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Selective genotyping of phenotypically superior animals may lead to bias and less
accurate genomic breeding values (GEBV). Performing selective genotyping based
on phenotypes measured in the breeding environment (B) is not necessarily a good
strategy when the aim of a breeding program is to improve animals’ performance in
the commercial environment (C). Our simulation study compared different genotyping
strategies for selection candidates and for fish in C in a breeding program for
rainbow trout in the presence of genotype-by-environment interactions when the
program had limited genotyping resources and unregistered pedigrees of individuals.
For the reference population, selective genotyping of top and bottom individuals in C
based on phenotypes measured in C led to the highest genetic gains, followed by
random genotyping and then selective genotyping of top individuals in C. For selection
candidates, selective genotyping of top individuals in B based on phenotypes measured
in B led to the highest genetic gains, followed by selective genotyping of top and bottom
individuals and then random genotyping. Selective genotyping led to bias in predicting
GEBV. However, in scenarios that used selective genotyping of top fish in B and random
genotyping of fish in C, predictions of GEBV were unbiased, with genetic correlations of
0.2 and 0.5 between traits measured in B and C. Estimates of variance components
were sensitive to genotyping strategy, with an overestimation of the variance with
selective genotyping of top and bottom fish and an underestimation of the variance
with selective genotyping of top fish. Unbiased estimates of variance components
were obtained when fish in B and C were genotyped at random. In conclusion, we
recommend phenotypic genotyping of top and bottom fish in C and top fish in B for the
purpose of selecting breeding animals and random genotyping of individuals in B and C
for the purpose of estimating variance components when a genomic breeding program
for rainbow trout aims to improve animals’ performance in C.
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INTRODUCTION

In many breeding programs, genotyping is limited to
phenotypically superior animals, referred to as selective
genotyping of top animals. Such selective genotyping leads to
biased predictions of genomic breeding values (GEBV) when
genomic-based best linear unbiased prediction (GBLUP) is used
(Gowane et al., 2019; Wang et al., 2020). For example, Wang et al.
(2020) showed that the use of a combined matrix (Christensen
and Lund, 2010; Aguilar et al., 2011) of pedigree and genomic
relationships in a single-step GBLUP (ssGBLUP) prediction
resulted in the upward bias of GEBV and overestimation of
variance components when only a proportion of top individuals
were genotyped. The bias in variance estimates and GEBV
increased as the proportion of top individuals genotyped
increased. Gowane et al. (2019) also showed that with selective
genotyping of top animals, the use of a genomic relationship
matrix in a GBLUP prediction led to biased GEBV, but the use
of a combined relationship matrix (Christensen and Lund, 2010;
Aguilar et al., 2011) constructed from pedigree and genomic
information resulted in the unbiased prediction of GEBV.
Compared to random genotyping or selective genotyping of
phenotypically contrasting animals, selective genotyping of
top animals in a reference population for training genomic
selection models less accurately predicted GEBV (Boligon
et al., 2012; Gowane et al., 2019). According to Gowane et al.
(2019), genotyping of phenotypically contrasting animals
(selective genotyping of top and bottom animals) for selection
candidates is superior to selective genotyping of top animals. The
undesirable consequences of selectively genotyping top animals
have been addressed extensively (VanRaden et al., 2009; Patry
and Ducrocq, 2011; Vitezica et al., 2011; Boligon et al., 2012;
Jiménez-Montero et al., 2012; Chu et al., 2019; Gowane et al.,
2019; Wang et al., 2020), but the superiority of this selective
strategy for breeding programs has been shown only by Howard
et al. (2018). In addition, some simulation studies (Patry and
Ducrocq, 2011; Vitezica et al., 2011; Boligon et al., 2012; Gowane
et al., 2019) have used the correlation between true breeding
values (TBV) and GEBV to compare different genotyping
strategies. However, the difference in correlations between
different genotyping strategies may not be consistent with the
difference in realized genetic gains, because other factors – such
as the intensity of selection, prediction bias, and changes in
variance due to selection – may affect these gains. These studies
(Patry and Ducrocq, 2011; Vitezica et al., 2011; Boligon et al.,
2012; Gowane et al., 2019) did not account for selection, and the
effects of bias on genetic gains in breeding programs were not
investigated for different genotyping strategies. Therefore, in a
comparison of genotyping strategies, gains in genetic merits in a
breeding program may be a better measure of assessment.

Comparisons of genotyping strategies have focused on
species other than rainbow trout (Boligon et al., 2012; Howard
et al., 2018; Gowane et al., 2019; Wang et al., 2020). In two
studies (Boligon et al., 2012; Gowane et al., 2019), different
genotyping strategies based on phenotypes were used with
individuals in the reference population, but the animals in
the validation population did not have phenotypes, and thus,

random genotyping was used with these validation individuals.
However, as the phenotypes of validation individuals or
selection candidates can be obtained before genotyping, selective
genotyping can also be used with these fish in a breeding program
for trout. Other features of trout breeding programs include
high fecundity, the use of factorial mating, the ability to control
the sex ratios of offspring with sex reversal technology, and
the high cost of registering the pedigrees of individuals in the
whole population. The high fecundity of trout can translate into
a high intensity of selection and highly selective genotyping
of reference and validation populations. Because of the high
cost, the pedigrees of non-genotyped individuals may not be
registered, and phenotypes of these individuals are thus not
used to predict EBV. It is unknown whether these features
of breeding programs for trout exacerbate prediction bias or
lower the accuracy of selection when selective genotyping of
top animals occurs. The effects of different selective genotyping
strategies on variance components have not been shown when
pedigree information is missing.

