,20) is the occurrence frequency of the 20 native
amino acids in the peptide; the integer λ represents the highest
tier of correlation along the sequence; w is the weight factor
ranging from 0 to 1; θj(j=1, 2, . . . , 2λ) is the j-tier correlation
factor that is defined as:



























































θ1 = 1
L−1

L−1
∑

i=1
H1
i,i+1

θ2 = 1
L−1

L−1
∑

i=1
H2
i,i+1

· · ·

θ2λ−1 = 1
L−λ

L−λ
∑

i=1
H1
i,i+λ

θ2λ = 1
L−λ

L−λ
∑

i=1
H2
i,i+λ

where the correlation functions are given by

{

H1
i,j = h1 (Ri) · h1

(

Rj
)

H2
i,j = h2 (Ri) · h2

(

Rj
)

where h1(Ri) and h
2(Ri) are the standardized hydrophobicity and

hydrophilicity values of Ri, respectively.
General parallel correlation pseudo amino acid composition

(PC-PseAAC-General) is an enhanced version of PC-PseAAC,
in which both the built-in indices extracted from AAindex and
the indices provided by users can be incorporated. General
series correlation pseudo amino acid composition (SC-PseAAC-
General) is an enhanced version of SC-PseAAC, in which both
the built-in indices extracted from AAindex and the indices
provided by users can be incorporated.

Profile-Based Features

The Top-n-gram (Liu et al., 2014b) approach extracts
evolutionary information from the frequency profiles calculated
from the multiple sequence alignments outputted by PSI-BLAST
(Altschul et al., 1997), and any peptide sequence is represented
as a fixed dimension feature vector by counting the occurrence
times of each Top-n-gram. Profile-based physicochemical
distance transformation (PDT-Profile) is similar with PDT
except that the features are extracted from frequency profiles.
Distance-based Top-n-gram (DT) extends the original Top-n-
gram approach by considering the relative position information
of Top-n-gram pairs in peptide sequences, and the feature
vector of peptide sequence was calculated by counting the
occurrences of all possible Top-n-gram pairs within a certain
distance threshold.

Profile-based Auto covariance (AC-PSSM) (Dong et al., 2009)
transforms the PSSM of a peptide into fixed-length vector,
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in which the AC variable measures the correlation of the
same property between two residues separated by a distance.
Profile-based Cross covariance (CC-PSSM) (Dong et al., 2009)
transforms the PSSM of a peptide into fixed-length vector, in
which the CC variables measure the correlation of two different
properties between two residues separated by a distance. Profile-
based Auto-cross covariance (ACC-PSSM) (Dong et al., 2009)
represents any peptide sequence as a feature vector consisting
of ACC variables that are the combination of AC variables and
CC variables. PSSM distance transformation (PSSM-DT) (Xu
et al., 2015) extracts features from the PSSM of a peptide which
measure the occurrence probabilities of any amino acid pairs
separated by a distance. PSSM relation transformation (PSSM-
RT) (Zhou et al., 2017) extracts features from the PSSM of a
peptide by utilizing the relationships of evolutionary information
between residues.

Support Vector Machine and LightGBM
In this study, the dataset has exactly two class labels: anticancer
peptides (positive) and non-anticancer peptides (negative).
Support vector machines (SVMs) are very suitable for binary
classification, and because of the strong generalization ability
for small datasets, they are used extensively in biomedical data
mining (Chen et al., 2019; Jiang et al., 2020). SVM classifies data
by finding the best hyperplane to separate all data points of one
class from these of another class. The best hyperplane of SVM
is the hyperplane with the largest margin between two classes.
SVM is firstly proposed for linearly separable data, and when the
data are non-separable, the kernel functions such as radial basis
function can be used.

LightGBM (Light Gradient Boosting Machine) is a distributed
gradient lifting framework based on decision tree algorithm
proposed by Microsoft in 2017 (Ke et al., 2017). In order to
shorten the computation time, LightGBM as a good ensemble
learning algorithm was designed for two main reasons (Xia
et al., 2017). For one thing, it can reduce the use of memory
and the communication cost, improves the efficiency when
multiple machines are parallel. For another thing, it designs and
implements a good strategy for feature selection.

