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Functional assays that assess mRNA splicing can be used in interpretation of the clinical
significance of sequence variants, including the Lynch syndrome-associated mismatch
repair (MMR) genes. The purpose of this study was to investigate the contribution of
splicing assay data to the classification of MMR gene sequence variants. We assayed
mRNA splicing for 24 sequence variants in MLH1, MSH2, and MSH6, including 12
missense variants that were also assessed using a cell-free in vitro MMR activity (CIMRA)
assay. Multifactorial likelihood analysis was conducted for each variant, combining
CIMRA outputs and clinical data where available. We collated these results with existing
public data to provide a dataset of splicing assay results for a total of 671 MMR gene
sequence variants (328 missense/in-frame indel), and published and unpublished repair
activity measurements for 154 of these variants. There were 241 variants for which a
splicing aberration was detected: 92 complete impact, 33 incomplete impact, and 116
where it was not possible to determine complete versus incomplete splicing impact.
Splicing results mostly aided in the interpretation of intronic (72%) and silent (92%)
variants and were the least useful for missense substitutions/in-frame indels (10%). MMR
protein functional activity assays were more useful in the analysis of these exonic variants
but by design they were not able to detect clinically important splicing aberrations
identified by parallel mRNA assays. The development of high throughput assays that
can quantitatively assess impact on mRNA transcript expression and protein function in
parallel will streamline classification of MMR gene sequence variants.

Keywords: mismatch repair genes, splicing aberrations, variant interpretation and classification, variant type,
Lynch syndrome, mRNA splicing

INTRODUCTION

Loss of function sequence variants in the mismatch repair (MMR) genes causes the cancer
susceptibility syndrome, Lynch syndrome. However, for many sequence variants identified, the
clinical significance can only be established after considering further evidence, such as population
allele frequencies, tumor pathology, family co-segregation information, in silico predictions, and
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experimental assays of MMR function (Thompson et al., 2013a,b,
2014). Some variants are “spliceogenic” and confer pathogenicity
by an effect on mRNA splicing, either through the disruption of
the native splice sites (5′-donor GT and 3′-acceptor AG), gain
of de novo sites, activation of cryptic splice sites, or altering
splicing regulatory elements (e.g., exonic splicing enhancers
and silencers, ESEs and ESSs, respectively) (Cartegni et al.,
2002). In vitro splicing assays using patient RNA or minigenes
are thus often used to test if sequence variants cause splicing
defects (Thompson et al., 2015). Output of mRNA splicing
assays is incorporated into the MMR gene sequence variant
classification scheme developed by the International Society
for Gastrointestinal Hereditary Tumours (InSiGHT) Variant
Interpretation Committee (Thompson et al., 2014), and the
American College of Medical Genetics and Genomics and the
Association for Molecular Pathology (ACMG/AMP) guidelines
with minimal specifications (Richards et al., 2015). An important
consideration in the InSiGHT classification criteria is that allele-
specific assays are required to determine the contribution of the
variant allele to the overall transcript profile.

Using mRNA splicing assay results from 24 MMR gene
variants, and additional splicing data submitted to the InSiGHT
and Universal Mutation Databases (UMD), we investigated the
utility of splicing assays in the final interpretation of MMR gene
variants, considering variant location and predicted effect. We
additionally considered the utility of protein functional assay
data, where such information was available, for the classification
of predicted missense variants.

METHODS

Nucleotide numbering reflects cDNA numbering with +1
corresponding to the A of the ATG translation initiation codon
in the reference sequence, with the initiation codon as codon 1.
The following GenBank reference sequences were used: MLH1 –
NM_00249.3, MSH2 – NM_00251.2, MSH6 – NM_00179.2, and
PMS2 – NM_00535.6.

Sources of MMR Gene Variants
Cases with MMR gene germline variants (24 unique variants,
Supplementary Table S1) in this study were identified from
the Colon Cancer Family Registry (CCFR) and the Australian
National Endometrial Cancer Study (ANECS) from participants
with lymphoblastoid cell lines (LCLs) available for RNA analyses.
Both resources have been described previously (Buchanan et al.,
2014; Jenkins et al., 2018). Informed consent was obtained
from all study participants. All variants interrogated in this
study have been submitted to the InSiGHT MMR gene locus-
specific databases1. Additional clinical data were collected from
international sites (through the InSiGHT Variant Interpretation
Committee) to aid in variant classification.

mRNA Analysis
Culturing of CCFR/ANECS case-derived (n = 24) and healthy
Red Cross donor control-derived (n = 12) LCLs in the