Environmental differences between nucleus breeding stocks
(B) and commercial production farms (C) may lead to genotype-
by-environment (G×E) interactions (i.e., the best genotypes in
B may not be the best in C). Strong G×E interactions due to
environmental differences were found in a breeding program for
trout, with the correlations of 0.09–0.58 between traits measured
in B and C (Kause et al., 2005). Under this strong re-ranking
situation, a sib-testing scheme is required for breeding to improve
the performance of animals in C (Mulder and Bijma, 2005; Chu
et al., 2018). In a sib-testing scheme, selection candidates are kept
for phenotype testing in B, whereas their sibs are transferred to
C for phenotype testing (Chu et al., 2019). The individuals in C
are then used as a reference population to predict the GEBV of
the candidates. Studies (Boligon et al., 2012; Gowane et al., 2019)
have shown that in the reference population, predictive accuracy
was best with genotyping of phenotypically contrasting animals,
followed by random genotyping and then selective genotyping of
top animals. However, it is not known which genotyping strategy
is best for selection candidates when the breeding program
aims to improve animals’ performance in C and selection for
genotyping of candidates is based on phenotype measured in B.

We compared genomic selection breeding schemes for trout
when G×E interactions were present, genotyping effort was
limited and pedigree was not registered. We investigated (1)
genotyping strategies of selection candidates based on phenotype
measured in B; (2) genotyping strategies of fish in the reference
population based on phenotype measured in C; (3) proportions
of genotyping allocated to fish in B versus C; (4) overlapping
genetic makeup among years of selection; (5) the magnitude of
G×E interactions; and (6) heritability of the trait.

MATERIALS AND METHODS

Design of the Simulation
The stochastic simulation program ADAM (Pedersen et al.,
2009) was used to simulate sib-testing breeding schemes
for trout in B and C. The founder population for the
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simulated breeding schemes consisted of 958 genotyped rainbow
trout from AquaSearch ova Aps, Billund, Denmark. After
quality control, imputation, and phasing by AquaGen AS,
Trondheim, Norway, the genotypes of the fish had 36,451
SNP markers. From these SNPs, 3742 randomly chosen loci
were assigned as QTL for the simulation of traits, and the
remaining 32,709 loci were used as markers for genomic
prediction. The genome, with a total length of 2927.1 cM,
consisted of 29 pairs of chromosomes. The trait measured
in B and C was taken as two correlated traits controlled
fully by the QTL.

Simulation of the trait and individual phenotypes was detailed
previously (Chu et al., 2018). The mean (=0), genetic variance
(=1), and heritability (h2) of the trait in the founder population
were assumed to be identical for the trait measured in B
as for the trait measured in C. Breeding schemes were run
for seven overlapping generations that were equivalent to
21 years (t = 1, . . ., 21). In year t = 1, . . ., 3, we randomly
selected sires and dams from the base population that was
created by sampling haplotypes from the founder generation.
It took 3 years for offspring to be phenotyped, genotyped,
and sexually mature. In years t = 4, . . ., 21, the selection of
males and females was based on GBLUP. In some scenarios
when females were not genotyped, phenotypic selection of the
females was used. In breeding for rainbow trout, mating time
can be manipulated precisely in sexually mature males, whereas
the spawning time of females cannot be fully controlled. In
addition, males, known as neo-males or sex-reversed males,
can produce sperm only once, whereas females can spawn
over several years.

In the simulation, 50 males (3 years old) were selected as
sires for mating each year, and 400 females (3 or 4 years
old) were selected as potential dams for mating. The 3-year-
old females were selected from among selection candidates
that were 3 years old. The 4-year-old females were selected
from among the 3-year-old females selected in the previous
year. The proportion of selected females that were kept in
2 consecutive years was a factor we investigated and thus
varied by scenario. In total, 400 selected females from which
only 50 dams were randomly chosen for mating needed to
be available each year. Each year, 50 sires and 50 dams were
used for partly factorial mating: sires were mated to two
different dams each, and dams were mated to two different
sires each. This partly factorial mating, described in Su et al.
(2020), resulted in the creation of 100 full-sib families of
family size 200 giving 20,000 offspring per year. The number
of offspring distributed to B and C varied by scenario. Fish
could have phenotypic records measured in either B or C,
but not all 20,000 fish were phenotyped and genotyped. Each
year, 1000 individuals with phenotypes, including both B and C
fish, were genotyped.

Factors Investigated
The six factors investigated in this study were genotyping of fish
in C, genotyping of fish in B, proportions of genotyping allocated
to fish in B versus C, the proportion of selected females kept
in 2 consecutive years, the genetic correlation (rg) between trait

records obtained in B and C, and the heritability of the trait (h2);
see Table 1.

Genotyping of fish in C included the following:

1. Random genotyping: Fish were selected for
genotyping at random.

2. Selective genotyping of top fish: The individual with the
best phenotype from each random sample of 20 fish was
selected for genotyping. The phenotype consisted of trait
records measured in C.

3. Selective genotyping of top and bottom fish: Two
strategies (T1_1B1_1 and T1_2B1_2) were used. For
T1_1B1_1, the individual with the best phenotype and the
individual with the worst phenotype from each random
sample of 20 fish were selected for genotyping. For
T1_2B1_2, top and bottom fish were selected from each
random sample of 20 fish in the same way as T1_1B1_1.
However, not all the selected top and bottom fish were
genotyped because with T1_2B1_2, we selected one
individual with the best phenotype from each random
sample of two top fish, and one individual with the worst
phenotype from each random sample of two bottom fish
for genotyping.

Genotyping of fish in B included the following:

1. Random genotyping and selective genotyping of top fish
similar to genotyping of fish in C, except that selection
was based on trait records measured in B.

2. Selective genotyping of top and bottom fish: Two
strategies (T1_2B1_2 and T3_4B1_4) were used. The
T1_2B1_2 strategy was the same as described for fish
in C. For T3_4B1_4, top and bottom fish were selected
from each random sample of 20 fish in the same way as
T1_1B1_1. However, not all the selected top and bottom
fish were genotyped because with T3_4B1_4, we selected
three individuals with the best phenotype from each
random sample of four top fish, and one individual with
the worst phenotype from each random sample of four
bottom fish for genotyping.

