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The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-
stranded nucleic acids, released into the blood plasma/serum by different tissues via
apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from
the hematopoietic system, whereas under various clinical scenarios, the concomitant
tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA,
microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial
DNA/RNA, and act as potential biomarkers in various clinical conditions. These
are associated with different epigenetic modifications, which show disease-related
variations and so finding their role as epigenetic biomarkers in clinical settings. This
field has recently emerged as the latest advance in precision medicine because of
its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation
detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore,
there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic
biomarkers. This review focuses on the novel approaches for exploring ccfNAs as
epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential
as therapeutic targets and disease progression monitors, and reveals the tremendous
potential that epigenetic biomarkers present to improve precision medicine. We explore
the latest techniques for both quantitative and qualitative detection of epigenetic
modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex
and often milieu-specific posing challenges for its understanding. Artificial intelligence
and deep networks are the novel approaches for decoding complex data and providing
insight into the decision-making in precision medicine.

Keywords: autoimmune diseases, cancer diagnosis, precision medicine, epigenetic biomarkers, circulating
nucleic acids in plasma/serum, prenatal and genetic diagnostics, circulating cell free nucleic acids

INTRODUCTION

The diagnostic platform utilizing the detection of biomarkers in various body fluids called “liquid
biopsy” can revolutionize precision medicine. Precision medicine is aimed at attaining better-
personalized care by the development of the latest diagnostic and prognostic methods that
consider individual variability (Kaur et al., 2017). Liquid biopsy is being utilized for non-invasive

Abbreviations: 5hmC, 5-hydroxy methyl cytosine; ccfDNAs, circulating cell-free deoxyribonucleic acids; ccf-fetal-NAs,
circulating cell-free fetal nucleic acids; ccfmiRNAs, circulating cell-free miRNAs; ccfNAs, circulating cell-free nucleic acids;
ccfRNAs, circulating cell-free ribonucleic acids; mtDNA, mitochondrial DNA.
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prognostic and predictive purposes. Efficient and reliable markers
within the body fluids can help in personalized treatment
decisions for monitoring disease and survival. ccfNAs have
emerged as such markers for screening, diagnosis, prognosis,
management, and treatment of various cancers; autoimmune,
neurological, and mitochondrial diseases; prenatal diagnosis;
diagnosis of pregnancy-related complications (Pos et al., 2018);
diabetes; inflammation; rheumatoid arthritis; stroke; and trauma
(Swarup and Rajeswari, 2007). An increased amount of ccfNAs
is observed in these disorders, making liquid biopsies more
sensitive, rapid, accurate, and preferable alternatives for various
invasive diagnostic methods (Pos et al., 2018).

ccfNAs present in blood circulation include cell-free genomic
DNAs (ccfDNAs) and cell-free mtDNA (Kohler et al., 2009;
Thierry et al., 2016) and cell-free RNAs (ccfRNAs) including
protein-coding messenger RNA (mRNA), regulatory non-coding
RNAs like microRNAs (miRNAs), long non-coding RNAs
(lncRNAs), circular RNAs, and RNAs involved in translation
like transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs)
(Pos et al., 2018).

The ccfNAs (DNAs and RNAs) are generally released into the
blood circulation either by apoptosis, necrosis, or active secretion.
In healthy persons, the origin of ccfNAs is mainly attributed to
lymphoid and myeloid tissues (Snyder et al., 2016), while in the
case of various clinical conditions, the associated or the affected
tissues would release the extra amount of ccfNAs into blood
(Swarup and Rajeswari, 2007; Devonshire et al., 2014) in a pattern
specific to the pathophysiological condition (Hunter et al., 2008;
Noferesti et al., 2015).

Various genetic as well as epigenetic biomarkers have
been explored for ccfNA-based liquid biopsy. As genetic
biomarkers are less consistent and provide more variability
across studies, epigenetic markers, which are more generalized
between samples, present as a promising alternative for early
diagnosis and monitoring of the diseases. These epigenetic
marks are tissue specific and reflect the pattern of disease
progression (Zeng et al., 2019). Furthermore, epigenetic
biomarkers are dynamic with most techniques required for
analysis of these biomarkers that are already available in
clinical laboratories.

The use of epigenetic marks has revolutionized the field
of non-invasive molecular diagnosis replacing traditional
screening and treatment methods. These assays have great
potential in future precise patient care. The epigenetic
marks for ccfNAs reflect the pattern specific for the tissue
contributing to these ccfNAs. Therefore, the use of epigenetic
markers can help in the diagnosis of various diseases even
before the onset of actual symptoms and hence help in
better management of the disease. Precision medicine has
improved health care by the identification of different
stages/subsets of diseases, precise diagnosis, and treatment.
Furthermore, the development of advanced analytical software
techniques like machine learning and artificial intelligence
can enhance precision medicine (Ahlquist, 2018; Beltran-
Garcia et al., 2019). These are used in combination with
next-generation sequencing to identify novel ccfNA-based
epigenetic markers.

EPIGENETIC BIOMARKERS IN ccfNAs

Reliable markers are required to guide personalized treatment
decisions for monitoring disease progression and survival.
The presence of epigenetic marks on ccfNAs specific to
a particular clinical condition is widely being explored to
advance personalized medicine. A perfect epigenetic marker
for precision medicine should be able to detect the disease
with high sensitivity, predict the risk of disease development
and its progression, and monitor the therapeutic response
of the patient (Beltran-Garcia et al., 2019). ccfDNAs are
associated with various epigenetic marks (Schwarzenbach et al.,
2011) like DNA methylation, hydroxymethylcytosine (5hmC),
and posttranslational modifications of histones. In addition,
nucleosome positioning and occupancy on ccfDNAs have
exhibited high sensitivity and specificity in liquid biopsy-based
methods for disease detection and classification.

The 5-methylcytosine (5mC) modification at CpG
dinucleotides is the most abundant form of DNA methylation.
It plays an important role in the regulation of gene expression
and is widely used as an epigenetic biomarker for ccfDNA-based
assays. DNA methylation has replaced many genetic mutation-
or protein-based markers. These 5mC biomarkers are also
valuable in identifying tissue-specific methylation to estimate
tumor burden and tissue of origin in ccfDNAs. In addition
to 5mC, 5-hydroxymethylcytosine (5hmC) is also used as an
epigenetic mark on ccfDNAs (Zeng et al., 2019). 5hmC is created
by the oxidation of 5mC by 10–11 translocation (Tet) proteins.
Although 5hmC is far less abundant compared to 5mC, it is
more distinctly distributed among different transcriptionally
active regions, which emphasizes its potential as a diagnostic
marker. Genome-wide analysis of 5hmC pattern can provide
more information about the potential of this epigenetic marker
for ccfDNAs (Zeng et al., 2019).

Nucleosome positioning has emerged as a recent biomarker
to distinguish the tissue of origin of ccfDNA based on
derived nucleosome maps. Snyder et al., 2016 performed deep
sequencing on ccfDNAs and observed a distinct pattern of
nucleosome positioning between healthy persons and cancer
patients correlating with the tissues of origin (Snyder et al.,
2016). This emphasizes the use of nucleosome maps, which
consist of occupancy of transcription factor and nucleosome
as the epigenetic marks to distinguish normal versus cancer
ccfDNAs. Hence, nucleosome positioning can also be used to
identify various cancers that generally require invasive biopsies
for definitive diagnosis. Moreover, genome-wide nucleosome
positioning of ccfDNAs is utilized to infer pathological states
of multiple disease types. A comprehensive public database
called cell-free epigenome atlas (CFEA) provides the epigenome
profile of ccfDNAs from various human diseases and can
help in a better understanding of collected data (Yu et al.,
2020). ccfDNA are generally associated with nucleosomes
and histone proteins. Histone proteins are posttranslationally
modified at amino acid residues located on their N- and
C-terminal tails. These modifications act as epigenetic marks
that can specifically distinguish disease-related ccfDNAs in blood
samples. Various types of histone modifications are associated

Frontiers in Genetics | www.frontiersin.org 2 August 2020 | Volume 11 | Article 844

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00844 August 7, 2020 Time: 19:2 # 3

Rahat et al. ccfNAs as Epigenetic Biomarkers

with the development and pathogenesis of human diseases
(Zhao and Shilatifard, 2019).

In addition to DNA markers, RNA markers like mRNAs,
miRNAs, lncRNAs, and circRNAs are also getting attention in the
focus of clinical research (Pos et al., 2018).

