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Massive parallel sequencing (MPS) is revolutionizing the field of molecular ecology by
allowing us to understand better the evolutionary history of populations and species,
and to detect genomic regions that could be under selection. However, the economic
and computational resources needed generate a tradeoff between the amount of
loci that can be obtained and the number of populations or individuals that can
be sequenced. In this work, we analyzed and compared two simulated genomic
datasets fitting a hierarchical structure, two extensive empirical genomic datasets, and
a dataset comprising microsatellite information. For all datasets, we generated different
subsampling designs by changing the number of loci, individuals, populations, and
individuals per population to test for deviations in classic population genetics parameters
(HS, F IS, FST ). For the empirical datasets we also analyzed the effect of sampling design
on landscape genetic tests (isolation by distance and environment, central abundance
hypothesis). We also tested the effect of sampling a different number of populations in
the detection of outlier SNPs. We found that the microsatellite dataset is very sensitive
to the number of individuals sampled when obtaining summary statistics. FIS was
particularly sensitive to a low sampling of individuals in the simulated, genomic, and
microsatellite datasets. For the empirical and simulated genomic datasets, we found that
as long as many populations are sampled, few individuals and loci are needed. For the
empirical datasets, we found that increasing the number of populations sampled was
important in obtaining precise landscape genetic estimates. Finally, we corroborated
that outlier tests are sensitive to the number of populations sampled. We conclude by
proposing different sampling designs depending on the objectives.

Keywords: genomics of populations, landscape genomics, local adaptation, massive parallel sequencing,
Mexican wild maize, sampling design

INTRODUCTION

Massive parallel sequencing (MPS) has revolutionized the fields of molecular ecology, population
genetics, and landscape genetics (Metzker, 2010; Stapley et al., 2010; Ekblom and Galindo,
2011). By increasing the number of polymorphic sites, it is now possible to estimate, with
higher resolution, the genetic diversity, genetic structure, and demographic history of populations
(Allendorf et al., 2010; Schoville et al., 2012; Excoffier et al., 2013; van Meier et al., 2017;
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Aguirre-Liguori et al., 2019a), and the environmental and
geographic mechanisms that determine the connectivity between
populations (Bradburd et al., 2013). MPS also allows for
identifying genomic regions that could be under selection (Foll
and Gaggiotti, 2008; Coop et al., 2010; Stapley et al., 2010; De
Villemereuil and Gaggiotti, 2015).

MPS is powerful in detecting patterns of local adaptation and
understanding how the environment structures genetic diversity;
nevertheless, its potential capacity depends on sampling a large
geographic area, and encompassing an adequate environmental
and genomic representation of the species (Schoville et al., 2012;
De Mita et al., 2013; Tiffin and Ross-Ibarra, 2014). Unfortunately,
for many research groups MPS is still expensive, or in some
other cases, such as rare or endangered species, obtaining a
large number of populations or individuals, and/or enough DNA
for genomic studies can be challenging. In addition, the bio-
informatic processing required for large samples can be limiting,
making it difficult to obtain adequate genomic representation
for enough individuals and populations. A solution has been to
prioritize sequencing power to compensate for fewer individuals
or populations (Schiffels and Wang, 2020). However, in the
context of local adaptation, sampling populations in different
parts of the distribution or different environments can affect the
adequate estimation of genetic parameters (Meirmans, 2015). For
instance limited sampling can make it difficult identifying center-
edge patterns (Eckert et al., 2008), or the detection of outlier
regions that might be under selection (De Mita et al., 2013).
Thus, it is crucial to determine the potential biases associated with
sampling (number of individuals, loci, and populations) and to
define the tradeoff between the sampling effort and the number
of polymorphic regions obtained with MPS that are needed to
obtain robust estimates (Pruett and Winker, 2008; Willing et al.,
2012; De Mita et al., 2013; Fumagalli, 2013).

So far, different studies have evaluated the errors and biases
generated in estimates of genetic parameters when a different
number of populations, the number of polymorphic sites, and
the number of individuals are used (Table 1 summarizes a list
of studies that have evaluated sampling designs on population
genetics studies). In summary, these studies have shown that
parameters of mean genetic diversity (FST , FIS, Hs) are not
affected by sampling a different number of loci, the number of
individuals or the number of populations; however, the variance
decreases as the number of populations, individuals, and loci
increases (see summaries and references in Table 1). In contrast,
these studies have shown that patterns of isolation by distance
and isolation by environment (IBE) across reduced areas are
sensitive to the number of populations sampled and the sampling
design (linear, aggregated, random sampling).

Sampling design has been studied widely. Nevertheless,
the majority of the studies mentioned above (Table 1) were
conducted mainly considering microsatellites, and thus focused
on fewer loci and higher mutation rates than MPS data. In
addition, studies centered on MPS markers were mostly based on
bio-informatic simulations (Table 1). Among these, three studies
have evaluated the effect of sampling design on estimates of
genetic parameters using empirical and genomic data. Puckett
and Eggert (2016) compared data for 15 microsatellite and 1,000

SNPs in Ursus americanus and found that the SNP dataset was
more precise than the microsatellites in assigning the provenance
of 96 individuals sampled across 34 populations. Nazareno et al.
(2017) analyzed different sampling tests of Amphirrhox longifolia
(Violaceae), ∼4,000 SNPs and 70 individuals distributed in two
populations. They found that sampling over eight individuals
per population and 1,000 SNPs did not increase the accuracy
in the estimation of summary statistics. Flesch et al. (2018)
analyzed four populations of rocky mountain bighorn sheep,
14,000 SNPs, and 120 individuals in total, finding that an accurate
estimation of genetic parameters was achieved after sampling 25
individuals per population.

While the studies of Puckett and Eggert (2016), Nazareno et al.
(2017), and Flesch et al. (2018) are without doubt informative
and relevant, they were performed in most cases in relatively
few populations (34, 2, and 4 populations, respectively) and were
based in a relatively small number of individuals (96, 70, 120,
respectively) or SNPs (1,000, ∼4,000, and ∼14,000, respectively).
More importantly, these studies did not test the effect of sampling
design on the detection of outlier SNPs using empirical data.

In this study we aimed at testing the effect of sampling
design to assess the potential biases and errors in estimates of
population genomics parameters, in patterns of isolation, and in
the detection of outlier SNPs while using empirical datasets. For
this, we compared two simulated data sets, two large genomic
datasets (33,454 SNPs, 646 individuals, and 49 populations
obtained with the MaizeSNP50 Genotyping BeadChip; and 9,735
SNPs, and individuals pooled from 47 populations obtained
with the DArTseqTM data), and one microsatellite dataset
(22 microsatellite loci, 527 individuals, and 29 populations) of
Mexican wild maize populations (Zea mays ssp. mexicana and
Zea mays ssp. parviglumis) to explore the effects of sampling
design in the estimation of population genomics parameters
(Hs, FIS, FST), landscape genetics (tests of isolation by distance
and environment), test of centrality (association between genetic
diversity and the distance from the center of the geographic or
niche distribution; Eckert et al., 2008; Lira-Noriega and Manthey,
2014; Aguirre-Liguori et al., 2017), and estimation of candidate
SNPs (outlier SNP detection tests).

In particular, we compared the effect of (1) using MPS vs.
microsatellites markers; (2) using individual data with known
ascertainment bias (MaizeSNP50 Genotyping BeadChip) vs.
pooled non-ascertained biased data (DArTseqTM data); (3)
varying the number of sampled loci (genomic datasets: 100,
1,000, 5,000, 15,000; microsatellite datasets: 5, 10, 15); (4) varying
the number of sampled individuals per population (3, 6, and 9
individuals); (5) changing the number of sampled populations
(5, 10, 20, 30, 40 populations); and (6) testing the effect of the
number of sampled populations in the detection of outlier SNPs.

MATERIALS AND METHODS

Studied Taxon
Mexican wild maize, or teosintes, are divided into two main
subspecies, the lowland subspecies Zea mays ssp. parviglumis
(hereafter parviglumis) and the highland subspecies Zea mays
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TABLE 1 | Summary of 19 studies that have evaluated sampling designs using different markers (Microsatellites, AFLPs, SNPs); empirical vs. simulated data; and varying
the number of loci, individuals, and populations.

References Dataset Type of
sampling

No. of
populations

No. of
individuals

No. of Loci Principal conclusions

Miyamoto et al.
(2008)

Microsatellite Empirical 1 480 4 > 30 individuals increases the
precision in Hs Between 200 and 300
individuals increase the precision of
allelic richness estimates.

Pruett and
Winker (2008)

Microsatellite Empirical 1 200 8 Precision in summary statistics is
increased when > 20 individuals are
genotyped.

González-
Ramos et al.
(2015)

Microsatellite Empirical 2 64 15 Above 6 polymorphic markers are
enough to adequately define the
genetic structure between populations.

Peterman et al.
(2016)

Microsatellite Empirical 5 80 15 Increasing the number of loci does not
change the mean summary statistics,
but increases the precision across
replicates. IBD patterns are sensitive to
fewer loci genotyped.

Sánchez-
Montes et al.
(2017)

Microsatellite Empirical 17–21 (different
species)

547, 652, and
516

18, 16, and 15 > 20 individuals and between 50 and
80 individuals per population are
needed to estimate HS with precision,
and allelic richness, respectively.

Rico (2017) Microsatellite Simulation 17 and 34
(different
species)

5,000 and
3,000

20 Spatial sampling design (random,
systemic, cluster) affect IBD patterns.
Increasing loci, over individuals,
increases the accuracy of IBD
estimates.

Schwartz and
McKelvey
(2009)

Microsatellite Simulation 1 10,000 15 Different sampling designs generate
different FST estimates, and different
Structure outputs.

Landguth et al.
(2012)

Microsatellite Simulation 1 1,000 25 Increasing the number of polymorphic
loci increases the precision of patterns
of isolation by resistance (IBR).

Oyler-McCance
et al. (2013)

Microsatellite Simulation 1 1,000 25 Increasing the number of polymorphic
loci, individuals, and number of alleles
increases the precision and the
accurate estimation of patterns of (IBR).

Landguth and
Schwartz
(2014)

Microsatellite Simulation 64 64 20 Increasing the number of populations
(even if fewer individuals are sampled)
increases the possibility of finding
correct patterns of IBD.