Methodology
To develop an accurate predictor of ACPs, we present a two-
step ensemble learning method called EnACP. The framework
of the model is shown in Figure 3. In the first step, 19
feature encodings of the peptide sequences are extracted in
terms of amino acid composition, autocorrelation, pseudo amino
acid composition and profile-based features as descripted in
section Features Representation. For each group of feature
encodings, the initial prediction is obtained separately using an
ensemble learning classifier LightGBM. In this way, the complex
higher-dimensional features are dispersed to lower dimensions.
Then, the outputs of all LightGBMs as combinative nineteen-
dimensional feature vector are input into an optimized SVM
classifier to capture the hidden relationships. At last, the peptide
sequence is identified whether it is ACP or non-ACP.

For a given binary classification problem about a set of
sequences Q(s), the class labels C={C1, C2, . . . , Cs}, Ciǫ{0, 1}, and

FIGURE 3 | The flow diagram of identifying anticancer peptides. Peptide

sequences are represented by 19 feature extraction methods. According to

the features obtained by each extraction method, LightGBM is employed to

classify the peptide sequences. Then, the outputs of all LightGBMs are input

into SVM classifier to predict the peptide sequence as ACP or non-ACP. Kmer:

subsequences of length K contained within a peptide sequence; DT,

Distance-based Top-n-gram; AC, Auto Covariance; PDT, Physicochemical

Distance Transformation; SVM, Support Vector Machine.

each sample qi has k group features <F1(qi), F2(qi),... Fk(qi)>,
where Fj is the j

th group features. Each group has several related
features. Firstly, all the features are generated by the 19 kinds
of feature representation algorithm for all the sequences. For
the train dataset, LightGBM is employed to classify each group
features, respectively. The LightGBM classification results of k
group features are input SVM to train the model. For the test
dataset, the inputs are generated according to the first layermodel
of the train data set. Finally, ACPs or non-ACPs are identified for
the test peptide sequences. The algorithm flow is described in the
following pseudocode.

As shown from the pseudocode, there are three factors that
affect the time complexity of the model EnACP, such as feature
extraction, LightGBM and SVM algorithms. Let p and n be
the numbers of the most features Fi(qi) and train samples Qt ,
respectively. And the length of the longest sequence is l. Different
feature extraction methods are relatively independent, and they
can be generated in parallel. So, the most complex feature
extraction method determines the time complexity of the feature
extraction stage. For the 19 groups of feature extraction methods,
the profile-based method with the highest complexity is O(n∗l3).
LightGBM is implemented using three technologies to improve

Frontiers in Genetics | www.frontiersin.org 5 July 2020 | Volume 11 | Article 760

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ge et al. Identification of Anticancer Peptides

Algorithm: EnACP

Input: a sequences set Q: (qi ,Ci ), k groups of feature types, class

label Ci={0, 1}, qi is a peptide sequence, Qt is train dataset, Qv is test

dataset.

Begin

1. for each sequence qi in Q:

// Initialize all features of qi , each Fi (qi ) represent one group

of features

2. F(qi )=<F1(qi ), F2(qi ),..., Fk (qi )>={}
// Initialize second level features

3. L2FK(qi )[1..k] ={}
// Feature extract

4. for j = 1 to k

5. Generate features Fj (qi ) according to feature representation

algorithm Fj

6. endfor

7. endfor

8. for train dataset Qt: (qt,Ct)

9. for m = 1 to k

// Classify the sequences Qt in the first level

10. L1Modelm = LightGBM(F(qt), Ct)

11. L2FK(qt)[m]= L1Modelm(F(qt)-)

12. endfor

// Train the model in the second level

13. L2Model=SVM (L2FK(qt) [1..k], Ct)

14. endfor

15. for test dataset Qv: (qv,Cv )