Most of the currently available diagnostic tests based on
ccfNAs use either DNA methylation markers or the differential
expression of miRNAs. These biomarkers are relatively
easily detected and estimated using accessible techniques
like methyLight, methyl-specific PCR, methylation-sensitive
high-resolution melting, and pyrosequencing (García-Giménez
et al., 2017). DNA methylation specific to fetal and tumor DNA
has been reported in pregnant women and cancer patients,
respectively (Wong et al., 1999; Poon et al., 2002). The pattern of
the methylation in these ccfDNAs has been traced back to their
tissue of origin (Lun et al., 2013; Sun et al., 2017). Differentially
methylated markers have been reported in ccfDNAs like INS
promoter 1 in diabetes and REG1A and CUX2 genes in pancreatic
cancer (Lehmann-Werman et al., 2016). Promoter methylation
of SERPINB5, RASSF1A, and STAT5A act as epigenetic fetal
markers in maternal blood (Chim et al., 2005; Chan et al., 2006;
Rahat et al., 2016a).

DIAGNOSTIC APPROACH FOR
EPIGENETIC MODIFICATIONS IN ccfNA

The various diagnostic approaches to study the epigenetic
modifications in the nucleic acids include methylated CpG
island recovery assay (MIRA) and MethylCap that rely on
methyl-CpG-binding domains (MBD) to capture methylated
DNA after DNA fractionation either by restriction digestion or
sonication (Mitchell et al., 2011). These methods can also be
combined with microarray or NGS technologies (MethylCap-
seq) to identify biomarkers for cancer diagnosis and DNA
methylation maps of cancer genomes (Simmer et al., 2012).
Reduced representation bisulfite sequencing (RRBS) (Meissner
et al., 2005) is an efficient method for absolute quantification of
the methylation status of more than one million CpG sites at
single base-pair resolution, covering regions of moderate to high
CpG density (Lee et al., 2014). New techniques such as whole-
genome bisulfite sequencing (WGBS) allows for an unbiased
assessment of DNA methylation at single-base resolution with
full coverage of more than 28 million CpG sites in the human
genome, and by using this technique in the clinical settings,
relevant biomarkers were identified in colorectal and breast
cancers and certain types of leukemia (Berman et al., 2011).

Some of the techniques are used in clinical settings, like
parallel shotgun sequencing and targeted sequencing (Norwitz
and Levy, 2013) for non-invasive prenatal testing, WGS for fetal
gene detection (Lo et al., 2010), and cancer personalized profiling
by deep sequencing (CAPP-seq) to quantify circulating tumor
DNA (Newman et al., 2014).

Despite the advancement of the techniques to study epigenetic
modifications, the use of epigenetic biomarkers present on
ccfNAs is limited due to their lower levels in the blood circulation.
In the case of cancer, WGS is applied to only 5–10% of cell-free

tumor DNA depending on the copy number. Mostly targeted
methylation sequencing is carried out in such cases, which has
a greater potential for the detection of lower levels of ccfNA in
patients with early-stage disease.

Chromatin-based ChIP-seq experiments are revolutionizing
our understanding of the complexes associated with chromatin
dynamics. Ongoing advances such as nano-ChIP-seq allow ChIP-
seq to be analyzed from far fewer cells necessary for embryology
and development studies (Nakato and Shirahige, 2017). The
emergence of ChIP-exo that digests the ends of DNA fragments
not bound to protein is quite promising (Furey, 2012). However,
the application of these techniques to identify biomarkers is
limited due to the expertise and cost associated.

ChIP-seq also provides critical information on other
chromatin modifiers, such as histone marks and the enzymes
that modify these marks in diseases such as cancer. ChIP-
seq has identified the role of aberrant H3K79 methylation
by the methyltransferase DOT1L in mixed lineage leukemia
(MLL)-rearranged leukemias (Bernt et al., 2011). In addition
to ChiP-seq, different techniques like ChIP-PCR, ELISA-
based assays, or mass spectrometry are used to detect and
quantify histone modifications on ccfNAs in serum or plasma
(Adli and Bernstein, 2011).

ccfNAs AS EPIGENETIC BIOMARKERS
IN VARIOUS DISEASES

The detection and quantification of ccfNAs, viz. RNA, DNA,
fetal DNA, fetal RNA, mtDNA, and mitochondrial RNA and
miRNA levels in body fluids are of clinical significance. These
ccfNAs have the potential to act as biomarkers for diagnosis
as well as prognosis of various diseases (Fleischhacker and
Schmidt, 2007; Breitbach et al., 2012), such as different cancers,
obstetric, autoimmune, neurological, and mitochondrial diseases,
as well as prenatal diagnosis, etc. (Kandel, 2012; Shaw et al.,
2012). Although the most studied area of epigenetics is DNA
methylation, yet in the clinical setting, there are only a few
methylation markers. Various blood- or tissue-based cohort
well-powered studies have recently shown that changes in the
DNA methylation are not only observed frequently in cancers
but also in other broad range of complex diseases including
neurodegenerative, metabolic, autoimmune, and inflammatory
diseases although at a lower frequency (Tost, 2016).

DNA methylation analysis of ccfDNA might provide a
valuable option in some cases when the blood–brain barrier
is temporarily disrupted. It was recently demonstrated by the
detection of unmethylated fragments of MBP3 and WM1, specific
for oligodendrocytes in about 75% of patients with relapsing
multiple sclerosis (Zachariah et al., 2009). cfRNAs are also present
in the patient’s serum/plasma in addition to ccfDNAs. Higher
levels of circulatory RNases were observed in cancers and various
diseases like cerebral attack, preeclampsia, etc., and surprisingly,
RNA found in the circulation was found to be stable (Umu
et al., 2018). Changes in the expression of intracellular miRNA
have been causally linked with many diseases that include cancer
(Esquela-Kerscher and Slack, 2006), cardiovascular diseases
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(Navickas et al., 2016), neurodegenerative diseases (Gupta et al.,
2017), etc. Such changes in expression of miRNA are either
similar or distinct in the serum of a particular set of patients,
thus enabling miRNA detection in serum as biomarkers of
human diseases (Backes et al., 2016). Therefore, ccfNAs play
a prominent role in the pathogenesis and diagnosis of various
diseases. Further research is required in this field to ensure the
widespread application of these markers in clinical settings.

ccfNAs IN CANCER

Every year, about 14 million new cases of cancer are reported
(excluding skin cancer other than melanoma) that cause about
8.8 million deaths, accounting for 15.7% of deaths in a year
(Ferlay et al., 2019). An estimated number of more than 1.8
million new cancer cases are likely to be diagnosed, and 606,520
cancer deaths are expected in the United States in 2020, which
deciphers almost 1,660 deaths per day (Siegel et al., 2020). The
six major hallmarks of cancer (Hanahan and Weinberg, 2000)
are uncontrolled cell growth and division, programmed cell death
avoidance, invasion, metastasis, and angiogenesis. The diagnosis
of cancer usually occurs following the appearance of signs or
symptoms or through screening and investigations like X-rays,
blood tests, endoscopy, CT scans, etc. Biopsy tissue examination
indicates the type of proliferating cells, genetic abnormalities,
and histological grade, and other characteristics. Therefore,
advanced measures such as estimating prognosis, risk assessment
for early diagnosis, biomarkers, and observing the response to
therapy can lead to successful treatment, positive outcomes, and
improvement of the quality of life for patients. The tissue biopsy-
matched ccfDNA is considered as surrogate marker due to its
release from the tumor sites (De Mattos-Arruda et al., 2013).
It is proven to be a non-invasive, rapid, and sensitive marker
for diagnosis, prognosis, and therapy response monitoring in
different cancers (Volik et al., 2016). In addition, the integrity
of ccfDNA (extent of ccfDNA fragmentation) may be utilized
as a promising biomarker for diagnosis and prognosis of cancer
(Madhavan et al., 2014).

ccfNAs as Diagnostic and Prognostic
Biomarkers for Cancer
Serum or plasma ccfNA serves as a “liquid biopsy,” which is useful
for various applications in diagnostics and avoids the necessity
for biopsy of tumor tissue. The levels of ccfNA in blood and
lymphatic circulation are affected by degradation, clearance, and
various other physiological events. Liver and kidney clear nucleic
acids from the blood, and they have a half-life of different time
intervals in the circulation that varies from 15 min to several
hours (Fleischhacker and Schmidt, 2007). miRNAs appear to be
extremely stable, but their rate of clearance from the blood is not
well studied in cancer patients thus owing to the uniqueness of
this research area.

ccfDNAs in Cancer
ccfDNAs consists of both genomic DNA (gDNA) as well as
mtDNA. There is a production of longer uneven fragments of

DNA by necrosis in cancer patients and shorter DNA fragments
from apoptosis. Hence, increased levels of longer DNA fragments
in the bloodstream have been targeted as a potential marker for
the presence of malignant tumor DNA (Arko-Boham et al., 2019).
Tumor cells are the origin of ccfDNA in the blood of cancer
patients (Stroun et al., 1989). Aberrations specific to tumors like
oncogene and tumor suppressor gene mutations (Wang et al.,
2004), methylation of DNA (Fujiwara et al., 2005), and instability
of microsatellite DNA (Shaw et al., 2000) were recognized in
ccfDNA. Tumorigenesis and its progression are monitored by
the change in various epigenetic modifications. Patients with
different types of malignancies have methylated DNA in their
serum or plasma. One of the most important methods for
analyzing malignancy is by detecting the presence of methylated
ccfDNA in cancer patients.