Smith and
Wang (2014)

Microsatellite Simulation 3 100 100 Reducing the number of samples do
not affect Hs, FST estimates, but
reduces the power to detect accurate
allelic richness.

Hale et al.
(2012)

Microsatellite Mixed
(Simulation and
empirical)

4 100 9, 5, 7, and 8 For four different species, sampling
between 25 and 30 individuals are
enough to estimate accurately HS and
FST .

Dubois et al.
(2017)

Microsatellite Mixed
(Simulation and
empirical)

4 4 different taxa:
726, 408, 372,
384

16 Sex proportions do not affect summary
statistics estimates. >20 individuals
increase the precision of summary
statistics. Empirical and simulated data
show different patterns of deviation.

Sinclair and
Hobbs (2009)

AFLPs Empirical 6 159 59 and 117 >30 individuals per population needed
to estimate accurately FST .

Willing et al.
(2012)

SNPs Simulation 2 1,000 21,000 Fewer individuals are needed to
accurately estimate FST for MPS
datasets.

(Continued)
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TABLE 1 | Continued

References Dataset Type of
sampling

No. of
populations

No. of
individuals

No. of Loci Principal conclusions

Fumagalli
(2013)

SNPs Simulation 1 1,000 20,000 Low individual sampling, with a high
genome coverage underestimates the
number of segregating sites, HS

estimates and genetic structure.

Nazareno et al.
(2017)

SNPs Empirical 2 70 3,500 Fewer individuals (8) but with a large
number of SNPs (>1,000) increase the
precision of HS and FST .

Flesch et al.
(2018)

SNPs Empirical 4 120 14,000 >25 individuals (with 10,000 SNPs) are
needed to estimate accurate kinship
indexes (10,000 SNPs), identifying as
identical by descent alleles and FST

values.

Puckett and
Eggert (2016)

Mixed (SNPs
and
Microsatellite)

Empirical 34 Microsatellites
dataset: 506
SNP dataset:
96

Microsatellite
dataset: 15
SNP dataset:
1,000

1,000 SNPs are more precise than
microsatellites for assigning birth areas,
even if fewer individuals are sampled.

ssp. mexicana (hereafter mexicana) (Aguirre-Liguori et al., 2016).
Demographic studies suggest that mexicana was originated from
parviglumis between 20,000 and 60,000 years ago and that
divergence occurred in the presence of gene flow (Aguirre-
Liguori et al., 2019a). Consequently, the Mexican wild teosintes fit
a model of hierarchical gene flow, with higher gene flow occurring
within subspecies. Given the close relatedness of teosintes
to maize, different genomic resources are available (Hufford
et al., 2012; Aguirre-Liguori et al., 2016) and several studies
have analyzed their population genomics (van Heerwaarden
et al., 2011; Hufford et al., 2013; Pyhäjärvi et al., 2013;
Aguirre-Liguori et al., 2017, 2019a,b; Fustier et al., 2017, 2019;
Moreno-Letelier et al., 2020). Briefly, genomic studies suggest
that teosintes have high genetic diversity, show patterns of
isolation by distance and environment, and show strong patterns
of local adaptation (Pyhäjärvi et al., 2013; Aguirre-Liguori
et al., 2017, 2019a,b; Fustier et al., 2017, 2019). The vast
genomic resources and biological knowledge makes teosintes
an ideal system to study the importance of sampling design in
analyses of genetic diversity, isolation patterns, and identification
of candidate SNPs.

Datasets
Simulated Datasets
The majority of tests that have analyzed the effect of sampling
design on the estimations of summary statistics using genomic
information have been performed with simulated data (Table 1).
The advantage of using simulated data is that it allows for
modeling an evolutionary process based on known demographic
parameters. Here we simulated two large genomic datasets to
analyze the effect of sampling design on the estimations of
summary statistics and then compared the results with two
empirical genomic datasets and one microsatellite dataset.

We used Fastsimcoal 2 (Excoffier and Foll, 2011; Excoffier
et al., 2013) to simulate two demographic models consisting
of 50 populations divided into two genetic clusters fitting a
model of hierarchical structure (i.e., two subspecies of teosintes).

Populations belonging to the old genetic cluster (i.e., parviglumis)
coalesced with their common ancestor approximately 140,000
generations ago (Ross-Ibarra et al., 2009). Populations belonging
to the young genetic cluster (i.e., mexicana) coalesced with
their common ancestor approximately 20,000 generations ago
(Aguirre-Liguori et al., 2019a). We set the time of divergence
between the two genetic clusters at ∼20,000 generations ago
(Aguirre-Liguori et al., 2017).

The effective population size of the old genetic cluster was set
to ∼5,000 individuals and was 1.5 times higher than the young
genetic cluster. For the first model (the hierarchical model with
high gene flow), migration between populations belonging to the
same genetic clusters were set at a 0.001 probability of a gene
moving from one population to the other back in time. The
migration between populations belonging to different genetic
clusters were 10 times smaller (0.0001). For the second model (the
hierarchical model with low gene flow), gene flow did not occur
between populations belonging to different genetic clusters.

To incorporate variation in the demographic parameters
across populations, we used the norm function in R to create
a normal distribution for each demographic parameter (Ne,
m, T, and inbreeding index) with the mean values detailed
above. Next, for each population we sampled a random value
for each parameter.

We created the fastsimcoal inputs using the fscWrite function
of the strataG package of R. For each model we used the
command line fsc26 –i input –n 1 –g –I to simulate 30,000
SNPs (with an infinite site model) and 15 diploid individuals per
population. Finally, we used strataG (Archer et al., 2016) and
the adegenet (Jombart, 2008) pacakage of R 3.6.1 (R Core Team,
2019) to create for each simulated dataset a genind and a hierfstat
input object for further analyses.

Empirical Datasets
For the empirical datasets, we combined the MaizeSNP50
Genotyping BeadChip data published by Pyhäjärvi et al. (2013)
and Aguirre-Liguori et al. (2017) to obtain a total dataset
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consisting of 49 populations, 24 belonging to mexicana and 25 to
parviglumis (Supplementary Figure S1), including between 12
and 15 individuals per population, and 33,454 SNPs. Since the
MaizeSNP50 Genotyping BeadChip was designed to maximize
variation in maize, it has ascertainment bias (Albrechtsen et al.,
2010). Therefore, this dataset is expected to include SNPs that are
in high frequency across distant teosintes populations and thus
might overestimate genetic diversity and underestimate genetic
differentiation.

We also downloaded the DArTseq data from Aguirre-Liguori
et al. (2019a), which are composed of pooled DNA of 47
populations (∼12 individuals per population), 21 belonging to
parviglumis and 26 to mexicana (Supplementary Figure S1),
and 9,735 SNPs. The DArTseq dataset was obtained by initially
cutting the DNA using restriction enzymes (Sansaloni et al., 2011;
Ren et al., 2015) and has lower ascertainment bias (see Aguirre-
Liguori et al., 2019a). This dataset has a frequency spectrum with
lower bias than the 50K dataset and is expected to generate more
robust demographic inferences (Albrechtsen et al., 2010). We
called the BeadChip and the DArTseq datasets the 50K and DTS
datasets, respectively.

To be able to compare deviations obtained from MPS and
microsatellite markers (Table 1), we also used the microsatellite
dataset from Gasca-Pineda et al. (2020), which includes 527
individuals distributed across 29 populations, 14 belonging to
parviglumis and 15 to mexicana (Supplementary Figure S1).
This microsatellite dataset consists of 22 loci and 355 alleles.

For each population and dataset, we downloaded the longitude
and latitude at which they grow (Supporting Information in
Aguirre-Liguori et al., 2017, 2019a; Gasca-Pineda et al., 2020). We
also obtained the score of the first principal component (PC1)
describing temperature for each population. The environmental
data were obtained from 19 bioclimatic variables downloaded
from WorldClim at a 30◦arc Resolution, and the PCA was
performed using the prcomp function in R across all variables
and populations.

These three datasets share many populations (Supplementary
Figure S1). The microsatellite dataset is a subsample of the
50K dataset and therefore shares all populations with the 50K
dataset. The 50K and DTS datasets shared 29 populations.
Also, the three datasets are distributed along the entire
geographic and environmental distribution of teosintes (Hufford
et al., 2012; Pyhäjärvi et al., 2013; Aguirre-Liguori et al.,
2017, 2019a). They are composed of many individuals per
population (between 9 and 26 individuals per population) and
contain a large number of SNPs or microsatellite markers,
distributed along the 10 chromosomes of teosinte. Importantly,
the 50K and DTS datasets are the largest genomic datasets
based on population sampling (not accessions) that have
been developed so far in teosintes. Therefore, we considered
these datasets (and the microsatellite dataset) as the samples
representing the most accurate data (i.e., the “real” data
for the purpose of this work) and estimated the deviations
in the estimations of summary statistics, landscape genetics,
and tests for local adaptation, generated by sampling a
different number of loci, the number of individuals, and the
number of populations.

We used adegenet and hierfstat (Goudet, 2005) packages of R
to generate genind, genpop, and hierfstat objects to manipulate
the data. All these objects are indexable, and therefore allow
subsampling random individuals, SNPs, microsatellite markers,
subspecies, and/or populations.

For all subsamplings we combined the mexicana and
parviglumis populations. However, complex demographic
scenarios can bias the estimations of divergence between
populations when only few populations are sampled (Chikhi
et al., 2010; Heller et al., 2013; Robinson et al., 2014). For instance,
hierarchical structure increases the FST between populations
belonging to different genetic groups (Slatkin and Voelm, 1991)
and reduced sampling can bias estimations of divergence if more
populations are sampled within one genetic cluster than between
genetic clusters. Alternatively, incomplete lineage sorting can
underestimate the amount of divergence between populations
belonging to different genetic clusters (Lack et al., 2010; Orozco-
Terwengel et al., 2011; Jones, 2019). To test the effect of sampling
bias associated with complex demographic structures, we also
tested the effect of sampling design by analyzing each subspecies
separately. Since the patterns were similar between the entire
datasets and the subspecies datasets, for simplicity we present
the results of the combined datasets and show results of each
subspecies as Supplementary Information.