16. for n = 1 to k

// Classify the sequences Qv in the first level

17. L2FK(qv ) [n]= L1Modeln(F(qv )-)

18. endfor

// Predict the peptide sequence qv: ACP or non-ACP

19. FinalPredict(qv )= L2Model(L2FK(qv ) [1..k])

20. endfor

End

the model efficiency: gradient-based one-side sampling, exclusive
feature bundling, and histogram algorithm. These techniques
have resulted in more or less a reduction in the number of
samples and features. Moreover, it also supports feature parallel
and data parallel processing. So, its worst time complexity will not
exceed O(p∗ n). And the computational complexity of an SVM is
O(n3) for the training dataset. So the worst-case time complexity
of EnACP is max(O(n∗l3), O(p∗n), O(n3)-). But most of the
features will usually be excluded in the first layer. Then the SVM
algorithm in the second layer will be significantly speeded up. So
the actual calculation time will not reach the upper-bound in the
train stage. For the test dataset, the time is mainly consumed in
the feature extraction stage after the parameters of LightGBM and
SVM are optimized.

Evaluation
The metrics for performance evaluation used in our experiments
include Receiver Operating Characteristic curve (ROC), Area
Under a ROC Curve (AUC), Sensitivity (Sn), Specificity (Sp),
Accuracy (Acc), and the Matthews correlation coefficient (MCC)
(Plyusnin et al., 2019). Suppose TP, FP, TN and FN are the
abbreviations for true positives, false positives, true negatives, and

false negatives respectively, then the evaluation metrics can be
calculated as:

Sp =
TN

TN + FP

Sn =
TP

TP + FN

Acc =
TP + TN

TP + TN + FP + FN

MCC =
TP · TN − FP · FN

√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

RESULTS

Performance on Different Feature
Representations
In order to find the effective feature coding representation
of the peptide sequence, four kinds of feature representation
methods including 19 feature encodings were extracted in terms
of amino acid composition, autocorrelation, pseudo amino acid
composition and profile-based features. Referring to the first
step of the model, the ACPs were identified by LightGBM
classifier using various feature codes, respectively. From the
overall results in Figure 4, they were ranked by pseudo amino
acid composition, amino acid composition, profile-based features
and autocorrelation. In terms of the various feature codes, pseudo
amino acid composition worked best according to the value of
the performance indexes Acc, AUC, Sp, Sn, and MCC. Its MCC
was nearly 14 percentage points higher than the second place.
And, its Acc, Sn, and Sp were about 7 percentage points higher
than the second-place method from amino acid composition.
Among them, autocorrelation encoding was the worst, and its
performance indexes were all below 80%.

Performance Comparison on
Cross-Validation Dataset
To verify the effect of our model, we compared the results of a
few popular methods such as Li method (Li andWang, 2016), ZH
method (Hajisharifi et al., 2014) and iACP (Chen W. et al., 2016)
on ZH dataset with 5-fold cross-validation. In order to compare
the predictive capability, the predicted results of the fourmethods
were showed in Table 1. Judging from the result, our predictor
EnACP performed better than other three methods and reached
the first place in the evaluation indexes on Sn, Acc, and MCC. In
all the evaluation indexes, EnACP only lost to iACP in Sp index.
Acc, Sn, and MCC of our method were about 0.6 to 5.7%, 2.2
to 7.6%, and 1.7 to 12.6% higher than the predictive results of
other methods, respectively. In terms of Sp index, our method
was only 0.9% lower than iACP method, but also much higher
than other methods. From the discussion above, it can be seen
that our method may automatically learn representative features
from the numerous feature codes. The two step combined
classifiers with LightGBM and SVM may improve the accuracy
of prediction and achieve better identification efficiency between
ACPs and non-ACPs.

Furthermore, for the stability of the model, 5-fold cross
validation experiment was executed 30 times randomly.
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FIGURE 4 | Performance of four kinds of feature encodings on independent dataset in AUC, Sn, Sp, Acc, and MCC. (A) Performance of feature encodings based on

amino acid composition, (B) Performance of feature encodings based on autocorrelation, (C) Performance of feature encodings based on pseudo amino acid

composition, (D) Performance of feature encodings based on profile.