1https://www.insight-database.org

presence/absence of the nonsense-mediated decay inhibitor
puromycin, and RNA extraction and cDNA synthesis were
performed as previously described (Whiley et al., 2014). PCR
amplification of cDNA from both cases and healthy controls
was performed using Mango Taq (Bioline, Eveleigh, NSW,
Australia) under the following conditions: 95◦C for 2 min
followed by 40 cycles of 94◦C for 20 s, 60◦C for 30 s and
72◦C for 1 min and a final extension step at 72◦C for 5 min
(primer details in Supplementary Table S2). PCR products
were separated by agarose gel electrophoresis. Three controls
were run alongside each case. Cases and controls showing
only single transcripts on gel visualization were sequenced
at the Australian Genome Research Facility (Brisbane, QLD,
Australia). For products that contained multiple transcripts, the
individual bands were excised from the gel and purified using
the NucleoSpin Gel and PCR clean up kit (Macherey-Nagel,
Düren, Germany) per manufacturer’s instructions. These purified
transcripts were then re-amplified before Sanger sequencing.
Sequencing chromatograms were visualized using FinchTV
(Geospiza, Seattle, WA, United States). The 24 MMR gene
variants were also analyzed using multiple in silico splicing tools
(outlined in Supplementary Table S1).

CIMRA Assays
A subset of predicted missense substitutions were analyzed for
this study using the cell-free in vitro mismatch repair activity
(CIMRA) assay using techniques previously described for MLH1,
MSH2 (Drost et al., 2018), and MSH6 (Drost et al., 2020).

Dataset Used to Assess Utility of
Splicing Assay Data for Classification
All records as of July 2019 that have reported splicing analysis
using RNA or minigene assays were extracted from the InSiGHT
variant classification database (see text footnote 1), UMD-
MLH1/MSH2/MSH6 databases (n = 162) (Grandval et al.,
2013), and various recent publications from which results have
since been submitted to the InSiGHT database (Supplementary
Table S3). If available, the missense/in-frame indel variants in
this set were further annotated with previously generated CIMRA
assay data. The five class InSiGHT MMR gene classification
scheme was applied if new data were available for previously
classified variants and to interpret new variants (Thompson
et al., 2014). This incorporated both quantitative (multifactorial
likelihood) and qualitative approaches. Multifactorial likelihood
analysis was conducted as described previously (Thompson
et al., 2013a,b), including the application of recently updated
tumor characteristics likelihood ratios (LRs) (Li et al., 2020),
and functional LRs. The functional LRs were based on the
MMR activity outputs of the MLH1, MSH2 (Drost et al.,
2018), and MSH6 (Drost et al., 2020) missense variants from
CIMRA assays, represented as percent of wild-type activity. For
the purposes of comparing splicing assay and MMR activity
assays for missense/in-frame indels, the CIMRA assay data
were categorized into deficient, moderate, or proficient function.
The thresholds set for deficient and proficient function were
equivalent to the probability of pathogenicity cut-offs used for
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Class 4, likely pathogenic (0.95) and Class 2, likely benign (0.05)
derived using the CIMRA assay functional LRs (Thompson et al.,
2014; Drost et al., 2018, 2020). The deficient wild-type activity
thresholds were set at <23% for MLH1 and MSH2, and <18%
for MSH6 and PMS2 (in lieu of a calibrated PMS2 functional LR).
The proficient wild-type activity thresholds were set at ≥70% for
MLH1 and MSH2, and ≥100% for MSH6 and PMS2 (as PMS2
penetrance is closer to MSH6 than MLH1/MSH2 (Dominguez-
Valentin et al., 2020). If no validated CIMRA data was available
for a variant, then the highest published MMR activity assay data
value (most conservative) from alternative published assay data
extracted from the InSiGHT variant classification database was
used as qualitative data points to assign an effect on function.
To compare splicing predictions to mRNA results, all sequence
variants were annotated with MES-SWA and categorized into
groups based on predicted potential to alter splicing, according to
guidelines in v2.5 of the ENIGMA consortium BRCA1/2 variant
interpretation criteria2 and shown to have 98.7% sensitivity
and 96.5% specificity to detect the correct impact on splicing
(Shamsani et al., 2018). The groups were as follows, where diff
is the difference between the reference and alternate scores and
alt refers to the alternate score: native loss minimal is diff < 0, or
alt > 8.5, or diff < 1.15 and 6.2 ≤ alt ≤ 8.5; native loss moderate
is diff ≥ 1.15 and 6.2 ≤ alt ≤ 8.5, or diff < 1.15 and alt < 6.2;
native loss high is diff ≥ 1.15 and alt < 6.2; gain minimal is
diff > 0, or alt < 6.2, or diff < 0 and 6.2 ≤ alt ≤ 8.5 alt < closest
upstream/downstream native splice site; gain moderate is diff < 0
and 6.2 ≤ alt ≤ 8.5 alt > closest upstream/downstream native
splice site; gain high is diff < 0 and alt > 8.5.