Estimation of Population Genetics
Parameters
For each simulated dataset, the entire genomic datasets, and each
subsampling within dataset (see below for descriptions of the
subsamplings), we used the basic.stats function of the hierfstat
package in R to calculate the sample HS and FIS and FST . For
each summary statistic, we obtained the mean value across loci
for each population.

For the empirical datasets, we also used environmental data to
analyze landscape genetic associations. For the genomic datasets,
we used the BEDASSLE package (Bradburd et al., 2013) in R to
calculate the pairwise FST between populations (Weir and Hill,
2002). For the microsatellite datasets, we used the pairwise.fst
function of the hierfstat package in R to calculate Nei’s pairwise
FST between populations.

We tested patterns of isolation by distance (IBD) and IBE
using multiple regressions of distance matrices (MRM function
from the ecodist package; Goslee and Urban, 2007) to test the
association between pairwise genetic distance (FST) as a response
variable and the environmental and geographic distances as
predictive variables. We performed 1,000 permutations in each
test. The advantage of MRM tests is that they allow for
simultaneous testing in both the environmental and geographic
distances, and determine the relative contribution of each
variable (Lichstein, 2007).

Finally, we tested the central abundance hypothesis (CAH),
which suggests that genetic diversity should reduce as a function
of the distance from the geographic or niche centroid (Eckert
et al., 2008; Martínez-Meyer et al., 2012; Lira-Noriega and
Manthey, 2014). For the CAH tests, we used simple linear
regressions (lm function in R) to test the association between
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Hs as the response variable and the distance to the niche
and geographic centroids as independent variables (which were
estimated as the Euclidian distances from the geographic and
niche centroids; for more details of the methods see Aguirre-
Liguori et al., 2017).

Sampling Designs
First we analyzed the effect of sampling design with the
estimation of Hs, FIS, and FST using the simulated dataset. Since
we controlled the demographic parameters of the simulations,
we were able to generate an expectation of how sampling design
would affect the estimation of summary statistics. Next, we used
the empirical dataset to validate the simulated results.

Subsampling of the Number of Loci and the Number
of Individuals per Population
We tested the effect of sampling a different number of SNPs
or microsatellite markers per population. We used R custom
scripts (available as Supporting Information- function num_locs)
to extract data from the entire empirical and genomic datasets:
for the DTS dataset 100 (∼1%), 1,000 (∼10%), and 5,000
(∼51%) random SNPs; for the 50K dataset and the simulated
datasets100 (∼0.3%), 1,000 (∼3%), or 15,000 (∼45%) random
SNPs; and for the microsatellite dataset 5 (∼22%), 10 (∼45%),
and 15 (∼68%) random markers. For the simulated, the 50K,
and the microsatellite datasets, we also tested the effect of
sampling different estimates of individuals per populations. We
extracted randomly for each population 3, 6, and 9 individuals
[available as Supporting Information- function num_inds()].
This was not performed on the DTS dataset, because it was
based on pooled DNA.

For the number of SNPs, the number of microsatellite
markers, and the number of individuals per population, we
re-sampled randomly and without replacement each set 1,000
times, we generated genind/hierfstat/BEDASSLE input objects
and estimated the summary statistics described above (Hs,
FIS, FST , IBE, IBD, CAH associations). For each parameter
and each replicate we obtained the mean summary statistic
across populations and generated a distribution based on 1,000
summaries corresponding to each subsampling.

Subsampling the Number of Populations
To test the effect of the number of populations in the
estimation of the parameters described above (Hs, FIS, FST ,
IBE, IBD, CAH associations), we performed random sampling
designs. For the simulated and the genomic datasets, we
sampled 5 (∼10%), 10 (∼20%), 20 (∼40%), 30 (∼61%), and
40 (∼81%) random populations from the 49 (50K) and 47
(DTS) populations described above (Supplementary Figure S1).
For the microsatellite dataset, we sampled 5 (∼17%), 10
(∼34%), and 20 (∼69%) random populations from the 29
populations described above (Supplementary Figure S1). Again,
we generated 1,000 subsamples without replacement [available as
Supporting Information- function num_pops ()], and for each
replicate we generated genind/genpop/hierfstat/BEDASSLE inputs
and in each case, we calculated the estimates described above, and
for summary statistics we estimated the mean across populations.

Tradeoff Between Number of Individuals and
Populations
To test the tradeoff between the number of individuals and
number of populations, for the 50K dataset we also tested three
sets of sampling designs changing the number of individuals
sampled per population, going from fewer individuals in many
populations to many individuals sampled in fewer populations.
For three scenarios (3 individuals and 49 populations; 6
individuals and 24 populations; 9 individuals and 10 populations)
we generated 1,000 subsamples and estimated the parameters
described above.

Comparison Between Samplings and Between
Datasets
For each subsampling, we compared qualitatively the simulations
to the “real” dataset, to determine the deviations generated
by different sampling designs. To be able to compare between
different datasets (including the simulated and empirical
datasets), we also compared the magnitude of the deviation
between sampling designs and between datasets using the
relative error between each subsampling and the estimated
“real” summary statistics described above. The relative error was
calculated as (Xest – Xsim)/Xest , where Xest is the summary statistic
estimated for the “real data” set and Xsim is the summary statistic
estimated for a given subsampling.

Test for Local Adaptation
Detecting outlier SNPs is challenging, since high genetic structure
can inflate false positives (Schoville et al., 2012; De Mita et al.,
2013; Tiffin and Ross-Ibarra, 2014). We tested the effect of
varying the number of populations in detecting outlier loci.
For this, we subsampled without replacement 5, 10, 20, and 30
random populations from the entire 50K dataset (49 populations
and between 12 and 15 individuals per population, see Aguirre-
Liguori et al., 2017 for more details). Since outlier analyses
are time-consuming, we only generated 10 replicates of each
sampling design, and we subsampled 10,000 SNPs from the 50K
dataset. We also ran the analysis 10 times with the 49 populations
to have a comparable number of replicates. We chose 10,000 SNPs
to reduce computing time and because our results (see below)
show that over 1,000 SNPs are enough to identify adequately
the genetic structure between populations, and therefore reduce
false positives.

For each sample, we used Bayescenv (De Villemereuil and
Gaggiotti, 2015) to identify outlier SNPs associated to PC1 (as in
Aguirre-Liguori et al., 2017, 2019a). Bayescenv decomposes FST
based on a signal shared between all loci (β), a signal specific
to each locus (α), and the association of the SNP with the
environmental variable tested (γ). We used default parameters
to run the analyses and we defined outlier SNPs as those that
had q-val < 0.05, which is a conservative approximation to
detect outlier loci (De Villemereuil and Gaggiotti, 2015). For each
replicate of each sampling design, we recorded the highest FST
value for a SNP and the number of SNPs that had q-val < 0.05.

We used the entire dataset to identify outlier SNPs. We
considered this dataset as presenting the “real outlier SNPs”
representing the local adaptation to all environmental conditions
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in which teosintes grow. We tested whether different sampling
designs based on a different number of populations sampled
would identify a subset of the outlier SNPs detected for the
entire dataset. We used the intersect function in R to detect the
SNPs that were considered as “outlier” for all replicates in each
sampling design. We also used the venn function of the gplots
package in R to identify SNPs that were the candidate (q-val)
for all sampling designs (5, 10, 20, 30, and 49 populations) and
the 10 replicates.

RESULTS

Summary Statistics for the Entire
Datasets
Simulated Datasets
We generated two simulated datasets with hierarchical structures,
but with different levels of gene flow between populations
belonging to different genetic clusters.

For the two models, we found that estimated genetic
diversity was high and the fixation index low (Table 2 and
Supplementary Figure S2), as it has been found in teosintes.
As expected, we found that the hierarchical model with high
gene flow had a lower mean FST than the hierarchical model
with low gene flow (Table 2 and Supplementary Figure S2).
Importantly, we found large variance between populations for
Hs and FIS, which is similar to what has been observed in
teosintes (Aguirre-Liguori et al., 2017). The values of FST were
close to 0, and for many replicates we found negative values
approximate to 0 (see Supplementary Figure S2). Negative FST
values occur when sample size corrections are used, and are
usually considered to be 0. However, to be able to compare the
relative error associated to sampling design, we recorded the FST
estimated from hierfstat.

In brief, we consider that the simulated datasets were adequate
datasets to generate expectations of how sampling designs would
affect the estimation of summary statistics.

Empirical Datasets
We considered the entire datasets (50K, DTS, and microsatellite)
as those revealing the “real” or most accurate patterns of genetic
diversity across teosinte populations. Table 2 shows the mean
HS, FIS, and FST across populations, patterns of isolation by

distance and environment, and the test of central abundance,
estimated for the DTS, 50K, and microsatellite datasets (the
distribution across different sampling designs are found in
Supplementary Table S1).

We found striking differences among the datasets for the
estimated mean across populations of Hs, FST , and FIS (Figure 1
and Table 2). We detected that the DTS dataset presents low
mean genetic diversity across populations (Hs = 0.13), the 50K
intermediate values (Hs = 0.225), and the microsatellite data
high values (Hs = 0.69). In parallel fashion, we found that DTS
shows the highest mean genetic structure across populations
(FST = 0.393), followed by the 50K dataset (FST = 0.246), and
finally the microsatellite dataset (FST = 0.11). We were not
able to calculate FIS for the DTS dataset (as they were derived
from pooled DNA), but we also found differences between the
estimated mean using the 50K (FIS = 0.065) and microsatellite
datasets (FIS = 0.19).

In contrast to the summary statistics, for the three datasets we
found similar patterns of IBD and IBE (Figure 2), based on the
MRM tests (Figure 2 and Table 2). For the three datasets, we
observed that patterns of IBD and IBE were positive, indicating
that there is isolation by distance or by environment. Finally, for
the three experimental datasets we observed negative associations
between genetic diversity and the distance to the geographic
and niche centroids (Figure 3 and Table 2), indicating that
as populations grow further away from the center of their
geographic distribution or the optimum ecological conditions,
their genetic diversity is lower.

Varying the Number of Sampled
Individuals
As mentioned above, this test was performed with the
simulated datasets, the 50K, and the microsatellite datasets,
since they were based on individual samples. The DTS dataset
was generated from pooled DNA and therefore individual
genotypes were not known.