According to the statistical results of various evaluation metrics
shown in Figure 5, several indicators fluctuate little. And
the standard deviation of Acc, MCC, Sn, and Sp is 0.0005,
0.0012,0.0012, and 0.0011, respectively. Therefore, the cross-
validation analysis showed the stability and robustness of our
model EnACP.

Performance Comparison on Independent
Test Datasets
To further verify the power of the current predictor, three
independent datasets are analyzed from mACPpred (Boopathi
et al., 2019), ACPP (Vijayakumar and Lakshmi, 2015), and
Tyagi’s paper (Tyagi et al., 2013) named mACP_Ind, ACPP_Ind,
and Tyagi_Ind, respectively. For the independent test dataset
mACPpred_Ind, SVMACP and RFACP belong to MLACP
algorithm based on RF and SVM method, respectively. For this
dataset, we refer to the experimental results from the literature
mACPpred (Table 2). And for the independent test datasets

TABLE 1 | Performance comparison of different methods on 5-fold

cross-validation dataset.

Methods Acc Sn Sp MCC

EnACP 0.954 0.928 0.981 0.910

Li method 0.942 0.906 0.967 0.879

ZH method 0.897 0.852 0.927 0.784

iACP 0.948 0.884 0.990 0.893

ACPP_Ind and Tyagi_Ind, we compare our algorithms EnACP
with mACPpred and iACP (Table 3). Experimental results on
independent tests show that this proposed EnACP predictor is
quite more effective and promising for identification of ACPs
compared with the previous methods.

Compared with mACPpred method, our model EnACP had
achieved excellent results, among which, MCC, Acc, Sn, and Sp
were all about 2, 1, 0.7, and 1.2% higher, respectively, AUC was
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FIGURE 5 | Stability of the EnACP model on 5-fold cross-validation dataset.

Five-fold cross validation experiment was executed 30 times randomly. And

the metrics of Acc, MCC, Sn and Sp were plotted and analyzed.

TABLE 2 | Performance comparison of different methods on the independent test

dataset mACPpred_Ind.

Methods Acc Sn Sp MCC AUC

EnACP 0.924 0.892 0.955 0.849 0.968

mACPpred 0.914 0.885 0.943 0.829 0.967

SVMACP 0.768 0.554 0.981 0.592 0.896

RFACP 0.707 0.414 1.000 0.511 0.891

iACP 0.667 0.580 0.753 0.338 0.747

TABLE 3 | Performance comparison of different methods on the independent test

datasets ACPP_Ind and Tyagi_Ind.

Datasets Methods Acc Sn Sp MCC AUC

EnACP 0.948 1 0.9 0.901 0.992

ACPP_Ind mACPpred 0.948 0.973 0.925 0.898 0.989

iACP 0.74 0.919 0.575 0.558 0.875

EnACP 0.853 1 0.708 0.739 0.996

Tyagi_Ind mACPpred 0.884 0.957 0.813 0.777 0.948

iACP 0.8 0.894 0.708 0.612 0.905

basically flat. MCC, Acc, Sn, and AUC obtained from our model
EnACPwere about 25.7 to 51.1%, 15.6 to 25.7%, 31.2 to 47.8%, 7.2
to 22.1% higher, respectively, compared with SVMACP, RFACP,
and iACP. Additionally, it can also be seen from the results of
Figure 4 and Table 2 that the EnACP method has an advantage
over the pseudo amino acid composition method with one step
prediction. Sn is only slightly lower less than a percentage point.
And, MCC, Sp, Acc, and AUC obtained from EnACPmodel were

TABLE 4 | Pairwise comparison of ROC curves in three datasets.

Datasets P(A, B) EnACP mACPpred iACP

mACP_Ind EnACP — 0.9705 <0.0001

mACPpred — — <0.0001

iACP — — —

ACPP_Ind EnACP — 0.6612 0.0036

mACPpred — — 0.0076

iACP — — —

Tyagi_Ind EnACP — 0.0384 0.0015

mACPpred — — 0.2381

iACP — — —

The comparison P(A, B) is defined the statistical significance P-value of ROC curves

between algorithm A and algorithm B.