Terminology to Describe Impact of
Variants on mRNA Splicing
Variants were placed into one of three categories, determined
through Sanger sequencing of cDNA if exonic variant present
(method used variants tested in this study) or from other allele-
specific techniques:

• Complete impact – variant allele results in expression of
only alternatively spliced transcript(s), i.e., no or minimal
reference (full-length) transcript is derived from the variant
allele,
• Incomplete impact – variant allele results in expression

of both reference (full-length) and alternatively spliced
transcript(s)
• Extent of impact unknown – a splicing aberration was

detected but it was not possible to determine if variant
impact was complete or incomplete

RESULTS AND DISCUSSION

mRNA assays were conducted in this study for 24 MMR
gene sequence variants. Results are summarized in Table 1
and detailed in Supplementary Table S1 (sequence traces are
shown in the Supplementary Figure S1). Results from the

2https://enigmaconsortium.org/

CIMRA assay for the 12 presumed missense substitutions are
shown in Figure 1.

We then assessed the contribution of splicing assay results to
final variant classification for 671 MMR gene sequence variants,
including the 24 variants assayed for mRNA aberrations from this
study (see Supplementary Table S3: MLH1: n = 324, 48%; MSH2:
n = 225, 34%; MSH6: n = 73, 11%; PMS2: n = 49, 7%). MLH1 and
MSH2 had the highest proportion of variants assessed, which may
be due to their higher penetrance and the increased likelihood of
detection using historic Lynch syndrome gene testing guidelines
in the clinical setting (Dominguez-Valentin et al., 2020).

There were 156 variants that had not yet been classified by
InSiGHT, and 43 variants where new splicing or CIMRA assay
data could lead to reclassification from the existing InSiGHT
classification. These variants were classified by applying the
InSiGHT criteria and have been submitted to the InSiGHT
Variant Interpretation Committee for formal classification.
Overall, 92 variants caused a splicing aberration designated
as complete, 33 variants had incomplete impact (i.e., the full-
length transcript was also present), and for 116 variants, it was
not possible to determine if impact was complete or not (see
Supplementary Table S3).

Of the variants in the acceptor (last 20 bases of intron) or
donor (first 6 bases of intron) splice site region, or the first/last
3 bases of the exon (see splice category in Supplementary
Table S3), 168/172 with high predicted native splice site loss
showed some sort of splicing aberration (98%, three of these were
designated incomplete and one variant was reported as complete
and incomplete in two separate studies). Another 12/15 with
moderate predicted native splice site loss showed an aberration
(80%, impact for one variant was designated complete and
incomplete splicing in two separate studies). Splicing impact was
seen for 11/52 variants with minimal predicted native loss (21%,
three reported as incomplete); 4/11 were exonic variants that led
to complete exon skipping events, which may be due to an effect
on ESE or ESS that are not predicted by the MES-SWA tool, or
otherwise false negative native loss predictions.

For the de novo donor/acceptor gain predictions, 13/26
variants with high predicted gain showed effect on mRNA
splicing aberration (50%); of these, three had incomplete impact:
one was a predicted stop gain variant, and two were confirmed
to also have an effect on function due to the predicted missense
change. Splicing impact was observed for 3/7 (43%) of variants
with moderate predicted gain, one of which demonstrated
complete activation of a cryptic splice site (MSH2 c.2635-
1G > T). Of the remaining two variants, one had high predicted
native loss (MLH1 c.1039-2A > T) and the third had no predicted
effect on the native splice site (MSH2 c.1979A > G).

Splicing alterations were reported for 225/638 (35%) of
variants with no/minimal predicted gain, with splicing impact
due to alternative mechanisms. The vast majority of these
(176/225) were located in the splice region (defined as above—
last 20 bases of the intron, first 6 bases of the intron, or the
first/last 3 bases of the exon) with moderate-high prediction of
native site loss, and the remainder were largely exonic variants
with incomplete exon skipping events (26/49)—again implying
effect on ESE/ESS.
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TABLE 1 | Summary of splicing assay results from this study and their contribution to variant classification.