Pedigrees and phenotypes of non-genotyped individuals were
not registered. For random genotyping in B and C, fish to be
genotyped were randomly sampled from all fish available in B
and C, respectively. Due to the practicality of fish breeding, the
selection for genotyping was based on random sets of 20 fish
instead of ranking all individuals to select from. The 20 fish in
each random sample were not resampled; thus, each fish had only
one chance of being selected for genotyping. The proportions of
genotyping allocated to fish in B versus C were equivalent to the
proportions of offspring distributed to B versus C each year. rg
represents magnitudes of G×E interactions, from weak to strong.
h2 was assumed to be the same for B and C. rg and h2 were
used to simulate the trait in the founder population, as described
previously (Chu et al., 2018).

The different proportions of selected females kept in 2
consecutive years were used to investigate the effects of different
overlapping genetic makeup among years of selection and the
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TABLE 1 | Factors investigated in the simulated breeding program.

Factor Levels

Genotyping of fish in a commercial environment (C) [Random genotyping]; selective genotyping of top fish; selective genotyping of top and
bottom fish at two intensities (T1_1B1_1 and T1_2B1_2)

Genotyping of fish in a breeding environment (B) Random genotyping; [selective genotyping of top fish]; selective genotyping of top and
bottom fish at using different numbers of top fish (T1_2B1_2 and T3_4B1_4)

Genetic correlation rg between trait records obtained in B and C (rg) [0.2; 0.5; 0.8]

Heritability h2 of the trait (h2) [0.1; 0.3]

Proportion of genotyping allocated to fish in C (%) 0; [20]; 40; 60

Proportion of selected females kept in 2 consecutive years (%) 11; [100]

Square brackets indicate the levels used in the base scenarios.

intensity of selection. Each year 400 females were needed to be
available for mating. When 11% of selected females were used in
2 consecutive years, 360 females were selected from among the 3-
year-old offspring in the current year, and 40 individuals (4 years
old) were selected from among the 360 selected females in the
previous year. On average, 10 and 90% of the maternal genetic
makeup of offspring in a year was from 4-year-old dams and
3-year-old dams, respectively. When 100% of selected females
were used in 2 consecutive years, 200 females were selected
from among the 3-year-old offspring in the current year, and all
200 selected females were kept the following year. In this case,
an average of 50 and 50% of the maternal genetic makeup of
offspring in a year was from 4-year-old dams and 3-year-old
dams, respectively.

Not all combinations of factors were investigated, but base
scenarios and their alternatives were. For example, to investigate
different genotyping strategies applied to fish in C, schemes
considered selective genotyping of top fish in B; rg of 0.2, 0.5, and
0.8; h2 of 0.1 and 0.3; 20% of genotyping allocated to fish in C; and
100% of selected females kept in 2 consecutive years. However,
in the scenarios that used different proportions of genotyping
allocated to fish in C and different proportions of selected females
kept in 2 consecutive years, only h2 of 0.3 was considered.

Statistical Model
The breeding goal had an economic value of 1 for the
performance of fish in C and an economic value of 0 for the
performance of fish in B. For scenarios that had genotyped fish
in C, we predicted GEBV using the following bivariate GBLUP
model:

[
yB
yC

]
=

[
XB 0
0 XC

] [
bB
bC

]
+

[
ZB 0
0 ZC

] [
gB
gC

]
+

[
eB
eC

]
(1)

where yB and yC are vectors of phenotypic records of fish in B and
C; bB and bC are vectors of the fixed effects of year for records
in B and C; gB and gC are vectors of breeding values of B and
C performance, which were assumed to follow the multivariate
normal distribution

[
gB
gC

]
∼ MVN

[
0, G⊗

(
σ 2
gB σgBgC

σgCgB σ 2
gC

)]

where G is a genomic relationship matrix constructed based
on marker data, ⊗ is the Kronecker product, σ 2

gB and σ 2
gC are

the additive genetic variance of trait performance in B and C,
respectively, and σgBgC is the additive genetic covariance between
the two trait performances; XB, and ZB, and XC, and ZC are
incidence matrices associating fixed effects and breeding values
with phenotypic records in B and C; and eB and eC are vectors of
random residuals in B and C, respectively. Model (1) assumed[

eB
eC

]
∼ MVN

[
0 ,

(
IBσ 2

eB 0
0 ICσ 2

eC

)]
where IB and IC are identity matrices corresponding to fish

in B and C, respectively, and σ 2
eB and σ 2

eC are the environmental
variance of B and C traits, respectively.

For scenarios without records measured in C, we estimated
GEBV using a univariate GBLUP model:

yB = XBbB + ZBgB + eB (2)

The description of notations for model (2) is similar to that of
model (1), except model (2) is a single-trait model. The selection
of scenarios without records measured in C was based on the
GEBV of the B trait only.

Each year, GEBV were predicted for all genotyped individuals
after all records of genotyped individuals in that year
were obtained. Models (1) and (2) used the true genetic
variance components to predict GEBV. Computations were
performed with the DMU4 module of the DMU package
(Madsen and Jensen, 2013).