For early diagnosis of colorectal cancer (CRC), analysis
of promoter hypermethylation in blood and fecal DNA has
the potential to be used as a non-invasive test, and efforts
are made for clinical application of these molecular markers.
Various studies have observed MGMT, RASSF2A, Wif-1, NGFR,
and SEPT9 as aberrantly methylated genes used as diagnostic
biomarkers in patients with CRC (Lee et al., 2009; Powrozek
et al., 2014). Several potential methylation biomarkers have been
found that differentiate plasma from breast cancer patients and
that from control subjects (Hoque et al., 2006). Remarkably,
two independent studies recognized CST6 as being methylated
differentially between breast cancer and control plasma samples
(Radpour et al., 2011; Chimonidou et al., 2013). For lung
cancer, an early focus was to search methylated CDKN2A as a
plasma diagnostic biomarker. Studies observed hypermethylation
of CDKN2A in the plasma of patients with lung cancer as
compared to cancer-free controls (Zhang et al., 2011). SHOX2
was identified as a potential biomarker in a retrospective study
done by researchers from the Theracode, a diagnostic firm
(Kneip et al., 2011). A recent study, by a group, as part of
the Australian Pancreatic Cancer Genome Initiative (APGI),
has observed elevated levels of aberrant methylation in the
important cell signaling pathways, thus suggesting its possibility
as a disease biomarker. They worked on a group of six
candidate genes, NPTX2, SARP2, UCHL1, ppENK, CDKN2A,
and RASSF1A, and observed differential methylation in the
promoters of all the genes in pancreatic cancer and healthy
controls except in CDKN2A promoter, which was methylated
differentially between pancreatic cancer patients and those
having chronic pancreatitis (Park et al., 2012). Epigenetic events
in the progression of cancer include the promoter region
hypermethylation of the genes, pi-class GSTP1, and APC,
which are the most common somatic genome abnormalities in
colorectal and prostate cancer (Ellinger et al., 2008). RASSF1A,
RARB, SEPT9, ESR1, and CDKN2A are the important methylated
genes that have shown utility in prognosis using ccfDNA
assays in many patients. Methylation of histones is an active
process with vital roles in differentiation and development.
Tumorigenesis also occurs due to aberrant levels of histone
methylation. The promoters associated with H3K4 are primarily
trimethylated by SET1A and SET1B. SET1A plays a vital
role in oncogenic function in breast cancer metastasis, lung
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cancer, and colorectal cancer (Zhao and Shilatifard, 2019).
Table 1 presents the frequently hypermethylated genes in
various cancer types.

CcfmiRNAs in Cancer
In various cancers, miRNA expression dysregulation has been
observed that suggests its role in many processes necessary
for the progression of cancer like proliferation, cell death,
metastasis, and resistance to treatment (Iorio and Croce,
2012). During the development of the liver, miRNA expression
changes dynamically. miR-500 is one such oncofetal miRNA
that is important for the diagnosis of hepatocellular carcinoma
(Yamamoto et al., 2009). Lately, in non-small cell lung cancer
(NSCLC), miR-1246 and miR-1290 were recognized as tumor-
initiating and cell-specific miRNAs (Zhang et al., 2016). miR-
1290 was found to be a significant prognostic factor for OSCC
patients based on Cox regression analysis. In addition, miR-
1290 could serve as a valuable biomarker in OSCC patients
to predict the clinical response to chemoradiotherapy (Lin
et al., 2018). A study by Alhasan et al., 2016 showed a serum
signature of 5-miRNAs (miR-135a, miR-106a, miR-200c, miR-
605, and miR-433) predicted a very high-risk prostate cancer
(Alhasan et al., 2016). Expression levels of miR-21, miR-23b,
miR-200c, and miR-200b were upregulated in metastatic breast
cancer when compared to early breast cancer patients, therefore
supporting the notion that ccfmiRNAs presents a tool with the
crucial diagnostic and prognostic implication in breast cancer
(Papadaki et al., 2019). Furthermore, a study discovered that
increased miR-122 expression was significantly associated with
a reduction in the overall survival as well as progression-free
survival in breast cancer patients (Saleh et al., 2019). Elevation
in the levels of serum miR-29, miR-122, miR-155, and miR-
192 was observed in cholangiocarcinoma. Although miRNAs
levels before surgery were inappropriate as survival prognostic
marker; however, postsurgery decrease in the serum miR-122
levels was significantly linked with better patient prognosis
(Loosen et al., 2019).

ccfNAs in Treatment and Cancer
Progression
ccfDNA analysis is a non-invasive process that allows day to day
patient follow-up and monitoring of response toward treatment
(Gorges et al., 2012). Both genetic and epigenetic changes are
exhibited by ccfDNA (Stroun et al., 2001). The study of these
changes might provide valuable information to mold the choice
of treatment by clinicians given the limitations of the novel
targeted therapies.

Abnormal hypermethylation at CpG islands occurs rarely in
non-malignant and normally differentiated cells, so the release
of DNA from tumor cells can be found with a prominent
extent of sensitivity, even when the excess of DNA is released
from normal cells, and this characterizes its potential clinical
application (Wong et al., 2001). In this context, promoter region
hypermethylation of INK4A occurs very early in the progression
of hepatocellular carcinoma (HCC), and hence, it serves as
a valuable biomarker for non-invasive diagnosis as well as
prediction of response to therapy (Huang et al., 2014).

In the MYCN-amplified neuroblastoma progression, MYCN
is detected in circulating DNA. This phenomenon was found to
be associated strongly with the quick progression of tumors and
poor outcomes (Combaret et al., 2002). Loss of heterozygosity
(LOH) and abnormal methylation at the promoter region of
MYCN were detected using ccfDNA, which showed elevated
levels in patients of high-grade glioma. Detection of promoter
region hypermethylation of MYOD1 in serum may serve as
a potential prognostic marker for discriminating patients of
cervical cancer at high risk for lymph node metastasis or relapse
(Widschwendter et al., 2004).

Moreover, the investigation of circulating miRNAs presents
great potential in revealing new insights into their role in
therapy and diagnosis. miRNA serum signatures (miR-345 -5p,
miR-330 -3p, and miR-9 -3p) were found to be significantly
upregulated in patients of prostate cancer (PCa) when compared
to healthy individuals. The role of miR-345-5p to act as an
oncomir through CDKN1A targeting makes it a potential target
for PCa therapeutically (Tinay et al., 2018).

Immunotherapy is a rapidly developing therapy in
many cancers because of various advantages over standard
chemotherapy. Identification of significant miRNAs that
provides a foresight of response in cancer immunotherapy would
enable better patient selection and enhancement of therapeutic
efficacy and provide a novel target (Antonia et al., 2004; Chen
et al., 2008). miRNA-21 is a cell-free oncogenic miRNA, which
has been known as a potential regulator of STAT3, and thus,
it could be detected in various tumors (Ji et al., 2009). Thus,
circulating miRNA-21 can act as a biomarker for response in
cancer immunotherapy (Wu et al., 2012).

ccfDNAs in glioma were associated with differential
methylation levels of MGMT, cyclin-dependent kinase inhibitor
2A, multiple tumor suppressor 1 p16/(INK4a), p73, and retinoic
acid receptor beta (RARb) (Balana et al., 2003; Weaver et al.,
2006; Wakabayashi et al., 2009). All these studies propose a
crucial role of epigenetic marks in ccfNAs in cancer-targeted
therapy as well as pathogenesis.

ccfNAs in Cancer Precision Medicine
Precision oncology is an approach that includes the molecular
profiling of tumors to identify effective therapeutic strategies.
A clinical research program initiated by The Englander Institute
for Precision Medicine (EIPM) in 2013 uses whole-exome
sequencing of metastatic and primary tumors to identify
individualized therapeutic options and to help guide clinical
decision making, by prospective follow-up of patients (Rennert
et al., 2016). Oncology is the obvious choice for heightening the
impact of precision medicine. Several targeted therapies have
been developed that have shown profound benefits. Recently,
novel immunological approaches produced insightful responses
(Snyder et al., 2014).

In addition, the identification of epigenetic biomarkers leads
to more precise disease prognosis, especially in therapeutic areas
that are linked with a high degree of variability concerning
survival (Van Neste et al., 2017). Research carried out in several
cancers like glioblastoma reveals that levels of 5hmC are critical
in the regulation of genes having a crucial role in disease and
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TABLE 1 | Frequently hypermethylated genes in various cancer types.