TABLE 5 | The comparison triplets between algorithm pairs from EnACP,

mACPpred and iACP.

T(A,B) EnACP mACPpred iACP

EnACP — 1/2/0 3/0/0

mACPpred 0/2/1 — 2/1/0

iACP 0/0/3 0/1/2 —

The comparison triplet T(A, B) is defined to be the numbers of the three datasets where

algorithm A performs better, equally well and worse, compared with algorithm B in terms

of P-value.

about 4, 4, 2, 2% higher than the pseudo amino acid composition
method with one step prediction. For ACPP_Ind and Tyagi_Ind
datasets, EnACP achieves the similar performance advantages on
AUC and Sn.

The statistical significance is evaluated using rank-based ROC
curves comparison to determine whether EnACP performs better
than, similarly to or worse than the other algorithms (DeLong
et al., 1988; Hanley and Hajian-Tilaki, 1997). The results are
shown in the following Table 4. For a confidence level of 0.95,
EnACP perform statistically significantly better than iACP on
all datasets. EnACP performs similarly or slightly better than
mACPperd algorithms on mACP_Ind and ACPP_Ind. And
mACPpred performs better than iACP on the previous two
datasets. The algorithms EnACP and mACPperd perform better
than iACP with statistical significance. The comparison triplets
are also statistically tabulated between algorithm pairs from
EnACP, mACPpred and iACP which show that one algorithm
performs better, equally well and worse, compared with another
algorithm in Table 5.

Comparison of Different Classification
Methods
Based on many previous studies, using SVM classifier for task
of peptide classification outperforms most of other classical
classifiers such as AdaBoost, decision tree (DT), logistic
regression (LR), Naïve Bayes (NB), random forest (RF) (Becker
et al., 2011). We also conducted a comparative study on the two
datasets and obtained the similar conclusion in the second step of
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FIGURE 6 | Comparison of SVM with other classifiers on 5-fold

cross-validation dataset. Four performance indicators which are Sn, Sp, Acc,

and MCC are compared using six classifiers that are AdaBoost, decision tree

(DT), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and

Support Vector Machine (SVM), respectively.

the model EnACP. Experimental results on both the 5-fold cross-
validation and independent test showed that SVM, NB and LR
were relatively stable, and SVM has the best overall effect.

In order to verify the performance of SVM classifier, we
randomly selected scrambled data before 5-fold cross-validation.
Finally, the average result of six classifiers were obtained after
30 times of 5-fold cross validation, as shown in Figure 6. Each
classifier performed well, but in the comprehensive comparison,
SVM, LR, and NB classifiers were better. On the whole, SVM
classifier worked best. SVM achieved the first place in the three
indexes of Acc, MCC, and Sp. For the Sn index, it was only about
1 and 2% lower than the classifier of NB and LR, respectively.

In addition, independent test dataset mACPpred_Ind was
used to measure the performance and categorization capabilities
of the optimal model in Figure 7. Compared with the cross-
validation experiment, the AUC evaluationmetric was added into
this experiment except Acc, Sn, Sp, andMCC. Except for Sn, SVM
classifier ranked the first place in Acc, AUC, Sp, and MCC, which
was similar to the cross-validation result. But, SVM had better
performance relative to cross validation tests. For example, for
AUC index, SVMwas more than 13 points higher than AdaBoost
and DT. For Sp index, SVM is more than 5 points higher than
AdaBoost, LR and DT. For MCC, SVM was 16% higher than RF
and DT.

DISCUSSION

Even to this day, it is difficult to trace the cause of cancer
because of its complex mechanisms. In spite of various treatment

FIGURE 7 | Comparison of SVM with other classifiers on independent test

dataset mACPpred_Ind. Five performance indicators which are AUC, Sn, Sp,

Acc, and the Matthews correlation coefficient (MCC) are compared using six

classifiers that are AdaBoost, decision tree (DT), logistic regression (LR), Naïve

Bayes (NB), random forest (RF), and Support Vector Machine (SVM),

respectively.

strategies, the effect was not ideal. Peptide-based therapy has
become a research field of precision medicine. The rapid and
accurate identification of ACPs from peptide sequences based on
machine learning methods can be better applied to anticancer
drug development and other biomedical experiments (Diller
et al., 2018).