Selection and Intensity of Selection
Each year, 1000 fish in B and C were genotyped; 50 sires and up to
360 selected females were needed to restock for breeding. When
the proportion of genotyping allocated to fish in C increased,
the intensity of selection of fish in B based on GEBV decreased.
For example, when 60% of genotyping was allocated to fish in C,
only 400 selection candidates in B were genotyped. Genotyping of
different sex ratios in C did not affect the intensity of selection or
predictive accuracy. However, sex ratio genotyping of candidates
in B could have had significant effects on the intensity of
selection and thus the genetic gains of a breeding scheme. For
a fair comparison of breeding schemes, we used the sex ratio
genotyping that would lead to the optimal selection intensity for
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the scheme. The approach to identifying the optimal selection
intensity of a scheme is shown in Appendix 1. We assumed that
the sex ratios of the offspring and the genotyped fish in B could
be easily manipulated with sex reversal technology and that the
trout would have a high reproductive capacity. The sex ratios
genotyped for all scenarios can be found in Appendix 2. In the
scenarios in which females were not genotyped, the selection
of females was based on phenotype in B. The procedures for
selecting these females were similar to the selective genotyping
of top fish, in which the individual with the best phenotype from
each random sample of 20 fish was selected. The selection of
breeding females to be kept the following year was random. When
the selected females were genotyped, the selection of breeding
females kept the following year was based on GEBV.

Simulation Outputs
For each scenario, 100 replicates were simulated. Means and
standard errors of the 100 replicates of were calculated to
assess the rate of genetic gain, rate of inbreeding, accuracy
of GEBV, and prediction bias. Differences between genetic
levels at years 5–7 and 19–21 were used to calculate the rate
of genetic gain per year (1G): 1G= (G19+G20+G21)−(G5+G6+G7)

(19+20+21)−(5+6+7) ,
where G5,G6,G7,G19,G20, and G21 are the average TBV of
the C trait of all fish born at years 5, 6, 7, 19, 20, and 21,
respectively. The rate of inbreeding per generation (1F) for a
replicate was calculated as 1F (%) =

(
1− eβ

)
∗100, where β is

the slope of the linear regression of ln(1− Ft) on the generation
corresponding to years 5–21 and Ft is the inbreeding coefficient
of all fish born at time step t based on the pedigree relationship
(Hinrichs et al., 2007).

In the scenarios with records measured in C, the accuracy of
GEBV was calculated as the correlation between the GEBV of the
C trait and the TBV of the C trait for all 3-year-old genotyped B
fish at years 10–12. The correlation was calculated for each year
from GEBV obtained during that year. The accuracy of GEBV
for each replicate was the average of the correlations of years
10–12. The accuracy had the expected value of 1. Similarly, the
bias of GEBV was calculated as the regression slope of the TBV
of the C trait on the GEBV of the C trait. The bias had the
expected value of 1.

In the scenarios without records measured in C, only the
GEBV of the B trait were available. The accuracy of GEBV was
calculated as the correlation between the GEBV of the B trait
and the TBV of the C trait for all 3-year-old genotyped B fish
at years 10–12 because the selection to improve performance in
C was based solely on the GEBV of the B trait. The accuracy in
this situation had the expected value of rg . The bias of GEBV
was calculated as the regression slope of the TBV of the C trait
on the GEBV of the B trait. The bias had the expected value

of
(
rg ×

√
σ2
gC

σ2
gB

)
(see the derivations of the expected values in

Appendix 3). As σ 2
gB and σ 2

gC were identical, and equal to 1,
the expected bias of GEBV was rg in the scenarios without
records measured in C.

Because of computational challenges, we estimated
variance components for select scenarios only at year

t = 10. The estimation of variance components used the
DMUAI module of the DMU package (Madsen and Jensen,
2013). Estimated variance components at year t = 10 were
not used to predict GEBV in the following year of the
breeding scenarios.

RESULTS

The rate of genetic gain, accuracy of GEBV, prediction bias,
and rate of inbreeding for breeding scenarios that used different
genotyping strategies for fish in C are presented in Figure 1
and Table 2. The scenarios used selective genotyping of top
fish for selection candidates in B, and 100% of selected
females were kept in 2 consecutive years. The scenarios with
selective genotyping of top and bottom fish in C led to the
highest 1G, followed by random genotyping and then selective
genotyping of top fish. Genetic gains increased when the
phenotypic differentiation of genotyped fish in C increased.
Genetic gains were highest with T1_2B1_2. The difference in
accuracy of GEBV between the scenarios followed a similar
trend as 1G. Selective genotyping of top fish led to not only
the least accurate GEBV but deflated predictions of GEBV.
Selective genotyping of top and bottom fish in C led to
inflated predictions of GEBV. Prediction bias was greater when
selection for genotyping was more intense (i.e., in T1_2B1_2
compared to T1_1B1_1).

In terms of 1F, the scenarios with selective genotyping of
top and bottom fish in C were less favorable than those with
random genotyping and genotyping of top fish. However, when
the rate of genetic gain per 1% increase in inbreeding (1G/1F)
was used as the comparison criterion, the scenarios with selective
genotyping of top and bottom fish in C were most favorable. In
terms of 1G/1F, T1_1B1_1 was generally the best genotyping
strategy for fish in C.

As rg increased from 0.2 to 0.8,1G and the accuracy of GEBV
increased for all scenarios for fish in C. Increasing rg from 0.2
to 0.5 also increased 1F in all scenarios. When rg increased
from 0.5 to 0.8, 1F increased in some scenarios but not others.
When h2 increased from 0.1 to 0.3, 1G, the accuracy of GEBV,
and 1F increased. With increasing rg , the prediction bias of
GEBV decreased in scenarios that used selective genotyping of
top and bottom fish in C. In contrast, with increasing rg , bias
increased in scenarios that used random genotyping or selective
genotyping of top fish. The difference in 1G between different
scenarios for fish in C tended to decrease as rg increased or
h2 increased.