For the two simulated datasets, we found that subsampling
fewer individuals increased the variance and relative error in
the estimation of Hs, FIS, and FST across 1,000 replicates
(Supplementary Figure S2). Importantly, for FIS estimations we
found that when fewer individuals were sampled, the mean value
across the 1,000 replicates was lower than the complete dataset,

TABLE 2 | Summary statistics estimated for the DTS, 50K, and microsatellite datasets of Mexican wild maize.

Mean estimate Hierarchical high flow Hierarchical low flow DTS 50K Microsatellite

HS 0.26 (0.05) 0.32 (0.03) 0.130 (0.05) 0.225 (0.04) 0.691

F IS 0.02 (0.18) 0.01 (0.18) 0.069 (0.04) 0.182

FST 0.393 0.246 0.106

MRM: geographic (β) 0.027 0.025 0.013

MRM: environmental (β) 0.011 0.011 0.004

CAH: geographic (β) −0.014 −0.014 −0.041

CAH: environmental (β) −0.006 −0.008 −0.031

The numbers in parenthesis correspond to standard deviation of the mean values. For the mean and maximum and minimum values across 1,000 replicates of each
sampling designs (see Supplementary Table S1).
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FIGURE 1 | The effect of sampling designs on the estimation of summary statistics for genomic (left panels) and microsatellite (right panels) datasets: (A) HS; (B) F IS;
(C) FST . Boxplots show the distribution of mean summaries estimated for 1,000 replicate simulations varying the number of individuals, number of SNPs, and
number of populations sampled. F IS was not possible to obtain for the DTS dataset because it is based on pooled data.
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FIGURE 2 | The effect of sampling designs on the analysis of patterns of isolation for genomic and microsatellite datasets: (A) IBD-MRM test; (B) IBE-MRM test.
Boxplots show the distribution of associations estimated for 1,000 simulations varying the number of individuals, number of SNPs, and number of sampled
populations. The dotted gray line shows the 0 value.

FIGURE 3 | The effect of sampling designs on the estimation of the central abundance hypothesis for genomic and microsatellite datasets: (A) the association
between distance to the geographic centroid and Hs; (B) the association between distance to the niche centroid and Hs. Boxplots show the distribution of
associations estimated for 1,000 simulations varying the number of individuals, number of SNPs, and number of sampled populations. The dotted gray line shows
the 0 value.

indicating that this summary statistic was the most sensitive to
the number of individuals sampled.

These patterns were similar for the empirical 50K and
microsatellite datasets. Briefly, we found that sampling fewer
individuals did not strongly affect the estimates of Hs (Figure 1A
and Supplementary Figure S3). Also, in accordance to the
simulated data, we found that changing the number of sampled
individuals generated strong deviations and a higher relative
error for the estimation of FIS for the 50K and microsatellite
datasets (Figure 1B and Supplementary Figures S3, S6).

In contrast to the simulated datasets, we found that sampling
a different number of individuals generated moderate deviations
for estimates of FST for the 50K dataset (Figure 1C and
Supplementary Figures S3, S6) and large deviations for the

estimates of FST for the microsatellite dataset (Figure 1C and
Supplementary Figures S3, S6). We found that the relative error
was higher for FIS estimations when using the 50K dataset, but
higher for microsatellites when estimating FST (Supplementary
Figure S6). Importantly, in both datasets we found that sampling
fewer individuals reduced the FIS estimates and increased the FST
estimates (Figures 1B,C).

For the empirical datasets, we also estimated the effect
of sampling a different number of individuals in different
landscape genetic tests. Even if we found increased variance
in the estimation of FST , it was interesting to note that we
did not find strong deviations for summary statistics describing
patterns of isolation by distance and environment (Figure 3
and Supplementary Figure S4). Finally, in accordance to low

Frontiers in Genetics | www.frontiersin.org 9 September 2020 | Volume 11 | Article 870

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00870 September 17, 2020 Time: 18:47 # 10

Aguirre-Liguori et al. Population Genetics Minimum Sampling Design

variance in the estimation of Hs, we found low biases in the
associations between genetic diversity and ecological variables
(Figure 3 and Supplementary Figure S5). The ranges of the
maximum and minimum values were close to the “real” estimates
for the 50K dataset.

It is interesting to note that FIS was the only summary
statistic that was very sensitive to the number of individuals
sampled for the simulated datasets, and the empirical 50K and
microsatellite datasets. Since this pattern is shared between the
simulated and the empirical datasets, the differences are not
associated with increased missing data or null alleles. To identify
what could be generating these differences, we analyzed the
FIS values for all loci across populations. We found that fewer
individuals sampled generated larger “NaN (Not a Number)”
values across loci. This is the result of loci appearing as fixed since
a larger number of individuals are need to sample low frequency
alleles. We correlated the mean FIS across populations and the
number of “NaN” values estimated per loci per population and
found that the reduction in FIS correlated with an increased
number “NaN” obtained when fewer individuals were sampled
(Supplementary Figure S7).

Varying the Number of Sampled Loci
Next, we evaluated the effect of sampling a different number
of loci in the estimation of summary statistics. For the two
simulated datasets, we found that sampling fewer loci slightly
increased the relative error and the variance in the estimation
of the summary statistics across replicates (Supplementary
Figure S2). Interestingly, the variance and relative error was
stronger for Hs estimations when 100 loci were sampled than
for the other summary statistics (Supplementary Figure S2).
Sampling 1,000 and 15,000 random SNPs did not generate
strong differences.

Sampling a different number of loci for the three empirical
datasets showed similar patterns to the simulated datasets. In
all cases, sampling fewer loci increased slightly the variance and
the relative error across replicates for all estimates (Figures 1–3
and Supplementary Figures S3–S6). Importantly, we found
that the variance and relative error across replicates was higher
for the microsatellite dataset (especially when sampling five
microsatellites, Supplementary Figure S6), followed by the DTS
dataset, and finally when sampling each subspecies using the 50K
dataset (Supplementary Figures S3–S5).

Even though decreasing the number of loci increased the
variance, it was interesting to note that estimated distributions
fell close to the estimates for “real” datasets (Supplementary
Table S1). For HS and FIS, sampling fewer microsatellite loci
produced an important increase in the variance across replicates.

We also tested the effect of sampling a different number of
loci in the estimation of landscape genetic statistics. In these tests
we only found deviations with respect to the “real” datasets for
the association between HS and the geographic centroid, where
we found that sampling fewer DTS and 50K SNPs reduced the
association (β got closer to 0).

Importantly, sampling 1,000 or 15,000 of the 50K SNPs;
1,000 or 5,000 of the DTS SNPs; and 10 or 15 loci of the
microsatellite dataset generated similar summary statistics and

reduced the relative error in the estimation of the parameter
(Supplementary Figure S6).

Varying the Number of Sampled
Populations
Finally, we tested the effect of sampling a different number of
populations in the estimation of summary statistics. For the
simulated datasets, we found that sampling fewer populations
increased the variance and relative error across the three
summary statistics. For all summary statistics we found that the
mean value across the 1,000 replicates of the different number of
populations sampled were similar to the entire dataset, except for
the distribution of FST in the hierarchical model with low gene
flow where we found a lower mean value as fewer populations
were sampled (Supplementary Figure S2).

For the empirical datasets, varying the number of populations
generated similar mean values to those found for the “real”
datasets. Also, for the three datasets, sampling a small number
(5 and 10) of populations generated deviation and importantly
increased the relative error compared to the real estimated
values for all summary statistics and in particular for patterns of
isolation by distance and environments and patterns associated
with the tests of centrality (Figures 2, 3).

The variance and relative error across datasets dropped
after approximately 30 populations for the genomic datasets
(see ranges in Supplementary Table S1 and Supplementary
Figures S5, S6), but remained high for the microsatellite
dataset. The relative error was in general higher for samplings
using the DTS dataset, except for patterns associated with
the test of centrality, for which the 50K dataset presented a
higher error (Supplementary Figure S6). Also we found that
when sampling fewer populations, the microsatellite dataset
presented a lower relative error than the 50K and DTS datasets
(Supplementary Figure S6).

Importantly, sampling fewer populations generated a high
variance and higher relative error in the estimation of all
parameters, except for FIS and FST for the microsatellite
dataset (Figures 1B,D) and FIS estimates for the 50K dataset
(Figure 1 and Supplementary Figures S3–S6). In these cases, the
deviations across replicates when sampling fewer populations was
lower than the variance generated by sampling a different number
of individuals (Figure 1 and Supplementary Figure S6).

For patterns of IBD and IBE, we also found that sampling
fewer than 10 populations generated in some replicates
incorrect association estimates. The real value showed positive
associations, isolation by distance or environment (Table 2),
but for 5 and 10 sampled populations we found that up to
18 and 7% of sample replicates generated negative associations,
respectively (Supplementary Table S2; see changes in signs in
Supplementary Table S1). For tests of association between HS
and ecological variables, this was even more sensitive for the
genomic datasets, since we found up to 4.6% of positive estimates
(when the entire dataset was negative) for 30 populations when
testing association between Hs and the distance to the niche
centroid. However, we found that the DTS was less sensitive
to deviation for associations between ecological variables and
summary statistics (Figure 3).
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FIGURE 4 | The tradeoff between the number of individuals and the number of populations sampled for all summary statistics using the 50K dataset. We tested the
effect of sampling more individuals in fewer populations and fewer individuals in many populations.

Finally, we found that the microsatellite dataset was more
sensitive for isolation by distance and environment patterns (we
found up to 30% of samples showed opposing patterns to the
entire dataset when sampling 5 populations; Supplementary
Table S2), and less sensitive for tests of CAH (we found up
to 1.8% of opposing results when sampling 20 populations;
Supplementary Table S2).

Tradeoff Between Number of Individuals
and Number of Populations
For the 50K dataset, we also contrasted the effect of sampling
fewer individuals in many populations or many individuals
in fewer populations (3 individuals/49 populations, 6
individuals in 24 populations, and 9 individuals in 10
populations). For all summary statistics, except FIS, we
found that sampling more populations but fewer individuals
generated more accurate results and lower biases (Figure 4 and
Supplementary Figure S8).