Variant Splicing/transcript expression Variant splicing impact InSiGHT classa Splicing contributes to classification?

Missense (n = 12)

MLH1

c.299G > C p.(Arg100Pro) No effect 5 No

c.793C > T p.(Arg265Cys) r.791_884del Complete 5 Yes

c.923A > C p.(His308Pro) r.[791_1038del, 923a > c] Incomplete 5b No

c.1136A > G p.(Tyr379Cys) No effect 1b No

c.1166G > A p.(Arg389Gln) r.[1039_1409del, 1166g > a] Incomplete 3 No

c.1652A > G p.(Asn551Ser) No effect 1b No

MSH2

c.944G > T p.(Gly315Val) No effect 1b No

c.1661G > A p.(Ser554Asn) r.1511_1661del Complete 5b,c Yes

c.2075G > T p.(Gly692Val) No effect 5 No

c.2714C > G p.(Thr905Arg) No effect 1 No

MSH6

c.2314C > T p.(Arg772Trp) r.[628_3172del, 2314c > u] Incomplete 5 No

c.3469G > A p.(Gly1157Ser) No effect 4 No

Silent (n = 5)

MLH1

c.438A > G No effect 2b Yes

MSH2

c.1275A > G r.[1229_1276del, 1275a > g] Incomplete 3 No

c.1344C > T No effect 2b Yes

c.2154A > G No effect 2 Yes

MSH6

c.3246G > T No effect 1 No

Splice site (n = 3)

MLH1

c.117-2A > G r.117_121del Unknown 5b No

c.589-2A > C r.589_677del Unknown 4b No

c.790 + 2T > A r.678_790del Unknown 5 No

Intronic (n = 4)

MLH1

c.454-13A > G r.454_545del Unknown 4 Yes

MSH2

c.1276 + 11A > G No effect 2b Yes

c.1511-9A > G No effect 2b Yes

c.1661 + 5G > C r.1511_1661del Unknown 4 Yes

aUpdated InSiGHT classification. The current InSiGHT database classifications are in Supplementary Table S3. bNew submissions to the InSiGHT database. cVariant
would be classified as Class 2, likely benign based on the in silico prior probability with the CIMRA-based functional likelihood ratio. See Supplementary Table S1
for more detail.

Overall, these findings highlight the complexities of using
splice site prediction algorithms to prioritize variants for
potential splice assays. Prediction relating to both native site
loss and de novo gain need to be considered in parallel
to assess if a variant is potentially spliceogenic, and to
consider variant location in/near a splice site. Nevertheless,
it is clear that triage of variants based on location in
the splice region provides the most efficient method to
detect spliceogenic variants. Our findings also emphasize
a known deficiency in variant annotation with respect to
potential effect on ESE/ESS, due to the poor specificity of
currently available prediction tools (Houdayer et al., 2008).
This observation stresses the importance of considering all

available points of evidence (clinical and functional) to inform
variant interpretation.

All variants were assigned to categories based on variant
type. The results are summarized in Figure 2 (and described
in more detail in Supplementary Table S3). Bearing in mind
that in vitro experiments were likely prioritized by splicing
predictions for individual variants, the results show that splicing
assay results informed classification most for silent variants (92%;
69/75) and intronic variants (72%; 93/129), and least for missense
substitutions/in-frame indels (10%; 34/328).

All native splice site dinucleotide variants assessed (n = 86)
caused splicing aberrations. However, levels of the splicing
aberration from the variant allele were reported for only 16
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FIGURE 1 | Cell-free in vitro mismatch repair activity (CIMRA) assay results for 12 missense substitutions. The MLH1 p.G67R, MSH2 p.A636P, and MSH6 p.G1139S
variants are included in every experiment as repair-deficient (pathogenic) controls. Bars represent mean ± SEM of 3–4 experiments. Asterisks indicate substitutions
where the CIMRA assay results converted to a functional LR contributed to the final classification of the variant. The color code (red, blue, yellow) refers to the
classification of the variants as determined in this study.

variants, information which alone permits upgrade from likely
pathogenic class to pathogenic class, in accordance with InSiGHT
classification criteria. Due to their very high likelihood to alter
splicing, variants altering the canonical intronic dinucleotides at
the native splice sites were traditionally considered pathogenic
without the need to conduct splicing assays (Thompson et al.,
2014; Abou Tayoun et al., 2018), but this mindset is no longer
held given that consideration of naturally occurring splicing,
and the predicted mRNA product is now recognized as an
important aspect of variant curation (de la Hoya et al., 2016; Abou
Tayoun et al., 2018). There are currently no exceptions (due to
consideration of naturally occurring “rescue” isoforms) that have
been identified in the MMR genes.