The rate of genetic gain, accuracy of GEBV, prediction bias,
and rate of inbreeding for breeding scenarios that used different
genotyping strategies for fish in B are presented in Figure 2
and Table 3. The scenarios used random genotyping of fish in
C, and 100% of selected females were kept in 2 consecutive
years. The scenarios with selective genotyping of top fish in B
led to the highest 1G, followed by selective genotyping of top
and bottom and then random genotyping. Among the selective
genotyping strategies, 1G increased when the proportion of
top fish genotyped increased. The exception to this was that
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FIGURE 1 | Rate of genetic gain (1G; mean of 100 replicates ± standard error) of different genotyping scenarios for 200 fish in C: random genotyping (C_Random);
selection of the phenotypically best and worst fish from each sample of 20 fish (C_T1_1B1_1); selection of fish from one of the two top fish and one of the two
bottom fish, where the top and bottom fish were the best and worst fish, respectively, from each sample of 20 fish (C_T1_2B1_2); and selection of the phenotypically
best fish from each sample of 20 fish (C_Top1_1). The scenarios assumed genetic correlations (rg) between the trait measured in B and C of 0.2, 0.5, and 0.8 and
heritability of the trait of 0.1 and 0.3. The scenarios used selective genotyping of top fish for selection candidates in B, and 100% of selected females were kept in 2
consecutive years. C, commercial environment; B, breeding environment.

when rg = 0.8 and h2 = 0.1, TB3_4B1_4 led to a higher 1G
than selective genotyping of top fish in B. When 1G/1F and
1F were used as the comparison criteria, selective genotyping
of top fish in B was the least favorable genotyping strategy,
and random genotyping or TB3_4B1_4 was most favorable.
The accuracy of GEBV decreased as the proportion of top
fish genotyped increased. T1_2B1_2 for fish in B had the
most accurate GEBV, but these scenarios also had the highest
prediction bias of GEBV.

With rg of 0.2 and 0.5, prediction bias was negligible in
the scenarios that used selective genotyping of top fish in B,
whereas with rg of 0.8 prediction deflated slightly. Among the
scenarios that used selective genotyping of fish in B, prediction
bias increased as rg increased or h2 decreased. Overall, 1G, the
accuracy of GEBV, and 1F increased as rg increased from 0.2 to
0.8 or h2 increased from 0.1 to 0.3.

The rate of genetic gain, accuracy of GEBV, prediction bias,
and rate of inbreeding for breeding scenarios that allocated
different proportions of genotyping to fish in C and kept
different proportions of selected females in 2 consecutive years
are presented in Figure 3 and Table 4. When 100% of selected
females were kept in 2 consecutive years, allocating 20% of
genotyping to fish in C led to the highest 1G. Increasing
the proportion of fish in C from 20 to 60% decreased 1G.
However, the accuracy of GEBV increased as the proportion of
genotyping allocated to fish in C increased from 0% to 60%.
Increasing the proportion also decreased prediction bias and
increased 1G/1F. The scenarios without genotyped fish in C
had the lowest 1G and the least accurate GEBV compared to the
scenarios with fish in C.

When 11% of selected females were kept in 2 consecutive
years, allocating 40% of genotyping to fish in C led to the highest
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TABLE 2 | Accuracy of GEBV, prediction bias, and rate of inbreeding (mean of 100 replicates) for different genotyping scenarios for fish in C.

h2 = 0.1 h2 = 0.3

rg Random T1_1B1_1 T1_2B1_2 Top1_1 Random T1_1B1_1 T1_2B1_2 Top1_1

Accuracy of GEBV

0.2 0.362 0.515 0.534 0.245 0.512 0.635 0.656 0.371

0.5 0.389 0.522 0.544 0.284 0.525 0.641 0.661 0.395

0.8 0.436 0.548 0.564 0.363 0.555 0.65 0.666 0.474

SE 0.005 0.004 0.004 0.005 0.004 0.003 0.002 0.005

Prediction bias

0.2 0.961 0.59 0.506 1.232 0.976 0.528 0.465 1.423

0.5 1.045 0.624 0.544 1.324 1.023 0.554 0.484 1.428

0.8 1.207 0.763 0.656 1.434 1.142 0.645 0.573 1.527

SE 0.013 0.005 0.005 0.024 0.008 0.003 0.003 0.017

Rate of inbreeding

0.2 0.729 0.872 0.851 0.643 0.858 0.881 0.901 0.762

0.5 0.842 0.838 0.887 0.646 0.944 0.913 0.963 0.81

0.8 0.761 0.93 0.887 0.674 0.931 0.952 0.975 0.734

SE 0.022 0.030 0.028 0.017 0.031 0.028 0.037 0.027

Genotyping of fish in C: random (Random); selection of the phenotypically best and worst fish from each sample of 20 fish (T1_1B1_1); selection of fish from one of the
two top fish and one of the two bottom fish, where the top and bottom fish were the best and worst fish, respectively, from each sample of 20 fish (T1_2B1_2); and
selection of the phenotypically best fish from each sample of 20 fish (Top1_1). rg is the genetic correlation between the trait measured in B and C. h2 is the heritability
of the trait simulated. The scenarios used selective genotyping of top fish for selection candidates in B, and 100% of selected females were kept in 2 consecutive years.
Standard errors (SE) are the average values for different rg. GEBV, genomic breeding values; C, commercial environment; B, breeding environment.

1G. As the proportion of genotyping allocated to fish in C
increased, the trends for accuracy of GEBV, prediction bias, and
1G/1F became similar to those for the scenarios that kept 100%
of selected females in 2 consecutive years.

The difference in 1G, or accuracy of GEBV, between
scenarios that kept different proportions of selected females in
2 consecutive years varied with the proportion of genotyping
allocated to fish in C. For example, when 20% of genotyping
was allocated to fish in C, the scenario with 100% of selected
females kept in 2 consecutive years had a higher 1G than the
scenario with 11% of selected females kept. However, when
60% of genotyping was allocated to fish in C, the scenario
with 100% of selected females kept had a lower 1G. There was
little difference in 1G in the scenarios with 20% of genotyping
allocated to fish in C and 100% of selected females kept in 2
consecutive years 1G compared to the scenarios with 40% of
genotyping allocated to fish in C and 11% of selected females kept.
However, the scenarios that kept 100% of selected females had
a lower1F.