Varying the Number of Populations in the
Identification of Candidate SNPs
Figure 5A shows that for 5 and 10 sampled populations, the
maximum FST for a locus found by bayescenv across replicates
was higher than for the rest of the sampling designs. We also
tested the number of candidate SNPs across replicates. We

found more candidate SNPs when sampling a higher number of
populations (Figure 5B).

We also evaluated how many shared outlier SNPs were
identified by all replicates and sampling designs. Interestingly,
we only found 1 SNP that was identified for the 10 replicates
of the 30 and 49 populations sampling designs (Figure 5C).
The lack of shared SNPs could be explained by the nature of
Bayescenv, that identifies genome by environment associations.
If the populations that were sampled in each test have different
ecological settings, we would not expect to find the same outlier
SNPs. Therefore, we also analyzed each replicate independently to
identify how many outlier SNPs were shared with the 49 sampling
designs (Supplementary Table S3). For replicates of 5 and 10
populations, less than 10% of SNPs were shared with the SNPs
identified for 49 populations. For 20 populations, one replicate
identified 46% of shared SNPs with 49 populations; and for 30
populations 4 replicates identified > 51% of shared outlier SNPs
(Supplementary Table S3).

DISCUSSION

It remains challenging for many researchers to generate large
genomic samples, posing a tradeoff between the information
obtained with MPS and the number of populations sampled
(Meirmans, 2015). Here we used two simulated datasets to
estimate the effect of sampling size on the estimation of
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FIGURE 5 | The effect of sampling a different number of populations on the identification of outlier SNPs. (A) Distribution of the highest FST identified for a locus
across simulations. (B) Number of outlier SNPs (q-val) identified for each replicate for a different number of sampled populations. (C) The Venn diagram shows the
number of shared SNPs identified across replicates and the number of populations sampled using q-val to identify outliers.

summary statistics. To confirm the effect on simulated results,
we used empirical genomic datasets and a microsatellite dataset
obtained for a large sample of wild maize, the teosintes (Zea
maiz ssp. parviglumis and Zea mays ssp. mexicana), to test if
the deviations generated by different sampling designs, while
estimating classic population genomics and landscape genomics
estimates. Depending on the objectives, and the amount of data
that can be produced using genomic platforms, we propose
some suggestions for sampling designs that could be considered
according to our results (Table 3). It is important to consider
that these recommendations might be more reliable for species
with life history traits similar to Mexican wild maize, and caution
should be taken since life history can have an important effect in
summary statistics (Hamrick and Godt, 1996; Nybom, 2004).

Comparing Datasets
We used Fastsimcoal 2 as a tool to simulate large samplings and
complex demographic scenarios similar to teosintes. Except for
FST estimations, we found that the values of genetic diversity and
variance between populations (Table 2) were similar between the
simulated and empirical dataset.

For the empirical datasets, we found that the most evident
differences between datasets were associated to HS, FST , and FIS
estimates. These differences are expected, given the properties
of each dataset. First, we found that the microsatellites had the
highest HS and lowest FST , which is a well-known pattern, and
can be explained by their large number of alleles and mutation
rates (Ellegren, 2004). Second, the 50K dataset had higher genetic
diversity and lower FST compared to the DTS dataset. This is
concordant with the design of the 50K dataset to detect highly
polymorphic SNPs in maize, and therefore has ascertainment
bias (Albrechtsen et al., 2010). In contrast, the DTS dataset was
generated using restriction enzymes (similar to GBS and other
reduced representation methods, including RADtags), and has
lower ascertainment bias (Sansaloni et al., 2011; Ren et al., 2015).

Sampling a Different Number of Loci
In general, it has been suggested that if fewer populations and
individuals are sampled, increasing the number of loci can
increase the accuracy of estimates (Oyler-McCance et al., 2013;

Peterman et al., 2016; Flesch et al., 2018; see summary and
references in Table 1). In this study, we observed that after
increasing the number of SNPs from 1,000, or 10 microsatellites
to 5,000 (DTS), 15,000 (50K) SNPs, or 20 microsatellite loci
we found similar patterns for all summary statistics and
reduced variance and relative errors estimates across replicates
(Figures 1–3 and Supplementary Figure S6).

These are interesting observations, since depending on the
study, it may be convenient to reduce genome or microsatellite
coverage to increase the number of sampled populations,
especially when patterns of isolation and demographic history are
analyzed. However, it is important to notice that if the objective
is to find targets of selection then, increasing the number of
SNPs is critical in detecting stronger neutral expectations and
to reduce false positives (De Mita et al., 2013), as well as
increase the probability of finding SNPs that fall within coding
or regulating regions (Metzker, 2010; Ekblom and Galindo, 2011;
Glenn, 2011).

Sampling a Different Number of
Individuals
We were able to compare the effect of sampling a different
number of individuals for the simulated, 50K, and microsatellite
datasets. For these datasets, we corroborated that sampling fewer
individuals increased the variation across sampling (Miyamoto
et al., 2008; Sinclair and Hobbs, 2009; Hale et al., 2012;
Sánchez-Montes et al., 2017; see summary and references in
Table 1), but more importantly, it underestimated the FIS
inbreeding estimation and overestimated the FST (Figure 1B and
Supplementary Figures S2, S3, S6).

These results suggest that for genomic datasets, as long as
many populations are sampled, and Hs, FST , patterns of isolation,
or patterns associated to ecological variables are tested, the
number of individuals is not as sensitive as the number of
populations sampled covering a large portion of the distribution
(Willing et al., 2012; Landguth and Schwartz, 2014). In fact, we
found that it is more convenient to sample fewer individuals in
as many populations as possible than the opposite (Figure 4 and
Supplementary Figure S8).
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TABLE 3 | Recommendations for sampling designs depending on study objectives.

Estimate Number of
individuals

Number of loci Number of
populations

Considerations

HS Not sensitive (> 6
individuals)

Sensitive (>1,000 SNP
loci; > 15 microsatellite
loci)

Sensitive (> 20
populations)

Increase the number of loci and populations.
Genomic dataset is less sensitive than microsatellite
dataset.

F IS Very sensitive (>9
individuals)

Sensitive (>1,000 SNP
loci; > 15 microsatellite
loci)

Sensitive (> 20
populations)

Increase the number of individuals over loci and
populations. If fewer populations are available,
increase the number of individuals in those
populations.

FST Microsatellite dataset
was very sensitive
(> 20 individuals). 50K
dataset: Not sensitive
(>9 individuals)

Not very sensitive
(>1,000 SNPs; > 15
loci)

Sensitive (> 20
populations)

Increase the number of populations over the
number of SNPs or individuals.

IBD and IBE MRM
tests

Not sensitive (> 3
individuals)

Not sensitive (>1,000
SNPs, > 15 loci)

Very sensitive (>20
populations)

Sample as many populations as possible even if
fewer individuals or loci are sampled.

CAH tests Not very sensitive (> 3
individuals for genomic
datasets; > 6
individuals for
microsatellite datasets)

Sensitive depending on
the dataset (>1,000
DTS SNPs, > 100 50K
SNPs, > 15
microsatellite loci)

Very sensitive (> 30
populations)

Increasing the number of populations is more
important than increasing the number of loci or
individuals. Microsatellites are more sensitive than
genomic datasets to the number of loci and
individuals, although less sensitive to the number of
populations sampled.

Tests of selection
using bayescenv

Not tested Sensitive (as many as
possible)

Very sensitive (>30–40
populations)

As many SNPs as possible are needed to
differentiate outlier loci, also to increase the
probability of finding loci within selective regions.
Increase as much as possible the number of
populations, covering the largest geographic and
environmental distribution. A possibility is to use
pooled-sample DNA.

The numbers within parenthesis indicate how many individuals, populations, or loci should be sampled for different objectives according to our simulations.

On the contrary, studies that depend on FIS values (i.e., genetic
analyses in conservation studies; or studies that aim at detecting
non-random mating), or that are performed using microsatellite
data, should sample as many individuals as possible to reduce
the bias generated by missing data (Flesch et al., 2018) or by
identifying low frequency alleles (Supplementary Figure S7). If
testing local adaptation is not a priority, then sampling fewer
populations, but with many individuals (>20) might be more
important, and with special focus on sampling many individuals
belonging to populations that are of particular interest for the
research group (i.e., threatened or vulnerable populations).

For endangered species for which fewer populations and
individuals exist, if it is a priority to obtain their genetic
parameters, new bioinformatics tools have been developed to
estimate the demographic history based on fewer individuals
sampled (Gronau et al., 2011; Schiffels and Wang, 2020). The
problem is that these methods rely on large amounts of SNPs,
which can be challenging to obtain if no reference genomes are
available (Glenn, 2011). In such cases, it might be more important
to conserve the few individuals that exist irrespective of their
genetic diversity.

Sampling a Different Number of
Populations
We tested the effect of randomly sampling a different number of
populations for all datasets. Sampling above 10 populations did

not generate strong deviations between sampling designs and the
“real” sample for the three datasets. However, we found that the
number of populations was strongly associated with the accuracy
and a reduction in the relative error of the mean estimates
across replicates (Figures 1–3, Supplementary Figures S2–S6
and Supplementary Table S1). Sampling a different number of
populations with the microsatellite dataset generated a lower
variance and relative error across replicates than the genomic
datasets when estimating patterns of isolation using the MRM test
(Figures 2A,B and Supplementary Figure S6).

Importantly, we found that sampling fewer populations in
some cases can result in opposite associations (negative instead
of positive) compared to the real dataset for patterns of
isolation and ecological associations (i.e., less than 10 populations
for patterns of isolation, and less than 30 populations for
ecological associations). Although these incorrect associations
were recorded only for a few replicates (Supplementary
Table S2), it is important to notice that an overestimation of false
associations could result by not sampling the entire geographic
and environmental distribution (see also Chao et al., 2014;
Rico, 2017).

The fact that fewer populations increase variance across
replicates of genomic datasets is important, because many
genomic studies usually sample fewer populations in order to
increase the genomic coverage (Meirmans, 2015). Our results are
concordant with different studies performing simulations that
have shown that increasing the number of populations increases
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the accuracy in estimates of summary statistics and especially
in landscape genetics studies (Schwartz and McKelvey, 2009;
Landguth and Schwartz, 2014; see summary and references in
Table 1). In fact, we found that it is more convenient to sample
more populations with fewer individuals than fewer populations
with many individuals (Figure 4 and Supplementary Figure S8).
Thus, we propose that if detecting local adaptation is not
an objective and FIS is not being measured, it is more
important to sample many populations (∼30) even if fewer
individuals per population are considered (Figure 4) and fewer
SNPs are obtained.