Gene Cancer Type References

ITIH5, DKK3, BRCA1, ER-beta, APC, GSTP1, ESR-b Breast cancer Kloten et al., 2013; Cheuk et al., 2017; Vu et al., 2018

RASSF1A Prostate cancer Liu et al., 2002

P16 Esophageal, liver, and pancreas House et al., 2003

ARF, BAX, BCL2, CDH1, DAPK, EDNRB, EOMES, FADD,
PCDH17, POU4F2

Bladder cancer Abern et al., 2014; Wang et al., 2016

SEPT9, HLTF, NELL1, CEA, TAC1 Colorectal cancer Tham et al., 2014; Semaan et al., 2016

VHL Kidney tumors Ma et al., 2017

RB Retinoblastoma Ohtani-Fujita et al., 1997

TMEFF2, PRDM1,3OST2, MGMT Lung cancer Palmisano et al., 2000; Lee et al., 2012; Su et al., 2016

APC, GSTP1 Renal cell carcinoma Hauser et al., 2013

ST6GALNAC3, ZNF660 Prostate Haldrup et al., 2018

BRCA1, RASSF1A, RASSF2A Ovarian cancer Giannopoulou et al., 2017; Lonning et al., 2018

hTERT Leptomeningeal carcinomatosis in CSF Bougel et al., 2013

p16INK4a, TIMP-3, THBS1 Glioma Liu et al., 2010

show that global reduction in 5hmC over the genome leads to
poor clinical outcomes in these patients (Johnson et al., 2016).

Epigenetic changes introduced common genetic mutations in
an in vitro model of lung cancer (Vaz et al., 2017). Epigenetic-
based diagnostics can detect early disease signals and thus
can provide possibilities for clinical intervention before the
progression of symptoms.

The detection of ccfNAs could be exploited by targeted
therapies approved lately and eventually benefit the patients.
Scrutinizing cancers by analyzing ccfNA dynamics in blood or
serum is an innovative and emerging research area. As far as the
existing research advancement and the growth of the medical
industry are concerned, we consider that ccfNA assays may be
employed for real-time personalized treatments in the future for
cancer patients, based on their ccfNAs or ccfDNA methylation
levels, for diagnosis and prognosis. Nevertheless, there is much
scope for improvement before the application of this technology
in clinical settings.

USE OF ccf-FETAL-NAs IN PRENATAL
DIAGNOSIS AND PREGNANCY-RELATED
DISORDERS

During pregnancy, the apoptosis/necrosis of trophoblasts
arising from syncytiotrophoblast is the prime source of the
release of ccf-fetal-NAs into the maternal blood (Litton
et al., 2009). The presence of ccf-fetal-NAs has paved
the way for non-invasive prenatal diagnosis and early
prediction of pregnancy-related complications (Lo et al.,
1997, 1998). The use of ccf-fetal-NAs has gradually replaced
invasive techniques like amniocentesis or chorionic villus
sampling (Serr et al., 2017). ccf-fetal-DNA comprises 10–
15% of the maternal ccfDNA (Wang et al., 2013) and
can be efficiently detected at the fifth week of gestation
(Guibert et al., 2003). The amount of ccf-fetal-DNA in
maternal blood increases progressively throughout pregnancy
(Birch et al., 2005).

ccfNAs in Prenatal Diagnosis
Prenatal diagnosis is an established practice for the management
of pregnancy as well as avoidance of prenatal/neonatal deaths.
The leading causes for such deaths are genetic disorder,
birth defects, congenital malformations, and chromosomal
abnormalities like trisomy 21 (Down’s syndrome), 18 (Edward’s
syndrome), and 13 (Patau syndrome), and sex chromosome
aneuploidies like monosomy X (Turner syndrome) (Carlson and
Vora, 2017). Therefore, successful management of pregnancy
demands efficient and timely prenatal diagnosis to determine the
outcome of pregnancy. Timely detection of neural tube defects
is already providing early prenatal treatment resulting in better
neonatal outcomes (Adzick et al., 2011).

ccf-fetal-DNA is clinically used for the detection of fetal sex
and multiple anomalies based on paternally inherited mutations
(Bianchi, 1998). Recent studies have discovered many fetal
epigenetic biomarkers for ccf-fetal-NA-based liquid biopsies in
clinical samples that have demonstrated high clinical potential
in disease diagnosis, prognosis, and pregnancy management.
These epigenetic modifications are specific to the fetus and help
to distinguish fetal nucleic acids from maternal nucleic acids
(Jones and Takai, 2001). Clinical testing of recently developed
fetal epigenetic markers can help in the proper management
of personalized care. The first reported use of fetal-derived
epigenetic marker in maternal body fluids had come from
Poon et al. (2002) who utilized an imprinted H19/Igf2 locus
based on parent-of-origin-specific methylation, and the maternal
and the paternal copies of the gene were distinguished in
maternal blood (Poon et al., 2002). Based on the placental origin
of ccf-fetal-DNA having placenta-specific DNA methylation
pattern, the genomic regions that show differential methylation
between the placenta and the maternal blood cells can act
as a marker for fetal DNA in maternal blood. The promoter
region of maspin (SERPINB5) is the first such reported universal
fetal DNA marker, with detectable hypomethylation, in the
background of hypermethylated maternal sequences. The fetal
origin of these hypomethylated maspin has been confirmed
by the clearance of these sequences within 24 h of delivery
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(Chim et al., 2005). The clinical use of hypomethylated maspin
is limited by the required bisulfite treatment of ccf-fetal-
DNA, as this treatment can degrade around 95% of the DNA
(Grunau et al., 2001), thus decreasing the amount of already
low levels of fetal DNA in maternal blood. Such limitation
was overcome by the detection of fetal-derived hypermethylated
RASSF1A in maternal blood for prenatal diagnosis (Chan et al.,
2006; Hyland et al., 2009; Tounta et al., 2011b). The maternal
hypomethylated RASSF1A ccfDNA can be removed by treatment
with methylation-sensitive restriction enzyme digestion, leaving
behind fetal hypermethylated RASSF1A ccf-fetal-DNA (Chan
et al., 2006). Various other fetal-derived differentially methylated
sequences have also shown a similar potential to act as fetal DNA
epigenetic markers in maternal blood (Table 2).

ccf-fetal-DNA methylation markers have the potential of
being used as both quantitative as well as qualitative markers
in prenatal diagnosis. As qualitative markers, these are used to
estimate the false positives during the determination of fetal
gender, Rh status, and paternally inherited polymorphisms (Chan
et al., 2006), while as quantitative markers, these can estimate the
levels of ccf-fetal-DNA in maternal plasma. Such an application
of ccf-fetal-DNA finds its use in the detection of chromosomal
aneuploidies (Lun et al., 2008). Based on the location of the
maspin gene on chromosome 18, hypomethylated fetal maspin
has been used to calculate the allelic ratio to diagnose trisomy
18 with 100% sensitivity (Tong et al., 2006). Fetal trisomy 21
was detected by analyzing chromosomal dosage via targeting
of fetal hypermethylated HLCS sequences in the combination
of microfluidics digital PCR. RASSF1A on chromosome 3
and ZFY on the Y chromosome were used as references
(Tong et al., 2010). Fragmentation pattern of ccf-fetal-DNA
in maternal plasma has been successfully used for enrichment
method in size separation manner on agarose gel electrophoresis
(Ramezanzadeh et al., 2017).

Various next-generation sequencing and high-throughput
techniques have catalyzed the identification of newer and novel
fetal epigenetic markers further advancing non-invasive prenatal
diagnosis. The microarray-based approach has identified many
fetal epigenetic markers with differential methylation between
chorionic villus samples and maternal blood, on chromosomes
21, 13, and 18 for aneuploidy detection (Chu et al., 2009).
Combining high-resolution tiling oligonucleotide array with
methylated DNA immunoprecipitation (MeDiP) has helped in
a genome-wide screen for detecting the differential methylated
sites between placental tissue and maternal blood cells. It has
detected various new fetal epigenetic markers on chromosomes
21, 13, and 18 (Papageorgiou et al., 2009). Whole-genome
bisulfite sequencing has further identified many clinically useful
novel fetal-specific methylated CpG sites (Lun et al., 2013). Latest
techniques like high-resolution methylation-specific bead chip
microarray (Hatt et al., 2015) and GeneChip Human Promoter
1.0R Array (Wang et al., 2017) identified many differentially
methylated CpG sites between maternal blood cells and chorionic
villi, which can help in better and efficient prenatal diagnosis and
the expansion of its application in other disorders.