When rg increased, 1G increased significantly, in particular
in the scenarios without fish genotyped in C. The difference in
1G between scenarios with and without fish in C decreased
as rg increased. Increasing rg increased the regression slope
of the TBV of the C trait on the GEBV of the B trait. The
regression slope reflects the prediction bias for the scenarios
without fish in C.

Table 5 presents variance components estimated from the
bivariate GBLUP model for different genotyping of fish in B and
C. These scenarios were simulated with rg of 0.5, h2 of 0.3, 20%
of genotyping allocated to fish in C, and 100% of selected females
kept in 2 consecutive years. As expected, the estimates of variance
components of the scenarios that used random genotyping of

fish in both B and C were close to the simulated values for
the trait measured in both B and C. When genotyping of fish
in B was random, the additive genetic variance and residual
variance were close to the simulated values for the trait measured
in B. With selective genotyping of top fish in B, the estimated
variance components of the trait measured in B, in particular
the additive genetic variance, were substantially lower than the
simulated values. As a result, the heritability estimates of the
trait measured in B were lower than the simulated values. With
selective genotyping of top and bottom fish in B, the variance
components of the trait measured in B, in particular the additive
genetic variance (and thus the heritability), were overestimated.
Similarly, the variance components of the trait measured in C
were under- and overestimated, respectively, in the scenarios that
used selective genotyping of top fish and selective genotyping of
top and bottom fish in C.

DISCUSSION

In this study, the difference in the accuracy of GEBV between
genotyping strategies based on phenotype was similar to other
studies (Boligon et al., 2012; Jiménez-Montero et al., 2012;
Gowane et al., 2019; Su et al., 2020), that is, selective genotyping
of top and bottom fish led to the most accurate GEBV, followed by
random genotyping and then selective genotyping of top fish. The
difference in accuracy between different genotyping strategies
for fish in C was consistent with the difference in genetic gains
(i.e., selective genotyping of top and bottom fish in C led to the
highest genetic gains).

However, when genotyping strategies based on phenotypes
were applied to selection candidates in B, selective genotyping of
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FIGURE 2 | Rate of genetic gain (1G; mean of 100 replicates ± standard error) of different genotyping scenarios for 800 fish in B: random genotyping (B_Random);
selection of fish from three of the four top fish and one of the four bottom fish, where the top and bottom fish were the best and worst fish, respectively, from each
sample of 20 fish (B_T3_4B1_4); selection of fish from one of the two top fish and one of the two bottom fish, where the top and bottom fish were the best and
worst fish, respectively, from each sample of 20 fish (B_T1_2B1_2); and selection of the phenotypically best fish from each sample of 20 fish (B_Top1_1). The
scenarios assumed genetic correlations (rg) between the trait measured in B and C of 0.2, 0.5, and 0.8 and heritability of the trait of 0.1 and 0.3. The scenarios used
random genotyping of fish in C, and 100% of selected females were kept in 2 consecutive years. C, commercial environment; B, breeding environment.

top fish led to the highest genetic gains. This can be explained
by the intensity of genomic selection. The number of genotyped
fish in B was the same, and the genotyped individuals with the
worst phenotypes measured in B were selection candidates as
well. However, it was very unlikely that these bottom fish would
be selected as parents. Therefore, selection was less intense in
the scenarios with random genotyping and selective genotyping
of top and bottom fish than in the scenarios with selective
genotyping of top fish. Gowane et al. (2019) concluded that
selective genotyping of top and bottom animals for selection
candidates is better than selective genotyping of top animals in
a breeding program. However, the authors did not take into
account the potentially lower intensity of selection when selective
genotyping of top and bottom animals is used for candidates.

Compared to random genotyping, selective genotyping
generally led to higher rates of inbreeding, but the rates in all

scenarios were roughly 1% per generation, which is in line with
FAO’s recommendation for animal breeding programs (FAO,
2000). Selective genotyping also led to higher prediction bias of
GEBV. Prediction bias in our study refers to the over- or under-
dispersion (inflation/deflation) of GEBV with respect to TBV.
Legarra and Reverter (2017) stated that prediction bias is more
relevant for breeding programs for dairy cattle, in which selection
involves a mixture of old and young animals. For example,
when prediction bias is less than 1, young animals will have
higher but less accurate GEBV than old animals (Legarra and
Reverter, 2017). Prediction bias may have little effects on the re-
ranking of the GEBV of individuals in breeding programs for
pigs, chickens, and fish because the breeding cycle is relatively
short, dams and sires are culled quickly, and selection candidates
are typically carried out from within the same hatch (Legarra
and Reverter, 2017). However, prediction bias can be problematic
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TABLE 3 | Accuracy of GEBV, prediction bias, and rate of inbreeding (mean of 100 replicates) for different genotyping scenarios for fish in B.