Sampling a Different Number of
Populations for Detecting Outlier SNPs
An important advantage of MPS is that it allows detecting
candidate loci under selection. However, an important limitation
of incorrect sampling while detecting candidate loci is that
demographic history and complex genetic structure can increase
false positives (Schoville et al., 2012; De Mita et al., 2013; Tiffin
and Ross-Ibarra, 2014). Since adaptive loci could be important
for conservation (Allendorf et al., 2010) and to respond to
environmental change (Bay et al., 2018; Exposito-Alonso et al.,
2018; Aguirre-Liguori et al., 2019b), many efforts have been made
to reduce false positives and to better detect genes that could be
under selection.

When we sampled fewer populations, it was interesting to
notice that mean and maximum FST values across loci were
higher (Figure 5A), supporting that sampling fewer populations
reduced the efficacity of estimating adequate estimates of real
FST patterns, increasing the potential of false positives (De Mita
et al., 2013). Interestingly, we found that as more populations
were sampled and FST was estimated more accurately, more
outlier SNPs were identified (Figure 5B). However, it is important
to notice that the majority of the replicates did not identify
the same outlier SNPs than the “real” dataset (Figure 5C and
Supplementary Table S3). While this can be associated with
false negatives, we rather consider that the lack of shared
SNPs could correspond to the identification of outlier loci
associated with different ecological settings. However, it was
relevant to note that even for 30 populations, where we
expect more populations to be shared with the real dataset,
we still found a replicate that had only 5 shared SNPs with
the entire dataset. From these analyses, we conclude that
increasing the number of populations (>30) and SNPs is
very important for detecting candidate SNPs since it allows
the genetic structure to be defined more accurately and
increases the power of the analysis (De Mita et al., 2013);
and that it is important to cover the largest geographic and
environmental distribution. Also, it is relevant to consider
that environmental settings can have important implications
on the SNPs that are identified as outliers. Our tests did
not identify a strong candidate across replicates. Therefore,
if genetic rescue is an objective (i.e., for conservation), it
is important to perform experimental studies to corroborate
the relevance of candidate SNPs (Kardos and Shafer, 2018;
Bell et al., 2019).

These are important observations, especially when not many
populations can be sampled either because organisms have
limited distributions (Chao et al., 2014; Smith and Wang,
2014) or because there is a tradeoff between the amount of
SNPs that can be obtained using MPS and the number of
populations that can be genotyped (Meirmans, 2015). Methods
such as Bayescenv (De Villemereuil and Gaggiotti, 2015),
Bayescan (Foll and Gaggiotti, 2008), and Bayenv (Coop et al.,
2010) do not rely on genotype counts, but rather on allelic
counts. Therefore, they are not sensitive to the correct estimates
of FIS and one alternative can be to use a pooled sample
approach to increase the number of loci and the number of
populations genotyped.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

JA-L and LEE conceived and designed the work. JA-L and JL-S
performed and analyzed the genomic analyses, and wrote the
first version of the manuscript. JG-P generated, performed, and
analyzed the microsatellite datasets. All authors analyzed and
interpreted the combined data and reviewed the manuscript.

FUNDING

JA-L thanks the “Programa de Doctorado en Ciencias
Biomédicas, UNAM” and the scholarship provided by
CONACYT (grant no. 255770). This work was funded by
grants CB2011/167826 (Investigación Científica Básica), CN-
10-393 (UC MEXUS-CONACYT), and M12?A03 ECOS Nord
France – CONACYT-ANUIES 207571.

ACKNOWLEDGMENTS

We thank Yocelyn Gutiérrez Guerrero and Alberto Villasante
Barahona for support in generating the microsatellite datasets.
We thank Sarah Hearne and CIMMYT for generating the
DTS dataset. We thank Erika Aguirre Planter and Laura
Espinosa Asuar for technical support. Finally, we thank
Gabriela Castellanos-Morales, Erika Aguirre-Planter, and the two
reviewers for comments to the manuscript. This manuscript was
submitted at biorxiv (https://www.biorxiv.org/content/10.1101/
2020.03.06.980888v1.abstract).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2020.
00870/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 14 September 2020 | Volume 11 | Article 870

https://www.biorxiv.org/content/10.1101/2020.03.06.980888v1.abstract
https://www.biorxiv.org/content/10.1101/2020.03.06.980888v1.abstract
https://www.frontiersin.org/articles/10.3389/fgene.2020.00870/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.00870/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00870 September 17, 2020 Time: 18:47 # 15

Aguirre-Liguori et al. Population Genetics Minimum Sampling Design

REFERENCES
Aguirre-Liguori, J. A., Aguirre-Planter, E., and Eguiarte, L. E. (2016). “Genetics

and ecology of wild and cultivated maize: domestication and introgression,” in
Ethnobotany of Mexico, eds R. Lira, A. Casa, and J. Blancas (New York, NY:
Springer), 403–416. doi: 10.1007/978-1-4614-6669-7_16

Aguirre-Liguori, J. A., Gaut, B. S., Jaramillo-Correa, J. P., Tenaillon, M. I., Montes-
Hernández, S., García-Oliva, F., et al. (2019a). Divergence with gene flow is
driven by local adaptation to temperature and soil phosphorus concentration in
teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Mol. Ecol.
28, 2814–2830. doi: 10.1111/mec.15098

Aguirre-Liguori, J. A., Ramírez-Barahon, S., Tiffin, P., and Eguiarte, L. E. (2019b).
Climate change is predicted to disrupt patterns of local adaptation in wild and
cultivated maize. Proc. R Soc. Lond. B Biol. Sci. 286:20190486. doi: 10.1098/rspb.
2019.0486

Aguirre-Liguori, J. A., Tenaillon, M. I., Vázquez-Lobo, A., Gaut, B. S., Jaramillo-
Correa, J. P., Montes-Hernandez, S., et al. (2017). Connecting genomic patterns
of local adaptation and niche suitability in teosintes. Mol. Ecol. 26, 4226–4240.
doi: 10.1111/mec.14203

Albrechtsen, A., Nielsen, F. C., and Nielsen, R. (2010). Ascertainment biases in SNP
chips affect measures of population divergence. Mol. Biol. Evol. 27, 2534–2547.
doi: 10.1093/molbev/msq148

Allendorf, F. W., Hohenlohe, P. A., and Luikart, G. (2010). Genomics and the
future of conservation genetics. Nat. Rev. Genet. 11, 697–709. doi: 10.1038/
nrg2844

Archer, F., Adams, P., and Schneiders, B. (2016). STRATAG: An R package for
manipulating, summarizing and analysing population genetic data. Mol. Ecol.
Resour. 17, 5–11. doi: 10.1111/1755-0998.12559

Bay, R. A., Harrigan, R. J., Le Underwood, V., Gibbs, H. L., Smith, T. B., and Ruegg,
K. (2018). Genomic signals of selection predict climate-driven populations
declines in a migratory bird. Science 359, 83–86. doi: 10.1126/science.aan
4380

Bell, D. A., Robinson, Z. L., Funk, W. C., Fitzpatrick, S. W., Allendorf, F. W.,
Tallmon, D., et al. (2019). The exciting potential and remaining uncertainties
of genetic rescue. T. Ecol. Evol. 34, 1070–1079. doi: 10.1016/j.tree.2019.06.006

Bradburd, G. S., Ralph, P. L., and Coop, G. M. (2013). Disentangling the effects
of geographic and ecological isolation on genetic differentiation. Evolution 67,
3258–3273. doi: 10.1111/evo.12193

Chao, A., Gotelli, N., Hsieh, T., Sander, E., Ma, K., Colwell, R., et al. (2014).
Rarefaction and extrapolation with Hill estimates: A framework for sampling
and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. doi: 10.
1890/13-0133.1

Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B., and Beaumont, M. A. (2010). The
confounding effects of population structure, genetic diversity and the sampling
scheme on the detection and quantification of population size changes. Genetics
186, 983–995. doi: 10.1534/genetics.110.118661

Coop, G., Witonsky, D., Di Rienzo, A., and Pritchard, J. K. (2010). Using
environmental correlations to identify loci underlying local adaptation.Genetics
185, 1411–1423. doi: 10.1534/genetics.110.114819

De Mita, S., Thuillet, A. C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J., et al. (2013).
Detecting selection along environmental gradients: analysis of eight methods
and their effectiveness for outbreeding and selfing populations. Mol. Ecol. 22,
1383–1399. doi: 10.1111/mec.12182

De Villemereuil, P., and Gaggiotti, O. E. (2015). A new FST-based method to
uncover local adaptation using environmental variables. Methods Ecol. Evol. 6,
1248–1258. doi: 10.1111/2041-210X.12418

Dubois, Q., Lebigre, C., Schtickzelle, N., and Turlure, C. (2017). Sex, size
and timing: Sampling design for reliable population genetic analyses using
microsatellite data. Methods Ecol. Evol. 9, 1036–1048. doi: 10.1111/2041-210X.
12948

Eckert, C. G., Samis, K. E., and Lougheed, S. C. (2008). Genetic variation across
species’ geographical ranges: the central-marginal hypothesis and beyond. Mol.
Ecol. 17, 1170–1180. doi: 10.1111/j.1365-294X.2007.03659.x

Ekblom, R., and Galindo, J. (2011). Applications of next generation sequencing in
molecular ecology of non-model organisms. Heredity 107, 1–15. doi: 10.1038/
hdy.2010.152

Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nat.
Rev. Genet. 5, 435–445. doi: 10.1038/nrg1348

Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., and Foll, M. (2013).
Robust demographic inference from genomic and SNP data. PLoS Genet
9:e1003905. doi: 10.1371/journal.pgen.1003905

Excoffier, L., and Foll, M. (2011). Fastsimcoal: a continuous-time coalescent
simulator of genomic diversity under arbitrarily complex evolutionary
scenarios. Bioinformatics 27, 1332–1334. doi: 10.1093/bioinformatics/btr124