Splicing information was most likely to contribute evidence
against pathogenicity for synonymous/silent and intronic
variants, with 61/75 (81%) and 67/129 (52%) demonstrating the
absence of a splicing aberration, respectively. This includes five
intronic and three silent variants that demonstrated no impact on
splicing, but are classified as VUS because NMD inhibitors were
not used in the splicing analysis, which is a requirement for the
InSiGHT splicing interpretation criteria. For these variant types,
effects on splicing (or perhaps overall transcript expression) are
the most likely causes of loss of function (Parmley and Hurst,
2007; Parmley and Huynen, 2009).

We did not find splicing data as useful in the interpretation
of predicted missense substitutions; 68/328 (21%) of predicted
missense/in-frame alterations altered mRNA splicing. Of these
68 proven spliceogenic variants, the mRNA splicing data
contributed to the classification of only 34 variants (50%;
due to detection of complete splicing that was considered as
evidence toward pathogenicity). Further, this observation likely

overestimates the proportion of predicted missense variants
that (also) alter mRNA splicing; bias toward spliceogenic
variants having undergone mRNA assays is anticipated given
that bioinformatic prediction of potential effect on splicing is
commonly used to prioritize selection of variants for splicing
assays in the research and clinical setting. Indeed, 37/68 (54%)
of spliceogenic missense variants had high-moderate predicted
potential to affect splicing using splicing prediction performed
here, which focused on impact on native splice sites, or creation
of de novo or activation of cryptic splice sites (but excluded
prediction of effect on exonic splicing regulators, i.e., ESEs
and ESSs). As might be expected, MMR activity assays were
more useful to support classification of missense substitutions/in-
frame indels as pathogenic, with 59/65 (91%) of variants with
deficient MMR activity being classified as Class 4/5 (likely)
pathogenic (Figure 2 and Supplementary Table S3). Thus, MMR
activity functional assays are more useful in the interpretation
of missense/in-frame indels, particularly now the output of
CIMRA can be used in quantitative multifactorial analysis
(Drost et al., 2018, 2020).

The current MMR activity assays do not detect impact on
all biological effects; indeed, there were four (likely) pathogenic
MLH1 variants with proficient MMR activity and normal splicing
(p.Lys618del, p.Pro640Ser, p.Ala681Thr, and p.Arg687Trp). For
these variants, the probable cause of pathogenicity is a defect
not measured by either the CIMRA assay or the splice assays
reported here, such as that related to cellular localization, protein
instability, or DNA damage-response. Further, current MMR
activity assays are cDNA-based and cannot detect aberrant
splicing; there were seven pathogenic missense variants with
proficient MMR activity, where the nucleotide substitution
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FIGURE 2 | Summary of contribution of splicing assay data to variant classification. The figure legend describes the categorization of the splicing and MMR activity
assay data. Splice site refers to variants in the conserved IVS ± 1/2 dinucleotides of the acceptor or donor splice site, while intronic includes all other intronic
variants. Predicted loss of function variants other than splice site variants were excluded from this summary because they are classified as pathogenic regardless of
splicing assay results (frameshift: n = 25; nonsense: n = 24). There were also two initiation codon variants and two stoploss variants not included in this summary.
Com, complete impact, variant allele causes complete splicing aberration; D, deficient function (MLH1/MSH2: <23% wild-type repair, MSH6/PMS2: <18% wild-type
activity); Inc, incomplete impact, variant allele results in expression of both reference (full-length) and alternatively spliced transcript(s); M, moderate function
(MLH1/MSH2: 23% to <70% wild-type repair, MSH6/PMS2: 18 to <100% wild-type activity); Norm, no splicing aberration detected; P, proficient function
(MLH1/MSH2: ≥70% wild-type repair, MSH6/PMS2: ≥100% wild-type activity); Unk, extent of impact unknown, splicing aberration detected, but unable to
determine if variant impact was complete/incomplete.

caused complete expression of a splicing aberration. Of the
(likely) benign variants, none had deficient MMR activity, and
one had moderate MMR activity.