h2 = 0.1 h2 = 0.3

rg Random T3_4B1_4 T1_2B1_2 Top1_1 Random T3_4B1_4 T1_2B1_2 Top1_1

Accuracy of GEBV

0.2 0.367 0.37 0.391 0.356 0.519 0.527 0.551 0.514

0.5 0.419 0.476 0.502 0.387 0.588 0.626 0.663 0.521

0.8 0.538 0.641 0.68 0.428 0.674 0.777 0.816 0.56

SE 0.004 0.004 0.004 0.005 0.003 0.003 0.003 0.004

Prediction bias

0.2 0.957 0.815 0.764 0.952 0.988 0.902 0.876 0.979

0.5 0.967 0.647 0.552 1.03 0.984 0.746 0.699 1.021

0.8 0.973 0.585 0.49 1.177 0.991 0.657 0.605 1.152

SE 0.009 0.007 0.006 0.014 0.006 0.005 0.004 0.008

Rate of inbreeding

0.2 0.519 0.616 0.642 0.761 0.456 0.783 0.719 0.892

0.5 0.47 0.589 0.697 0.85 0.611 0.679 0.689 0.986

0.8 0.565 0.57 0.67 0.815 0.582 0.588 0.719 0.964

SE 0.012 0.014 0.017 0.029 0.014 0.027 0.020 0.052

Genotyping of fish in B: random (Random); selection of fish from three of the four top fish and one of the four bottom fish, where the top and bottom fish were the best
and worst fish, respectively, from each sample of 20 fish (T3_4B1_4); selection of fish from one of the two top fish and one of the two bottom fish, where the top and
bottom fish were the best and worst fish, respectively, from each sample of 20 fish (T1_2B1_2); and selection of the phenotypically best fish from each sample of 20 fish
(Top1_1). rg is the genetic correlation between the trait measured in B and C. h2 is the heritability of the trait simulated. The scenarios used random genotyping of fish
in C, and 100% of selected females were kept in 2 consecutive years. Standard errors (SE) are the average values for different rg. GEBV, genomic breeding values; B,
breeding environment; C, commercial environment.

for these breeding programs when selection is based on multiple
traits and bias differs among these traits. In another case of
selective genotyping of top animals, when both non-genotyped
and genotyped individuals are the selection candidates, it could
be unfair to genotyped individuals to compare breeding values.
The use of ssGBLUP to estimate variance components and predict
EBV leads to severely inflated EBV for non-genotyped individuals
in this situation (Wang et al., 2020). In addition, bias may lead to
estimates of genetic trends that are higher or lower than the true
rate of genetic gain.

Gowane et al. (2019) and Howard et al. (2018) found that
the unbiased prediction of GEBV in a breeding program with
selective genotyping could be obtained with ssGBLUP. ssGBLUP
uses phenotypes of non-genotyped animals and combined
pedigree and genomic information to construct a relationship
matrix between individuals. However, in our study, the pedigrees
and phenotypes of non-genotyped animals were not registered.
Therefore, the selection of genotyped individuals was not
accounted in the GBLUP model that caused biased predictions
of GEBV. When selective genotyping of top fish was used,
predictions of GEBV were deflated. When selective genotyping of
top and bottom fish was used, predictions were inflated. A similar
result for prediction bias was found for selective genotyping in
Gowane et al. (2019) and Jiménez-Montero et al. (2012) when
only genotyped animals were used in predictions. It is interesting
that in our study, predictions were deflated only with rg of 0.8, not
with rg of 0.2 and 0.5 when selective genotyping of top animals
was used for fish in B and random genotyping was used for fish in
C. A possible reason for this could be that information on the fish
in B made a small contribution to predicting the breeding value

of trait performance in C when the genetic correlation between
B and C was low.

To obtain unbiased predictions of GEBV with selective
genotyping, Gowane et al. (2019) used true variance components
in the ssGBLUP model. True variance components were also
used to estimate GEBV for selection for all simulated breeding
schemes in our study. However, when genotyping is selective,
it is difficult to obtain unbiased estimates of the variance
components. Wang et al. (2020) showed that the use of
ssGBLUP led to an overestimation of variance components
when selective genotyping of top animals was used. This
stands in contrast to our study, in which variance components
were underestimated when the GBLUP model was used in
scenarios that involved selective genotyping of top fish. The
additive genetic variance was underestimated more severely
than the residual variance. Use of the pedigree-based BLUP
model without the pedigrees and phenotypes of non-genotyped
animals did not improve the estimation of variance components
(Appendix 4). To the best of our knowledge, no studies
have used the GBLUP model to estimate variance components
with selective genotyping of top and bottom animals. Variance
components in this situation, in particular the additive genetic
variance, were largely overestimated (Table 5). The use of
random genotyping of fish in B led to plausible estimates
of variance in the trait measured in B, and likewise for C.
Random genotyping of fish in both B and C was required to
ensure that individuals represented the whole distribution of
phenotypes and thus that estimates of variance components
of the trait measured in B and C were unbiased when the
GBLUP model was used.
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FIGURE 3 | Rate of genetic gain (1G; mean of 100 replicates ± standard error) of scenarios allocating different proportions of genotyping to fish in C (PC% = 0, 20,
40, and 60) and keeping different proportions of selected females in 2 consecutive years (PF % = 100 and 11) for different genetic correlations (rg) between B and C
traits. The scenarios assumed heritability of the trait of 0.3 and used selective genotyping of top fish in B and random genotyping of fish in C. C, commercial
environment; B, breeding environment.

As the proportion of genotyping allocated to fish in C
increased, the accuracy of the GEBV of the trait measured in
C increased. However, because genotyping was limited to 1000
fish per year, increasing the proportion of fish in C decreased
the number of fish in B and thus the intensity of selection. The
optimal proportion for genetic gains of a breeding scheme can
be achieved by balancing between accuracy and intensity. In our
study, 20 and 40% with rg 0.2, 0.5, and 0.8 were close to optimal.
In a sib-testing breeding program for broiler chicken, a scheme
that placed 30% of animals in C for genotype and phenotype
testing with rg 0.5 and 0.7 was optimal (Chu et al., 2018). With
rg of 0.9, a scheme that placed animals in C for testing showed
no increase in genetic gains compared to a scheme that kept all
animals in B only (Chu et al., 2018).