Exposito-Alonso, M., Vasseur, F., Ding, W., Burbano, H. A., and Weigel, D. (2018).
Genomic basis and evolutionary potential for extreme drought adaptation in
Arabidopsis thaliana. Nat. Ecol. Evol. 2, 352–358. doi: 10.1038/s41559-017-
0423-0

Flesch, E., Rotella, J., Thomson, J., Graves, T., and Garrot, R. (2018). Evaluating
sample size to estimate genetic management metrics in the genomics era. Mol.
Ecol. Resour. 18, 1077–1091. doi: 10.1111/1755-0998.12898

Foll, M., and Gaggiotti, O. (2008). A genome-scan method to identify selected
loci appropriate for both dominant and codominant markers: a bayesian
perspective. Genetics 180, 977–993. doi: 10.1534/genetics.108.092221

Fumagalli, M. (2013). Assessing the effect of sequencing Depth and sample size in
population genetics inferences. PLoS One 8:e79667. doi: 10.1371/journal.pone.
0079667

Fustier, M. A., Bradenburg, J. T., Boitard, S., Lapeyronnie, J., Eguiarte, L. E.,
Vigouroux, Y., et al. (2017). Signatures of local adaptation in lowland and
highland teosintes from whole-genome sequencing of pooled samples. Mol.
Ecol. 26, 2738–2756. doi: 10.1111/mec.14082

Fustier, M. A., Martinez-Ainsworth, N. E., Aguirre-Liguori, J. A., Venon, A.,
Corti, H., Rousselet, A., et al. (2019). Common gardens in teosintes reveal the
establishment of a syndrome of adaptation to altitude. PLoS Genet. 15:e1008512.
doi: 10.1371/journal.pgen.1008512

Gasca-Pineda, J., Gutierrez-Guerrero, Y. T., Aguirre-Planter, E., and Eguiarte, L. E.
(2020). The role of historical and contemporary environmental factors in the
distribution of genetic diversity in the teosinte in Mexico. bioRxiv [Preprint].
doi: 10.1101/820126

Glenn, T. C. (2011). Fieldguide to next-generation DNA sequencers. Mol. Ecol.
Resour. 11, 759–769. doi: 10.1111/j.1755-0998.2011.03024.x

González-Ramos, J., Agell, G., and Uriz, M. (2015). Microsatellites from sponges
genomes: the number necessary for detecting genetic structure in Hemimycale
columella populations. Aquat. Biol. 24, 25–34. doi: 10.3354/ab00630

Goslee, S. C., and Urban, D. L. (2007). The ecodist package for dissimilarity-based
analysis of ecological data. J. Stat. Softw. 22, 1–19. doi: 10.18637/jss.v022.i07

Goudet, J. (2005). Hierfstat, a package for R to compute and test variance
components and F-statistics. Mol. Ecol. Notes. 5, 184–186. doi: 10.1111/j.1471-
8286.2004.00828.x

Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., and Siepel, A. (2011). Bayesian
inference of ancient human demography from individual genome sequences.
Nat. Genet. 43, 1031–1034. doi: 10.1038/ng.937

Hale, M., Burg, T., and Steeves, T. (2012). Sampling from microsatellite-based
popullationgenetic studies: 25 to 30 individuals is enough to accurately estimate
allele frecuencies. PLoS One 7:e45170. doi: 10.1371/journal.pone.0045170

Hamrick, J. L., and Godt, M. J. W. (1996). Effects of life history traits on genetic
diversity in plant species. Philos. Trans. R Soc. Lond. B Biol. Sci. 351, 1291–1298.
doi: 10.1098/rstb.1996.0112

Heller, R., Chikhi, L., and Siegismund, H. R. (2013). The confounding
effect of population structure on bayesian skyline plot inferences of
demographic history. PloS One 8:e62992. doi: 10.1371/journal.pone.006
2992

Hufford, M. B., Lubinksy, P., Pyhäjärvi, T., Devengenzo, M. T., Ellstrand,
N. C., and Ross-Ibarra, J. (2013). The genomic signature of crop-wild
introgression in maize. PLoS Genet. 9:e1003477. doi: 10.1371/journal.pgen.100
3477

Hufford, M. B., Martínez-Meyer, E., Gaut, B. S., Eguiarte, L. E., and Tenaillon, M. I.
(2012). Inferences from the historical distribution of wild and domesticated
maize provide ecological and evolutionary insight. PLoS One 7:e47659. doi:
10.1371/journal.pone.0047659

Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic
markers. Bioinformatics 24, 1403–1405. doi: 10.1093/bioinformatics/btn129

Jones, G. R. (2019). Divergence estimation in the presence of incomplete lineage
sorting and migration. Syst. Biol. 68, 19–31. doi: 10.1093/sysbio/syy041

Kardos, M., and Shafer, A. B. A. (2018). The peril of gene-targeted conservation.
T. Ecol. Evol. 33, 827–839. doi: 10.1016/j.tree.2018.08.011

Frontiers in Genetics | www.frontiersin.org 15 September 2020 | Volume 11 | Article 870

https://doi.org/10.1007/978-1-4614-6669-7_16
https://doi.org/10.1111/mec.15098
https://doi.org/10.1098/rspb.2019.0486
https://doi.org/10.1098/rspb.2019.0486
https://doi.org/10.1111/mec.14203
https://doi.org/10.1093/molbev/msq148
https://doi.org/10.1038/nrg2844
https://doi.org/10.1038/nrg2844
https://doi.org/10.1111/1755-0998.12559
https://doi.org/10.1126/science.aan4380
https://doi.org/10.1126/science.aan4380
https://doi.org/10.1016/j.tree.2019.06.006
https://doi.org/10.1111/evo.12193
https://doi.org/10.1890/13-0133.1
https://doi.org/10.1890/13-0133.1
https://doi.org/10.1534/genetics.110.118661
https://doi.org/10.1534/genetics.110.114819
https://doi.org/10.1111/mec.12182
https://doi.org/10.1111/2041-210X.12418
https://doi.org/10.1111/2041-210X.12948
https://doi.org/10.1111/2041-210X.12948
https://doi.org/10.1111/j.1365-294X.2007.03659.x
https://doi.org/10.1038/hdy.2010.152
https://doi.org/10.1038/hdy.2010.152
https://doi.org/10.1038/nrg1348
https://doi.org/10.1371/journal.pgen.1003905
https://doi.org/10.1093/bioinformatics/btr124
https://doi.org/10.1038/s41559-017-0423-0
https://doi.org/10.1038/s41559-017-0423-0
https://doi.org/10.1111/1755-0998.12898
https://doi.org/10.1534/genetics.108.092221
https://doi.org/10.1371/journal.pone.0079667
https://doi.org/10.1371/journal.pone.0079667
https://doi.org/10.1111/mec.14082
https://doi.org/10.1371/journal.pgen.1008512
https://doi.org/10.1101/820126
https://doi.org/10.1111/j.1755-0998.2011.03024.x
https://doi.org/10.3354/ab00630
https://doi.org/10.18637/jss.v022.i07
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1038/ng.937
https://doi.org/10.1371/journal.pone.0045170
https://doi.org/10.1098/rstb.1996.0112
https://doi.org/10.1371/journal.pone.0062992
https://doi.org/10.1371/journal.pone.0062992
https://doi.org/10.1371/journal.pgen.1003477
https://doi.org/10.1371/journal.pgen.1003477
https://doi.org/10.1371/journal.pone.0047659
https://doi.org/10.1371/journal.pone.0047659
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/sysbio/syy041
https://doi.org/10.1016/j.tree.2018.08.011
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00870 September 17, 2020 Time: 18:47 # 16

Aguirre-Liguori et al. Population Genetics Minimum Sampling Design

Lack, J. B., Pfau, R. S., and Wilson, G. M. (2010). Demographic history and
incomplete lineage sorting obscure population genetic structure of the Texas
mouse (Peromyscus attwateri). J. Mammal. 91, 314–325. doi: 10.1644/09-
MAMM-A-242.1

Landguth, E., Fedy, B., Oyler-McCance, S., Gareys, A., Emel, S., Mumma, M.,
et al. (2012). Effects of sample size, number of markers, and allelic richness
on the detection of spatial genetic pattern. Mol. Ecol. Resour. 12, 276–284.
doi: 10.1111/j.1755-0998.2011.03077.x

Landguth, E., and Schwartz, M. (2014). Evaluating sample allocation and effort
in detecting population differentiation for discrete and continuosly distributed
individuals. Conserv. Genet. 15, 981–992. doi: 10.1007/s10592-014-0593-0

Lichstein, J. W. (2007). Multiple regression on distance matrices: a multivariate
spatial analysis tool. Plant Ecol. 188, 177–131. doi: 10.1007/s11258-006-9126-3

Lira-Noriega, A., and Manthey, J. D. (2014). Relationship of genetic diversity and
niche centrality: a survey and analysis. Evolution 68, 1082–1093. doi: 10.1111/
evo.12343

Martínez-Meyer, E., Díaz-Porras, D., Peterson, T. A., and Yañez-Arenas, C. (2012).
Ecological niche structure and range-wide abundance patterns of species. Biol.
Lett. 9:20120637. doi: 10.1098/rsbl.2012.0637

Meirmans, P. G. (2015). Seven common mistakes in population genetics and how
to avoid them. Mol. Ecol. 24, 3223–3231. doi: 10.1111/mec.13243

Metzker, M. L. (2010). Sequencing technologies -the next generation. Nat. Rev. 11,
31–46. doi: 10.1038/nrg2626

Miyamoto, N., Fernández-Manjarrés, J., Morand-Prieur, M. E., and Frascaria-
Lacoste, N. (2008). What sampling is needed for reliable estimates of genetic
diversity in Fraxinus excelsior L. (Oleaceae)? Ann. For. Sci. 65:403. doi: 10.1051/
forest:2008014

Moreno-Letelier, A., Aguirre-Liguori, J. A., Piñero, D., Vázquez-Lobo, A., and
Eguiarte, L. E. (2020). The relevance of gene flow with wild relatives in
understanding the domestication process. Roy. Soc. Open Sci. 7:191545. doi:
10.1098/rsos.191545