More recently, non-coding RNAs like miRNAs, lncRNAs, and
circRNAs are in the focus of the clinical research for prenatal

diagnosis. Several placenta-specific miRNAs are differentially
expressed within the placenta and are also secreted during
pregnancy from the trophoblast layer of the placenta (Table 2).
These are located in clusters on chromosomes 14 and 19 (C14MC,
C19MC, and miR-371-3) (Nagy, 2019). Highly stable placental
miRNAs were detected in maternal plasma. These can help in
tracking gene regulation in the placenta (Chim et al., 2008). ccf-
fetal miRNAs in the maternal blood act as expression-based novel
epigenetic markers in prenatal diagnosis. miRNA microarray-
based screen has detected many differentially expressed ccf-fetal
miRNAs in maternal serum to diagnose congenital heart defects,
which can be especially helpful in personalized care (Gu et al.,
2019). Circular RNA and lncRNA are used in prenatal diagnosis
for congenital heart diseases (Nagy, 2019). Early diagnosis of
congenital heart diseases is beneficial to reduce morbidity and
mortality. Sequencing by Oligonucleotide Ligation and Detection
(SOLiD) has been used to identify congenital heart disease-
related miRNAs in maternal blood (Zhu et al., 2013; Kehler et al.,
2015). Gu et al. (2016) has reported many lncRNAs related to
congenital heart diseases. The clinical use of these lncRNAs is
extensively studied (Gu et al., 2016).

The use of artificial intelligence platforms and machine
learning in combination to analyze genome-wide DNA
methylation data has helped to identify epigenomic predictors
for cerebral palsy in newborns with better sensitivity and
specificity. These epigenetic predictors provided more
mechanistic information about the pathogenesis of cerebral
palsy (Bahado-Singh et al., 2019).

ccfNAs in Pregnancy-Related Disorders
Certain pregnancy-related complications are associated with
poor placental growth and development, which is usually also
accompanied by aggravated trophoblastic apoptosis, resulting in
the release of increased amounts of ccf-fetal-NAs into maternal
blood. ccf-fetal-NAs are especially important for precision
medicine being useful for clinical diagnosis and management
of these complications, as these precede the actual clinical
symptoms of the disease (Sifakis et al., 2015). The quantification
of ccf-fetal-DNA levels in maternal blood might serve as an
indicator of some developing abnormality; however, the absolute
concentration of ccf-fetal-DNA varies with maternal weight
and ethnicity and fluctuates throughout pregnancy (Tounta
et al., 2011a), which warrants the need for a disease-specific
qualitative marker. Aberrations in the levels of epigenetic marks
present in these fetal DNA fragments serve as a valuable
alternative for the diagnosis and management of pregnancy-
related complications. The ccf-fetal-DNA present in maternal
blood has been explored to predict such placental abnormality-
linked pregnancies, like intrauterine growth restriction (IUGR);
preeclampsia; hemolysis, elevated liver enzyme levels, and low
platelet levels (HELLP) syndrome; preterm labor; hyperemesis
gravidarum (severe morning sickness); placenta accrete; and
placenta inccreta (Romao et al., 1992).

IUGR, defined by less than fifth percentile fetal weight, may
or may not be associated with preeclampsia. Early detection of
preeclampsia is highly beneficial for the proper management
of preeclampsia, which is highly important for both the
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TABLE 2 | Clinical application of ccf-fetal nucleic acids in prenatal diagnosis and pregnancy-related diseases.

Clinical application Gene Detection method References

Fetal DNA marker SERPINB5 Hypomethylated ccf-fetal DNA Chim et al., 2005

RASSF1A; APC and PRKCDBP; MEST and SNRPN Hypermethylated ccf-fetal DNA Chan et al., 2006; Rahat et al.,
2016b; Rahat et al., 2017a

Fetal Rh status RASSF1A Hypermethylated ccf-fetal DNA Hyland et al., 2009;
Tounta et al., 2011b

Trisomy 21 HLCS Fetal DNA allelic ratio Tong et al., 2010

Trisomy 18 SERPINB5 Tong et al., 2006

Congenital heart diseases miR-19b, miR-22, miR-29c, and miR-375, miR-99a ↑ level of fetal miRNAs Zhu et al., 2013;
Kehler et al., 2015

ENST00000436681, ENST00000422826, AA584040,
AA706223, and BX478947

De-regulated lncRNAs Gu et al., 2016

Preeclampsia SERPINB5 ↑ level of hypomethylated ccf-fetal DNA. Chim et al., 2005

RASSF1A ↑ level of hypermethylated ccf-fetal DNA Tsui et al., 2007

c-myc Hypermethylated ccf-fetal DNA Rahat et al., 2014

VEGF Hypermethylated ccf-fetal DNA Rahat et al., 2017b

Corticotrophin-releasing hormone ↑ level of fetal mRNA Hahn et al., 2011

miR-1233, miR-520, miR-210, miR-155 ↑ level of fetal miRNAs Ura et al., 2014; Nagy, 2019

miR-144 ↓ level of fetal miRNA Ura et al., 2014

miR-24, miR-26a, miR-103, miR-130b, miR-181a,
miR-342-3p, and miR-574-5p

↑ level of fetal miRNAs Wu et al., 2012;
Barchitta et al., 2017

miR-26a and miR-342-3p ↑ level of fetal miRNAs Choi et al., 2011

IUGR miR-518b and miR-519a ↑ level of fetal miRNAs Wang et al., 2014

– ↑ level of ccf-fetal DNA Romao et al., 1992;
Sifakis et al., 2015

Preterm birth miR-143 and miR-145 ↑ level of fetal miRNAs Elovitz et al., 2014

miR-200a, miR-4695-5P, miR-665, and miR88 Altered structure of fetal miRNAs Elovitz et al., 2015

Hyperemesis gravidarum – ↑ level of ccf-fetal DNA Romao et al., 1992

Placenta accrete/inccreta – ↑ levels of ccf-fetal DNA Romao et al., 1992

Gestational diabetes mellitus miR-518d, miR-508-3p, miR-27a, miR-9, miR-137,
miR-92a, miR-33a, miR-30d, miR-362-5p, and
miR-502-5p

↑ ↓ level of fetal miRNAs Grissa et al., 2010;
Barchitta et al., 2017

Low birth weight infants mir-517a ↑ level of fetal miRNAs Song et al., 2013

– ↑ level of ccf-fetal DNA Sifakis et al., 2015

IUGR, intrauterine growth restriction.

developing fetus and the mother (Bauer et al., 2006). The
development of preeclampsia is also depicted by the increased
level of unmethylated fetal SERPINB5 (Chim et al., 2005) in
maternal blood. Similarly, hypermethylated fetal RASSF1A (Tsui
et al., 2007) sequences are also elevated in preeclamptic blood.
Hypermethylated c-myc and VEGF observed specifically in ccf-
fetal-DNA in preeclampsia patients are the epigenetic markers,
which can diagnose preeclampsia without the requirement of
quantitative estimation of ccf-fetal-DNA levels. These sequences
can be used both for the diagnosis as well as prognosis of
preeclampsia (Rahat et al., 2014, 2017b). Such ccf-fetal-DNA-
based epigenetic markers can be beneficial for early prediction
and the personalized management of the disease. Fetal DNA
epigenetic markers are likely to show potential as diagnostic
markers in other complicated pregnancies accompanied by
quantitative aberrations of ccf-fetal-DNA (Tsui et al., 2010).

Several fetal-derived mRNAs and miRNAs also as serve as
diagnostic and prognostic markers for preeclampsia, preterm
births, IUGR, spontaneous abortions, and low birth weight

infants. A list of clinical applications of ccf-fetal nucleic acids in
prenatal diagnosis and pregnancy-related diseases are given in
Table 2. In addition, miRNAs involved in impaired trophoblast
migration and invasion (miR-195, miR-276C, miR-278a-5p, and
miR-210), impaired angiogenesis (miR-210, miR-21, and miR-22),
and dysregulation of the maternal immune system are associated
with preeclampsia (Skalis et al., 2019). Aberrant expression of
circular miRNAs reported in gestational diabetes mellitus can
serve as potential biomarkers for early diagnosis (Barchitta et al.,
2017). Microarray analysis has also identified many miRNAs
related to gestational diabetes mellitus (Grissa et al., 2010).

The use of microarray and next-generation sequencing can
help to identify more ccf-fetal-RNA markers (Ferrari et al., 2008).
Extensive research is required on different non-coding RNAs to
be utilized in clinical settings for early diagnosis of pregnancy-
related disorders.

The major obstacles in the field of ccf-fetal-NAs for
diagnosis of prenatal and pregnancy-related complications
are the requirements for proper standardized protocols for

Frontiers in Genetics | www.frontiersin.org 8 August 2020 | Volume 11 | Article 844

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00844 August 7, 2020 Time: 19:2 # 9

Rahat et al. ccfNAs as Epigenetic Biomarkers

sample processing, detection methods, data analysis, and
appropriate quality controls. Low concentration and fragmented
pattern of ccf-fetal-NAs further demand the development
of novel technologies for the proper utilization of ccf-fetal-
NAs for diagnostics. The combined use of next-generation
sequencing and bio-informative analysis could facilitate large-
scale comprehensible screening and identification of promising
next-generation non-invasive epigenetic biomarker in ccf-fetal-
NAs. The screening for novel and disease-specific epigenetic
markers on ccf-fetal-NAs in maternal blood will not only help
in early diagnosis but also in providing proper personalized
care. The ccf-fetal-NA-based diagnostic techniques provide new
highly sensitive and specific avenues in clinical settings. These
have already replaced invasive diagnostic sampling reducing
pregnancy risks. ccf-fetal DNA is already being used in
clinical settings, while the use of lncRNAs, circular RNAs,
and miRNAs are in the research phase and could soon be
used for clinical diagnosis of many fetal- and pregnancy-
related disorders.