We compared two different proportions of selected females
kept in 2 consecutive years to investigate the effects of
overlapping genetic makeup among years of selection. We
expected that the scheme that kept 11% of selected females in 2

consecutive years would have the advantage of capitalizing on
genetic progress, whereas the one that kept 100% of selected
females in 2 consecutive years would result in a higher intensity
of selection and more accurate GEBV. Because of the possibly
higher maternal overlapping genetic makeup among years of
selection, we expected to find a stronger relationship between
fish in the current and previous years in the scheme that kept
100% of selected females, which would thus improve accuracy
of selection in the current year. A difference in the intensity
of selection was observed between the two schemes. However,
there was little difference in terms of the accuracy of GEBV.
This might be because only 50 dams from among 400 females
were selected to mate in a year. In the scheme that kept 100%
of selected females in 2 consecutive years, 3.12 females on
average were dams in both years. The relationship coefficient
between fish in the current and previous years was relatively
weak, at 0.016, for non-inbred, unrelated parents. Such a weak
relationship means that there was little advantage, if any, in
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TABLE 4 | Accuracy of GEBV, prediction bias, and rate of inbreeding (mean of 100 replicates) of scenarios allocating different proportions of genotyping to fish in C
(PC% = 0, 20, 40, and 60) and keeping different proportions of selected females in 2 consecutive years (PF % = 100 and 11) for different levels of genetic correlation (rg)
between B and C traits.

PF% = 100 PF% = 11

rg PC% = 0 PC% = 20 PC% = 40 PC% = 60 PC% = 0 PC% = 20 PC% = 40 PC% = 60

Accuracy of GEBV

0.2 0.095 0.514 0.606 0.679 0.091 0.512 0.625 0.67

0.5 0.235 0.521 0.61 0.675 0.238 0.531 0.624 0.672

0.8 0.416 0.56 0.62 0.676 0.41 0.555 0.632 0.67

SE 0.004 0.004 0.003 0.003 0.004 0.004 0.003 0.002

Prediction bias

0.2 0.324 0.979 0.997 0.988 0.306 0.976 0.99 0.989

0.5 0.768 1.021 1.003 1.007 0.779 1.017 1.013 0.997

0.8 1.252 1.152 1.083 1.049 1.234 1.135 1.072 1.039

SE 0.013 0.008 0.006 0.005 0.013 0.008 0.006 0.005

Rate of inbreeding

0.2 0.821 0.892 0.693 0.64 1.247 1.233 1.343 1.188

0.5 0.865 0.986 0.729 0.678 1.172 1.349 1.477 1.322

0.8 0.879 0.964 0.745 0.757 1.191 1.349 1.553 1.434

SE 0.031 0.052 0.029 0.022 0.032 0.038 0.036 0.029

The scenarios assumed heritability of the trait of 0.3 with selective genotyping of top fish in B and random genotyping of fish in C. Standard errors (SE) are the average
values for different rg. GEBV, genomic breeding values; C, commercial environment; B, breeding environment.

TABLE 5 | Variance components (mean of 100 replicates) estimated from the bivariate model for different genotyping scenarios for fish in B and C.

Parameter Simulated values B-Random C-Random B-Top1_1 C-Random B-T1_2B1_2 C-Random B-Top1_1 C-T1_1B1_1 B-Top1_1 C-Top1_1

σ2
gB

1 0.966 0.199 7.093 0.194 0.203

σ2
gC

1 0.958 0.955 0.918 6.676 0.187

σgBgC 0.5 0.475 0.214 1.247 0.486 0.107

σ2
eB

2.333 2.361 1.067 4.913 1.066 1.066

σ2
eC

2.333 2.4 2.4 2.387 4.195 1.077

h2
B 0.3 0.29 0.157 0.591 0.153 0.16

h2
C 0.3 0.285 0.284 0.277 0.614 0.147

Genotyping: random (Random); selection of fish from one of the two top fish and one of the two bottom fish, where the top and bottom fish were the best and worst fish,
respectively, from each sample of 20 fish (T1_2B1_2); selection of the phenotypically best fish from each sample of 20 fish (Top1_1); and selection of the phenotypically
best and worst fish from each sample of 20 fish (T1_1B1_1). The direct genetic variance, residual variance, and heritability are σ 2

gB, σ 2
eB, and h2

B, respectively, for the trait

measured in B and σ 2
gC, σ 2

eC, and h2
C, respectively, for the trait measured in C. The scenarios were simulated with rg of 0.5, heritability of 0.3, 20% of genotyping allocated

to fish in C, and 100% of selected females kept in 2 consecutive years. B, breeding environment; C, commercial environment.

terms of accuracy of selection for the scheme that kept 100% of
selected females compared to the alternative scheme. It should
be noted that when 40% of genotyping was allocated to fish
in C, the accuracy of GEBV was not comparable between
the two schemes, as the selection of females was based on
GEBV in one scheme and on phenotypic selection in the other
(Appendix 2). Nonetheless, the scheme that kept 100% of
selected females in 2 consecutive years was preferred, as it had
a lower rate of inbreeding.

CONCLUSION

In this study, we compared different genotyping strategies in
a breeding program for rainbow trout with limited genotyping
efforts and G×E interactions due to differences between B and
C. We found that to maximize genetic gains in the breeding

program, the best strategy was selective genotyping of top
and bottom fish in C and selective genotyping of top fish
in B. However, selective genotyping led to biased prediction
of GEBV and biased estimates of variance components. Yet
selective genotyping of top fish in B and random genotyping
of fish in C led to unbiased prediction of GEBV when rg
was 0.2 and 0.5. Random genotyping of fish in B and C was
required to obtain plausible, unbiased estimates of variance
components. When rg was 0.2, 0.5, and 0.8, the best scheme
allocated 20% of genotyping to fish in C and kept 100%
of selected females in 2 consecutive years. We recommend
phenotypically selective genotyping of top and bottom fish in
C and top fish in B for the purpose of selecting breeding
animals, and random genotyping of individuals in B and
C for the purpose of estimating variance components when
G×E interactions are present in a genomic breeding program
for rainbow trout.
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