These observations of “conflicting” mRNA splicing and
protein functional assays suggest that alternative approaches,
which combine assessment of effects at the mRNA and protein
level, are required to simplify interpretation on laboratory
assay data for MMR gene variant classification. The assay
recently developed for BRCA1 (Findlay et al., 2018), saturation
genome editing followed by mRNA expression and cellular
loss of function, has demonstrated the feasibility and utility
of such combined assays for variant interpretation. However,
this specific approach would have to be adapted to account for
the fact that unlike BRCA1, the MMR genes are not essential

(Blomen et al., 2015). In this regard, an assay based on gene
editing of human embryonic stem cells and assessment of both
DNA damage response and microsatellite repair was recently
developed, holding great promise for the study of variant-
induced splicing changes and missense alterations in Lynch
syndrome (Rath et al., 2019).

There were 33 variants that demonstrated incomplete
impact with respect to expression of aberrant transcripts (see
Figure 2 and Supplementary Table S3). Seven of these were
frameshift/nonsense variants for which mRNA products are
expected to undergo NMD, and thus classification of these
variants as pathogenic is unaltered by the mRNA findings.
Another 23 were exonic predicted missense/in-frame alterations
of the translated protein; protein assay data available for 15/23
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FIGURE 3 | Decision tree for the recommended course of action when assessing the functional impact of MMR gene variants, updated from the decision tree
published in Thompson et al. (2014). * As per likelihood ratio or odds for pathogenicity cut-offs reported by Tavtigian et al. (2018) and Brnich et al. (2019).

variants showed that nine had clear impact on function due to
the missense alteration, and another two had moderate function
considered to be borderline deficient. That is, protein assay
results would inform classification in favor of pathogenicity for
9/15 variants irrespective of the equivocal nature of the mRNA
results. Three silent variants (located in the last 3 bp of the exon)
and an intronic variant located in the splice donor motif also
demonstrated incomplete impact on mRNA splicing, which did
not contribute to their classification.

It will be necessary to determine, for variants with incomplete
impact on mRNA splicing, what proportion of alternatively
spliced MMR gene transcript arising from a variant allele
will or will not confer pathogenicity in vivo, where a second
somatic hit may play a role. It has been shown that a BRCA1
spliceogenic variant resulting in 70–80% expression of a non-
functional transcript (de la Hoya et al., 2016) is not risk-
associated. There is some evidence to suggest that the tolerable
level of expression may be similar for MSH2; MSH2 c.1275A > G,
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reported to be associated with 70% expression of aberrant
transcript r.[1229_1276del, 1275a > g] (Morak et al., 2019),
is currently classified as a VUS but with accumulating clinical
evidence trending toward likely benign. While, evidence from
a knock-down study assessing correlation between total mRNA
expression levels and MMR protein relative repair activity in
human fibroblast cell lines (Kansikas et al., 2014) indicates
that ∼25% MLH1 or MSH2 mRNA expression results in
abrogated repair activity. However, it is difficult to interpret the
relevance of these apparently conflicting findings in the context
of tumorigenesis in vivo. We conclude that further research
is necessary to elucidate the relationship between MMR gene
transcript expression level in human cells and disease risk.

Methods that enable quantification of the proportion of
aberrantly spliced transcripts arising from a variant allele, such
as recently developed RNA massively parallel sequencing assays
(Farber-Katz et al., 2018; Karam et al., 2019), will aid in the
interpretation of cases that demonstrate expression of naturally
occurring alternatively spliced transcripts and greatly improve
the contribution of splicing assays to classification of sequence
variants once methods for quantifying transcript expression are
routinely instituted. These assays will further increase the use and
utility of splicing assay data in variant classification by fulfilling
the requirement of quantifying the splicing defect to ensure no
full-length transcript is expressed, as currently documented in
the InSiGHT MMR gene classification rules (Thompson et al.,
2014). This will be particularly useful as supporting clinical data
are harder to obtain as more variants of uncertain significance are
identified through higher throughput clinical gene panel testing.

In summary, based on the analysis of this dataset, we show
that splicing assays are a useful adjunct to the interpretation of
intronic and silent variants. While mRNA analysis can contribute
to the classification of predicted missense/in-frame indel variants,
results have to be considered in parallel with data from MMR
activity assays. Based on these findings, we provide a decision
tree for the recommended course of action when assessing
the functional impact of MMR gene variants (Figure 3). We
conclude that there is need to develop and validate different high
throughput assays that can measure variant effects on cellular
function due to mRNA transcripts and/or protein function—due
to a variety of biochemical effects—to streamline future MMR
gene variant classification.
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