Intensive research is required in this area based on large
populations to develop new clinical applications of fetal
epigenetic marks in maternal blood. Additional mechanistic
studies are required to identify the epigenetic changes behind the
fetal–maternal complications, which can provide more insight
into the possible epigenetic marks for non-invasive diagnosis.

ccfNAs IN AUTOIMMUNE DISEASES

In autoimmune diseases, there are abnormal immune responses
to healthy body tissues. In the United States, about 8% of the
population (24 million) are affected by autoimmune diseases,
where women are more commonly affected as compared to
men (Fairweather and Rose, 2004). Nearly 80 different types
of autoimmune diseases are known (Hayter and Cook, 2012).
The appearance of disease symptoms in adulthood makes the
diagnosis of autoimmune immune diseases difficult. Celiac
disease, Graves’ disease rheumatoid arthritis, systemic lupus
erythematosus, diabetes mellitus type 1, inflammatory bowel
disease, and multiple sclerosis are some well-known autoimmune
diseases (Hohlfeld et al., 2016).

ccfNAs as Epigenetic Markers in
Diagnosis, Progression, and Treatment
of Autoimmune Diseases
Witebsky’s et al. (1957) postulates were formulated for
the first time for the diagnosis of autoimmune diseases.
Accumulating evidence has shown that there is a significant
role of epigenetic modifications in the development and
progression of autoimmune diseases. With the benefits of ease
of detection and the ability to analyze disease activity, specific
epigenetic modifications can be proposed as novel biomarkers in
autoimmune diseases.

In autoimmune diseases like other several pathological
conditions, the presence of ccfDNA, has been observed, thus
developing the interest of using them as a potential biomarker.
Many pieces of evidence have shown that there is the

presence of abnormal DNA demethylation in peripheral blood
mononuclear cells (PBMCs) and CD4+ T cells of lupus patients
(Javierre et al., 2010; Jeffries et al., 2011; Hewagama et al.,
2013). Hypomethylation status of two sites, CpG site1 (Chr1:
79,085,222) and CpG site 2 (Chr1: 79,085,250; cg06872964),
within the promoter region of IFI44L (IFN-induced protein 44-
like) were identified as biomarkers for the diagnosis of SLE and
further validated in the Chinese population consisting of 1,144
lupus patients, 1,350 healthy subjects, 429 RA, patients and 199
patients of primary Sjögren’s syndrome (pSS), as well as in a
European cohort (Zhao et al., 2016). DNA methylation levels thus
can not only distinguish active patients from inactive ones but
importantly also indicate the activity of autoimmune diseases.

DNA methylation might be a good parameter, different
from genetic and protein biomarkers, to serve as a predictive
biomarker. Reduced DNA methylation at the IL-6 and ERa
promoters in PBMCs in RA patients is associated with
overexpressed IL-6 and hyperactive ERa signaling (Nile
et al., 2008; Liao et al., 2012; Liu et al., 2014). Aberrant
epigenetic modifications also have been evidenced to be
associated with systemic sclerosis (SSc) disease. In this context,
abnormal global and gene-specific DNA demethylation (e.g.,
at CD11a, CD70, and CD40L) and several hypermethylated
genes (PRF1, CD11a, FoxP3, CD70, and CDKN2A) in whole
blood have been observed from South Africans with SSc
(Matatiele et al., 2015). Besides, the Th17-related genes, like
RORC1 and RORC2, are hypomethylated from SSc patients in
PBMCs and further correlated with inflammatory parameters
(Almanzar et al., 2016). However, these aforementioned
alterations are not validated as predicted biomarkers as yet,
so extensive work is required in this direction in the future.
Overall, these studies suggest that changes in circulating
DNA methylation levels, observed in autoimmune diseases
(Rainer et al., 2003), can act as an important tool to monitor
the response of the treatment and predict progression of
the disease and patient’s stratification according to different
stages in the disease.

Like cell-free DNA, a few studies have also reported the
role of cell-free RNAs in autoimmune diseases. Recent studies
have revealed that there are ∼600 circulatory RNAs differentially
expressed in the PBMCs in patients suffering from rheumatoid
arthritis (Zheng et al., 2017). Similarly, over 200 circulatory RNAs
in the plasma of SLE patients and 400 in the PBMCs of relapsing–
remitting multiple sclerosis patients (RR-MS) were found in
comparison to healthy controls (Cardamone et al., 2017). Such
an abundance of different circulatory RNAs can help improve the
efficiency of clinical diagnosis by their combined detection with
other transitional markers.

Apart from these two types of ccfNAs, other forms
like miRNA, long non-coding RNA, and mtDNA also have
tremendous potential in future screening, diagnosis, and
prognosis of autoimmune diseases. Many studies have identified
miRNAs that are abnormally expressed in lupus. However, target
genes have been identified only for a few of them. In a recent
study, circulating miRNA profile was identified in patients with
autoimmune disease as well as in Treg-depleted mice model.
Results of this study from quantitative reverse transcription
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PCR (qRT-PCR) quantification and analysis of receiver operating
characteristic (ROC) curve were able to determine a total of six
miRNAs (miR-551b, miR-34cmiR-448, miR-9, miR-148, and miR-
124) in the mouse models with T-reg depletion and three miRNA
(miR-448, miR-124, and miR-551b) in patients with RA, SLE,
Sjogren’s syndrome (SS), and ulcerative colitis (UC), leading to
a conclusion that they could serve as valuable specific biomarkers
in these diseases.

As the optimal source of biomarkers, many other circulating
miRNAs also have been identified to be correlated with lupus.
Among them, miR-146a and miR-155 are the first miRNAs that
have been described as decreased in lupus serum (Wang et al.,
2010). In subsequent studies, the serum levels of miR-200a,
miR-200b, miR-200c, miR-429, miR-205, miR-192, miR-126, miR-
16, miR-451, miR-223, miR-21, and miR-125a-3p (Wang et al.,
2011, 2012) were found to be abnormally expressed in SLE and
correlated with disease activity.

Another inspiring observation is that miR-126 has been
reported to regulate DNA methylation in lupus T cells by
targeting DNMT1 (Zhao et al., 2011), supporting the idea that
lupus T cells are switched on by DNA hypomethylation via
miRNAs (Ceribelli et al., 2011). Future studies in this direction
can establish that not only circulatory DNA or RNA but
also circulating miRNAs can also represent potential universal
epigenetic biomarkers for autoimmune diseases (Jin et al., 2013).

At present, the treatment for autoimmune diseases is primarily
based on immunosuppressive as well as anti-inflammatory
agents, which mostly include humanized monoclonal antibodies,
engineered biologics, and fusion proteins. Such treatment options
are particularly generated against some signaling pathways or
are selective for a certain subset of cells in the immune
systems. The effectiveness of such types of treatments is
for short duration only and not even antigen-specific in
some cases. Moreover, chronic administration of these agents
leads to the common side effects of increased incidence
of infections and general immunosuppression (Tavakolpour,
2017). By utilizing the disease-specific epigenetic marks on the
ccfNAs, for non-invasive detection, monitoring, and screening
of autoimmune disorders, it will become feasible to offer
personalized medicine to manage the autoimmune diseases in the
future. A list of ccfNAs in autoimmune diseases is presented in
Table 3.

ccfNAs IN NEUROLOGICAL DISEASES

Neurological disorders include diseases associated with central as
well as the peripheral nervous system. These disorders include
Alzheimer’s disease (AD), epilepsy, other dementias, Parkinson’s
disease (PD), and traumatic disorders of the nervous system
(Amor et al., 2014).

Symptoms associated with chronic neurodegenerative diseases
occur late after the beginning of the pathology due to the
compensatory potential of the brain that has been demonstrated
in various studies. Any treatment is difficult in the later stages of
neurodegenerative diseases due to the massive death of neuronal
cells (Sperling et al., 2011; Pillai and Cummings, 2013). The

recent ability to detect neurological biomarkers in the blood is
due to technological advances in detection. The advances related
to the use of ccfNA in neurological disorders are as follows.

ccfNAs in Diagnosis, Progression, and
Treatment of Neurological Diseases
Cell-free DNA acts as a marker for traumatic brain injury (TBI)
and neurodegenerative diseases. The blood–brain barrier gets
disrupted and leaky after TBI and neurodegenerative diseases
(Carvey et al., 2009), which makes ccfNAs as potential markers
for disease as well as injury (Lehmann-Werman et al., 2016).
This includes changes in levels of ccfNA overall and also ccfNA
markers specifically associated with the brain (Zlokovic, 2011).