From the experimental results of the independent test
datasets, our model EnACP performs well overall especially the
high AUC and sensitivity. The higher the sensitivity is, the
better the predicted model of ACPs is. The highly sensitive
discovery of anticancer peptides plays an important role in
the design of anticancer and anti-tumor synthetic drugs. The
innovation of our model mainly includes the following points.
The model EnACP is robust and easy to extend. Multi-group
feature encodings contain abundant information. For each group
of feature encoding, LightGBM as the first layer of EnACP
can auto pre-learning and select the key features, respectively.
Actually, for the higher-dimensional features, the computation
is not very large. Meanwhile, the model implements the multi-
layer feature learning strategy. Moreover, the second layer has
fewer features and the model is more efficient to identify the
ACPs and non-ACPs. The proposed EnACP performs better in
identifying whether the peptide sequence is ACP compared with
the existing methods. Its accuracy and stability may be attributed
to the following reasons.

At first, how to effectively extract the valuable information
of ACPs is a major challenge for all the predicted methods. It
has been proved that the membrane interaction and insertion of
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membrane-active peptides could be related to the order of amino
acids. Systematic analysis revealed that some physiochemical
properties of peptides are not clearly sufficient to predict their
selectivity for example net positive charge, hydrophobicity, and
hydrophobic moments (Chen W. et al., 2016). Some methods
also are developed using amino acid composition and binary
profiles as input features (Lin et al., 2015). Therefore, in order
to find a suitable feature representation, EnACP extracts 19 kinds
of features from four aspects, including amino acid composition,
auto correlation, pseudo amino acid composition and profile-
based features.

Then, in purpose to accurately identify the ACPs quickly,
LightGBM classifier is applied to detect the peptide sequences
with the 19 kinds of features. As an ensemble learning method,
LightGBM can automatically optimize to achieve dimension
reduction and effectively prevent overfitting. On the other hand,
it can better discover the relationship of peptides and select the
representative feature description from the integrating multiple
groups features (Huang et al., 2010). In addition, the secondary
structure and tertiary structure prediction characteristics of
peptides can be added into this model as a part of basis feature
description, which may further improve the performance of the
model (Ma et al., 2015). Furthermore, neural network method
can also be explored for the identification of ACPs with the
increase of datasets (Hashemifar et al., 2018).

Finally, in terms of the used classifiers, many prediction tools
have demonstrated the effectiveness of the SVM method. As a
two-step prediction model, SVM finally outputs the identified
results with grid search to optimize its parameters. Besides,
in order to expedite the identification of ACPs, we called
LightGBMwith the default parameters in the scikit-learn package
library. Better model parameters may be obtained by modern
optimization methods to improve the prediction performance.

CONCLUSION

In order to effectively identify ACPs from amino acid
sequences, a novel hybrid predicted model EnACP is proposed
in this paper. EnACP involves two-step strategy based on
ensemble learning method. Firstly, multi-type and multi-group
feature descriptions were constructed based on amino acid
composition, autocorrelation, pseudo amino acid composition
and profile-based features. In purpose to find a suitable feature

representation and accurately classify quickly, the ensemble
classifier LightGBM was applied to detect the peptide sequences.
Secondly, multiple groups of results from the output of
LightGBMs were integrated as the input of SVM model to
enhance the final prediction accuracy of ACP as well as non-ACP.
To validate the performance of EnACP, two group experiments
were performed on cross validate dataset and independent
dataset. The experimental results indicated that the proposed
EnACP model achieved competitive performance on some
performance metrics. On the other hand, our model can be used
to solve other protein sequence problems, such as homologous
detection of proteins (Chen J. et al., 2016), prediction of various
sites (Chou and Shen, 2008, 2010), prediction of protein-protein
interaction (Wang et al., 2019), etc.
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