Specific cell-free miRNA levels (mir-34c) involved in apoptosis
and survival caspase cascade in plasma of Alzheimer’s patients
are known for the prediction of disease (Bhatnagar et al.,
2014). An analysis presented by Tan et al. (2014) showed that
miRNAs are involved in the processes in pathogenesis associated
with AD: amyloid-β accumulation, toxicity associated with tau
proteins, inflammation, as well as neuronal cell death (Tan
et al., 2014). In AD patients, activation, as well as inhibition
of expression of miR-9, was found, which is enriched in the
brain (Jin et al., 2013). miR-133b was downregulated in the
midbrain of PD patients (Kim et al., 2007) as well as in
mouse models of PD (Harraz et al., 2011; Filatova et al., 2012).
However, studies are required to ascertain the presence of these
miRNAs in circulation in these patients and their evaluation for
potential biomarkers.

DNA methylation has a significant involvement in several
neurodegenerative diseases (Al-Mahdawi et al., 2016). Increases
and decrease in both 5mC and 5hmC at global levels have
been identified in different diseases including AD (Al-Mahdawi
et al., 2014). 5mC and 5hmC are identified as potential
epigenetic markers in various neurodegenerative diseases both
at global and locus-specific levels (Xiao et al., 2012; Sandi
et al., 2013). However, further investigations are required for
using 5mC and 5hmC as epigenetic biomarkers in cell-free
circulating nucleic acids.

Previous studies have identified increased brain-derived
ccfDNA in the serum of patients after traumatic brain injury
(Lehmann-Werman et al., 2016). Rhomboid 5 Homolog 2
(RHBDF2) was found to be differentially methylated in the
central nervous system (CNS) in Alzheimer’s disease (De Jager
et al., 2014). In addition, a differentially methylated region
located in the promoter–enhancer region of the RHBDF2 gene
was identified in amyotrophic lateral sclerosis (ALS) patients in
ccfDNA in the plasma (Mendioroz et al., 2018). Thus, liquid
biopsy may be applied to living patients as a source of potential
epigenetic biomarkers for neurodegenerative disorders.

Cell-Free miRNA in CSF and CNS
Disorders
Levels of miR-146a and miR-155, the proinflammatory miRNAs,
were found to be high in cerebrospinal fluid (CSF) of AD
patients along with miR-9 and miR-125b that are enriched in
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TABLE 3 | Cell-free nucleic acids in autoimmune diseases.

Autoimmune disease Cell-free/circular nucleic acids Source for diagnosis No. of patients involved in study References

SLE cfDNA Serum 95 Tan and Kunkel, 1966

RA and SLE cfDNA Synovial fluid and serum 14 Barnett, 1968

RA and SLE cfDNA Derum 114 Koffler et al., 1973

RA cfDNA Serum 70 Leon et al., 1977

SLE cfDNA Serum and plasma 12 Chen et al., 2007

SLE, RA, and SS cfDNA Plasma 112 Bartoloni et al., 2011

RA CircRNA PBMCs from blood 20 Zheng et al., 2017

SLE CircRNA Plasma 30 Li et al., 2018

RR-MS CircRNA and DNA Blood and tissues 30 (DNA) 10 (RNA) Cardamone et al., 2017

RA, SLE, SS, and UC Circulating miRNA Serum 103 Jin et al., 2018

RA, rheumatoid arthritis; RRMS, relapsing–remitting multiple sclerosis; SLE, systemic lupus erythematosus; SS, Sjogren’s syndrome; LN, lupus nephritis; UC, ulcerative
colitis; circ, circular.

neurons (Alexandrov et al., 2012). Differential expression of miR-
15b and miR-21 was found in CSF from patients with primary
CNS lymphoma, gliomas, and brain metastasis (Baraniskin et al.,
2012). miR-451 was detected in CSF microparticles after brain
injury (Pigati et al., 2010). A list of ccfNAs studied in neurological
diseases is provided in Table 4.

ccfNAs IN MITOCHONDRIAL DISEASES

In mitochondrial disorders, mitochondria fail to function
properly and are not able to generate enough energy required
for the body. These diseases are the chronic ones due to genetic
causes, often inherited from the previous generation (Khan et al.,
2015). Mitochondrial diseases can affect multiple organs of the
body (Al-Enezi et al., 2008) and, in many conditions, can lead to
secondary mitochondrial dysfunction like Lou Gehrig’s disease,
diabetes, muscular dystrophy, Alzheimer’s disease, and cancer
(Niyazov et al., 2016).

Commonly known mitochondrial diseases are mitochondrial
myopathy, Leigh syndrome, Leber’s hereditary optic neuropathy
(LHON), myoclonic epilepsy with ragged red fibers (MERRFs),
myoneurogenic gastrointestinal encephalopathy (MNGIE),
mitochondrial neurogastrointestinal encephalomyopathy
(MNGIE), mitochondrial myopathy encephalomyopathy lactic
acidosis stroke-like symptoms (MELAS), neuropathy ataxia
retinitis pigmentosa and ptosis (NARP), and Friedreich’s
ataxia (Khan et al., 2015).

Potential of ccfNAs as Epigenetic
Markers in Diagnosis, Progression, and
Treatment of Mitochondrial Diseases
The diagnosis of mitochondrial diseases is difficult because it
affects multiple organs, and hence, patients exhibit a variety of
symptoms. Moreover, there is no single diagnostic or laboratory
test that can accurately confirm a mitochondrial disease (Parikh
et al., 2015). Therefore, investigation of ccfDNA or mtDNA in the
plasma of patients independently can be a better biomarker.

Unlike nuclear DNA, mtDNA molecules are arranged in
clusters, called nucleoids, which are tethered to the mitochondrial

membrane and are devoid of histones (Holt, 2010). Earlier
observations had suggested that mitochondria lacked the
machinery required for DNA methylation. However, several
strands of evidence later, including lower frequency of CG
dinucleotides by bioinformatic analysis and modulation of
mtDNA methylation in response to oxidative stress (Rebelo et al.,
2009), suggested the other way. Additionally, DNA methylation
of nuclear mitochondrial genes may play an important role in the
understanding of mitochondrial disorders.

There has been some evidence that some types of histones
do localize to the mitochondrial membrane, where mtDNA
is tethered (Choi et al., 2011). In the nuclear DNA, histone
modifications are important in transcriptional control that can
be altered in diseases affecting nuclear-encoded mitochondrial
proteins, of which Friedreich ataxia is an example. This disorder
is caused by transcriptional silencing due to certain histone
modifications of the FXN gene, which encodes a mitochondrial
protein involved in the biosynthesis of iron–sulfur clusters (Rai
et al., 2010). In one of the studies, total mtDNA in plasma was
quantified and found to be high in Friedreich’s ataxia patients,
which opened up its possible role as a blood-based biomarker
(Swarup et al., 2011).

Serum microRNAs like miR-1275, miR-149, miR-1, miR-133a,
miR-133b, miR-145, miR-206, miR-208a, miR-208b, miR499, and
miR-206 are reported in some of the studies to diagnose the
muscle mitochondrial dysfunction (Cacchiarelli et al., 2011; Endo
et al., 2013; Hu et al., 2014). In addition, in some metabolic
diseases, where the mitochondria are not functioning properly
like brown adipogenesis (Zhang et al., 2015), non-alcoholic fatty
liver disease (Leti et al., 2015), and diabetes (Raffort et al.,
2015), distinctive patterns of microRNA have been observed. In
another study, mutations in cybrid cells identified the role of
microRNA-9/9∗ pattern in different mitochondrial disorders, e.g.,
mitochondrial encephalomyopathy, lactic acidosis, and stroke-
like episodes (MELAS) and myoclonic epilepsy with ragged-red
fiber (MERRF) (Meseguer et al., 2015).

Hence, apart from the quantification of mtDNA in FRDA and
serum microRNA profiles to assess mitochondrial myopathies,
there is no available data on ccfNA epigenetic marker in
mitochondrial diseases. Working on circulating mtDNA poses
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TABLE 4 | Circulating cell-free nucleic acids (ccfNAs) in neurological diseases.

Disease Cell-free nucleic acids Source Potential diagnostic/prognostic
biomarkers

References

Traumatic brain injury (TBI) Cell-free DNA Brain S100B, C-tau, NSE, and Hsp 70 Lorente, 2017

Alzheimer’s and Parkinson’s
disease

Cell-free miRNA Plasma mir-34c Bhatnagar et al., 2014

Brain miR-9 Jin et al., 2013

Mid-brain miR-133b Kim et al., 2007

Friedreich’s ataxia (FRDA) DNA methylation Blood and buccal cells 5mC and 5hmC Castaldo et al., 2008

Primary CNS lymphoma,
gliomas, and brain metastasis

Cell-free miRNA CSF miR-146a, miR-155, miR-9, and
miR-125b

Alexandrov et al., 2012

CSF miR-15b and miR-21 Baraniskin et al., 2012

CSF microparticles miR-451 Pigati et al., 2010

ctDNA CSF Methylation of MGMT, p16/(INK4a),
p73, and RARb

Balana et al., 2003; Weaver et al.,
2006; Wakabayashi et al., 2009

NSE, neuron-specific enolase; MGMT, O-6-methylguanine-DNA methyltransferase; p16/(INK4a), cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1; RARb,
retinoic acid receptor beta.

many challenges. mtDNA is highly polymorphic, which makes
introducing targeted mutations into the mitochondria and
generation of cellular or animal models of mitochondrial
disorders quite challenging.

In addition, the gene panels required for the molecular
diagnosis of mitochondrial disorders constitute an expensive
approach. Therefore, the determination of epigenetic marks
on ccfNA in plasma can have a diagnostic as well as
prognostic potential in mitochondrial diseases. Thus, once the
technical hurdles to study circulating mtDNA are taken care
of by technology advancement, there is a strong motivation
to explore the role of epigenetic mechanisms in mtDNA
disease, as epigenetic factors may serve to explain the observed
phenotypic heterogeneity, variable penetrance, and pronounced
environmental triggers in this group of disorders.

ARTIFICIAL INTELLIGENCE/MACHINE
LEARNING IN ccfNA-BASED PRECISION
MEDICINE

There is a high impact of technologies such as high-
performance computing as well as biological databases, like
artificial intelligence (AI), machine learning (ML), and neural
network, in the field of health care. Epigenetic data have traits
like chemical and biological stability over time that make it open
to ML (Xiong et al., 2015). Large-scale data-rich repositories
such as The Cancer Genome Atlas (TCGA), BLUEPRINT, and
the ENCODE association provide large amounts of samples to
employ comprehensive, high-throughput statistical analysis of
differentially methylated regions with biological relevance (Yuan
et al., 2011; Munsell et al., 2015). Artificial intelligence and
machine learning tools have especially found scope in cancer
precision medicine by offering cancer patients personalized
care. These methods help to decipher weak signals in the
blood circulation at the early stages of cancer and provide a
real-time assessment of cancer treatment. Nearly all datasets
consist of DNA methylation profiles derived from peripheral

blood, meaning that patients will only be required to provide
a small blood sample. These can detect minute quantities of
tumor DNA in blood and analyze their epigenetic marks for
cancer monitoring.

Various programs have been generated to provide useful
information for proper diagnosis. The Graphite is a bioconductor
package to convert pathway topology to gene network (Sales
et al., 2012). The micrographite package, for instance, provides
a process to amalgamate mRNA and microRNA data via their
association to canonical pathways (Calura et al., 2014). This
approach has been beneficial in recognizing key microRNAs in
primary myelofibrosis (Calura et al., 2016c), myeloma (Calura
et al., 2016a), and ovarian cancer (Calura et al., 2016b). Another
program, Mergeomics (multidimensional data integration
to identify pathogenic perturbations to biological systems),
combines data from epigenetic, genomic, and transcriptional
association studies through a process of functional enrichment,
which is used as the base for network construction; nevertheless,
this tool has not been used in the context of cancer (Shu et al.,
2016). Based on the multiomics data, Netboost is a network
reconstruction method having statistical dependency and
employs a commutable approach to lessen dimensionality. This
system has been utilized for the categorization and survival
study of acute myeloid leukemia data (Schlosser et al., 2020).
Pair-wise relationships among various omics layers are identified
by AMARETTO, which decides on cancer driver genes by taking
into consideration frequently altered genes at the genome or
epigenome level with functional consequences (Champion
et al., 2018). Another tool MAGIA is used for the rebuilding of
microRNA and transcription factor regulatory routes and has
been employed for the scrutiny of expression and regulatory
mechanisms in the NCI60 cell panel. As personalized genomic
medicine pierces the age of “Big Data,” these would lead to
uncovering of novel biomarkers on cancer indicators in the
blood linked to particular disease states offered by machine
learning algorithms. ML algorithms will assist with assessing
the effects of various biomarkers concurrently and reveal
top order interactions between biomarkers that would not
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FIGURE 1 | Under various clinical conditions such as neurological disorder, cancer, autoimmune diseases, mitochondrial diseases, and pregnancy and fetal
disorders, circulating cell-free nucleic acids (ccfNAs) are released into body fluids like serum, plasma, and cerebrospinal fluids by apoptosis and necrosis. ccfNAs are
of various types. The important ones are DNA, RNA, long non-coding RNAs (lncRNAs), and microRNA (miRNA) and have been observed to have disease-specific
epigenetic modifications. These act as diagnostic and prognostic markers as well as therapeutic targets providing significant clinical benefits.

be feasible to devise manually. A cancer genomics company,
GRAIL, has launched a large-scale study, the Circulating Cell-
Free Genome Atlas (CCGA), which uses machine learning to
create a huge, representative library of cancer mutations and
healthy mutations using data from ccfDNA and white blood
cell genomes, to train their cancer screening algorithms (Cohn
et al., 2019). With the availability of more data from clinical
trials, this system can fine tune its algorithm to improve its
diagnostic acumen.

Furthermore, artificial neural networks, which mimic the
neurons of the brain, are functioning to interpret the data
and provide the basis of machine learning. Disorders of
neurodevelopment start early in childhood and have an impact
on a diversity of functional domains as well as executive and
cognitive function, social and language function, also behavior
control, and motor function (Uddin et al., 2016; Thapar et al.,
2017). Various other diagnoses include autism spectrum disorder
(ASD) (Jiang et al., 2013), intellectual disability (ID) (Maulik
et al., 2011), attention-deficit hyperactivity disorder (ADHD)
(Lionel et al., 2011), and movement disorders (Huisman-Van
Dijk et al., 2016). Consequently, the initiation of technologies
dependent on transcriptome sequencing led to the foundation of
the Allen developmental human brain atlas, profiling of the non-
coding elements in the human genome by ENCODE database
and the Human Cell Atlas (Kang et al., 2011; Regev et al.,
2017). Recently, AI approaches have revealed by far reasonable
success in neurodegenerative diseases (NDDs) by improving
genetic diagnostics. The implementation of the Human Splicing
Code is one of the first ML algorithms that demonstrate
persuasive evidence of correctly categorizing disease-causing
variants as well as those that are intronic. This process applies
a Bayesian ML algorithm and has been illustrated in spinal
muscular atrophy and pathogenic missense variants in ASD
(Zhou and Troyanskaya, 2015). AI approaches are vital to

explain the hidden arrangement in phenotype and genetic
heterogeneity. NDDs are characterized by both phenotypic
and genetic heterogeneity. For instance, cognitive function is
impacted by 15q13.3 microdeletion syndrome and is found to be
linked with heterogenous phenotypes that include speech delay
(16%), epilepsy/seizure (57%), and ASD (11%) (Lowther et al.,
2015). Although, biology enlightens this nosological evolution;
however, more stress needs to be given on using AI approaches
on major-scale datasets to authenticate or confront existing
categorization paradigms.

CONCLUSION AND FUTURE
PERSPECTIVE

The utility of epigenetic alterations in ccfNA in various diseases
as diagnostic and prognostic markers as well as therapeutic
targets has been summarized in Figure 1. Liquid biopsy is fast
replacing the invasive methods for the diagnosis and prognosis
of various diseases. This method offers the possibility to separate
and identify ccfNAs for their utility for screening, diagnostic,
prognosis, or for selecting therapeutic options. The different
types of ccfNAs being evaluated are ccfDNA, ccfRNA, ccfmtDNA,
ccfmiRNA, ccflncRNA, etc. With the development of newer
technologies for isolation of small amounts of ccfNAs and
detection of the specific signatures on these, ccfDNA are already
in clinical practice for a few diseases. Furthermore, recent
advances in the field have shifted the focus from determining
the quantity, SNPs, mutations of the ccfNAs to analyzing the
epigenetic signatures like methylated sequences and nucleosome
positioning, which are specific to the particular clinical condition.
The epigenetic markers on the ccfNAs are widely being explored
to further advance the field of personalized medicine. However,
the genetic or epigenetic markers related to ccfNAs have paved
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the way in clinical practice mostly in cancer and prenatal
screening only. For various other diseases like neurological,
autoimmune, and mitochondrial diseases, there are limited data,
most of which are limited to research findings only. There is
a need to have a comprehensive data analysis of the epigenetic
markers in ccfNAs in different physiological and pathological
conditions and further testing of the selected markers in large
population-based studies and disease cohorts. The field of

epigenetic markers in ccfNAs holds tremendous potential in the
field of precision medicine.
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