Nazareno, A., Bemmels, J., Dick, C., and Lohmann, L. (2017). Minimum samples
sizes for population genomics: an empirical study from an amazonian plant
species. Mol. Ecol. Res. 17, 1136–1147. doi: 10.1111/1755-0998.12654

Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating
intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143–1155. doi: 10.1111/
j.1365-294X.2004.02141.x

Orozco-Terwengel, P., Corander, J., and Schloetterer, C. (2011). Genealogical
lineage sorting leads to significant, but incorrect Bayesian multilocus inference
of population structure. Mol. Ecol. 20, 1108–1121. doi: 10.1111/j.1365-294X.
2010.04990.x

Oyler-McCance, S., Fedy, B., and Landguth, E. (2013). Sample design effects in
landscape genetics. Conserv. Genet. 14, 275–285. doi: 10.1007/s10592-012-
0415-1

Peterman, W., Brocato, E., Semlitsch, R., and Eggert, L. (2016). Reducing bias
in population and landscape genetics inferences: The effects of sampling
related individuals and multiple life stages. PeerJ 4:e1813. doi: 10.7717/peerj.
1813

Pruett, C., and Winker, K. (2008). The effects of sample size on population genetic
diversity estimates in song sparrows Melospiza melodia. J. Avian Biol. 39,
252–256. doi: 10.1111/j.0908-8857.2008.04094.x

Puckett, E. E., and Eggert, L. S. (2016). Comparison of SNP and microsattellite
genotyping panels for spatial assignament of individuals to natal range: a case
of study using the American black bear (Ursus americanus). Biol. Conserv. 193,
86–93. doi: 10.1016/j.biocon.2015.11.020

Pyhäjärvi, T., Hufford, M. B., Mezmouk, S., and Ross-Ibarra, J. (2013). Complex
patterns of local adaptation in teosinte. Genome Biol. Evol. 5, 1594–1609. doi:
10.1093/gbe/evt109

R Core Team (2019). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna: R Core Team.

Ren, R., Ray, R., Li, P., Xu, J., Zhang, M., Liu, G., et al. (2015). Construction of a
high-density DArTseq SNP-based genetic map and identification of genomic
regions with segregation distortion in a genetic population derived from a
cross between feral and cultivated-type watermelon. Mol. Genet. Genomics 290,
1457–1470. doi: 10.1007/s00438-015-0997-7

Rico, Y. (2017). Using computer simulation to asses sampling effects on spatial
genetical structure in forest tre species. New For. 48, 225–243. doi: 10.1007/
s11056-017-9571-y

Robinson, J. D., Coffman, A. J., Hickerson, M. J., and Gutenkunst, R. N.
(2014). Sampling strategies for frequency spectrum-based population
genomic inference. BMC Evol. Biol. 14:254. doi: 10.1186/s12862-014-
0254-4

Ross-Ibarra, J., Tenaillon, M., and Gaut, B. S. (2009). Historical divergence and
gene flow in the genus Zea. Genetics 181, 1399–1413. doi: 10.1534/genetics.108.
097238

Sánchez-Montes, G., Ariño, A., Vizmanos, J., Wang, J., and Martínez-Solano, I.
(2017). Effects of sample size and full sibs on genetic diversity characterization:
a case study of three syntopic Iberian Pond-Breeding amphibians. J. Hered. 108,
535–543. doi: 10.1093/jhered/esx038

Sansaloni, C., Petroli, C., Jaccoud, D., Carling, J., Detering, F., Grattapaglia, D., et al.
(2011). Diversity arrays technology (DArT) and next-generation sequencing
combined: genome-wide, high throughput, highly informative genotyping for
molecular breeding of Eucalyptus. BMC Proc. 5:P54. doi: 10.1186/1753-6561-
5-S7-P54

Schiffels, S., and Wang, K. (2020). “MSMC and MSMC2: the multiple
sequentially markovian coalescent,” in Statistical Population Genomics. Methods
inMolecular Biology, ed. J. Dutheil (New York, NY: Humana). doi: 10.1007/978-
1-0716-0199-0_7

Schoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, C., and Manel,
S. (2012). Adaptive genetic variation on the landscape: methods and cases.
Ann. Rev. Ecol. Evol. Syst. 43, 23–43. doi: 10.1146/annurev-ecolsys-110411-
160248

Schwartz, M., and McKelvey, K. (2009). Why sampling scheme matters: The effect
of smpling scheme on lanscape genetic results. Conserv. Genet. 10, 441–452.
doi: 10.1007/s10592-008-9622-1

Sinclair, E., and Hobbs, R. (2009). Samle size efects on estimates of population
genetics structure: Implications for ecological restoration. Restor. Ecol. 17,
837–844. doi: 10.1111/j.1526-100X.2008.00420.x

Slatkin, M., and Voelm, L. (1991). FST in a hierarchical island model. Genetics 127,
627–629.

Smith, O., and Wang, J. (2014). When can noninvasive samples provide sufficient
information in conservation genetics studies? Mol. Ecol. Res. 14, 1011–1023.
doi: 10.1111/1755-0998.12250

Stapley, J., Reger, J., Feulner, P. G., Smadja, C., Galindo, J., Ekblom, R., et al. (2010).
Adaptation genomics: the next generation. Trends Ecol. Evol. 25, 705–712.
doi: 10.1016/j.tree.2010.09.002

Tiffin, P., and Ross-Ibarra, J. (2014). Advances and limits of using population
genetics to understand local adaptation. Trends Ecol. Evol. 29, 673–680. doi:
10.1016/j.tree.2014.10.004

van Heerwaarden, J., Doebley, J. F., Briggs, W. H., Glaubitz, J. C., Goodman,
M. M., Sánchez-González, J. J., et al. (2011). Genetic signals of origin,
spread, and introgression in a large sample of maize landraces. Proc.
Natl. Acad. Sci. U.S.A. 108, 1088–1092. doi: 10.1073/pnas.10130
11108

van Meier, J. I., Sousa, V. C., Marques, D. A., Selz, O. M., Wagner, C. E., Excoffier, L.,
et al. (2017). Demographic modelling with whole-genome data reveals parallel
origin of similar Pundamilia cichlid species after hybridization. Mol. Ecol. 26,
123–141. doi: 10.1111/mec.13838

Weir, B., and Hill, W. (2002). Estimating F-Statics. Ann. Rev. Genet. 36, 721–750.
doi: 10.1146/annurev.genet.36.050802.093940

Willing, E. M., Dreyer, C., and Van Oosterhout, C. (2012). Estimates of genetic
fifferentiation measured by FST do not necessarely require large sample sizes
when using many SNP markers. PLoS One 7:e42649. doi: 10.1038/sj.ejhg.
5200519

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Aguirre-Liguori, Luna-Sánchez, Gasca-Pineda and Eguiarte. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics | www.frontiersin.org 16 September 2020 | Volume 11 | Article 870

https://doi.org/10.1644/09-MAMM-A-242.1
https://doi.org/10.1644/09-MAMM-A-242.1
https://doi.org/10.1111/j.1755-0998.2011.03077.x
https://doi.org/10.1007/s10592-014-0593-0
https://doi.org/10.1007/s11258-006-9126-3
https://doi.org/10.1111/evo.12343
https://doi.org/10.1111/evo.12343
https://doi.org/10.1098/rsbl.2012.0637
https://doi.org/10.1111/mec.13243
https://doi.org/10.1038/nrg2626
https://doi.org/10.1051/forest:2008014
https://doi.org/10.1051/forest:2008014
https://doi.org/10.1098/rsos.191545
https://doi.org/10.1098/rsos.191545
https://doi.org/10.1111/1755-0998.12654
https://doi.org/10.1111/j.1365-294X.2004.02141.x
https://doi.org/10.1111/j.1365-294X.2004.02141.x
https://doi.org/10.1111/j.1365-294X.2010.04990.x
https://doi.org/10.1111/j.1365-294X.2010.04990.x
https://doi.org/10.1007/s10592-012-0415-1
https://doi.org/10.1007/s10592-012-0415-1
https://doi.org/10.7717/peerj.1813
https://doi.org/10.7717/peerj.1813
https://doi.org/10.1111/j.0908-8857.2008.04094.x
https://doi.org/10.1016/j.biocon.2015.11.020
https://doi.org/10.1093/gbe/evt109
https://doi.org/10.1093/gbe/evt109
https://doi.org/10.1007/s00438-015-0997-7
https://doi.org/10.1007/s11056-017-9571-y
https://doi.org/10.1007/s11056-017-9571-y
https://doi.org/10.1186/s12862-014-0254-4
https://doi.org/10.1186/s12862-014-0254-4
https://doi.org/10.1534/genetics.108.097238
https://doi.org/10.1534/genetics.108.097238
https://doi.org/10.1093/jhered/esx038
https://doi.org/10.1186/1753-6561-5-S7-P54
https://doi.org/10.1186/1753-6561-5-S7-P54
https://doi.org/10.1007/978-1-0716-0199-0_7
https://doi.org/10.1007/978-1-0716-0199-0_7
https://doi.org/10.1146/annurev-ecolsys-110411-160248
https://doi.org/10.1146/annurev-ecolsys-110411-160248
https://doi.org/10.1007/s10592-008-9622-1
https://doi.org/10.1111/j.1526-100X.2008.00420.x
https://doi.org/10.1111/1755-0998.12250
https://doi.org/10.1016/j.tree.2010.09.002
https://doi.org/10.1016/j.tree.2014.10.004
https://doi.org/10.1016/j.tree.2014.10.004
https://doi.org/10.1073/pnas.1013011108
https://doi.org/10.1073/pnas.1013011108
https://doi.org/10.1111/mec.13838
https://doi.org/10.1146/annurev.genet.36.050802.093940
https://doi.org/10.1038/sj.ejhg.5200519
https://doi.org/10.1038/sj.ejhg.5200519
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Evaluation of the Minimum Sampling Design for Population Genomic and Microsatellite Studies: An Analysis Based on Wild Maize
	Introduction
	Materials and Methods
	Studied Taxon
	Datasets
	Simulated Datasets
	Empirical Datasets

	Estimation of Population Genetics Parameters
	Sampling Designs
	Subsampling of the Number of Loci and the Number of Individuals per Population
	Subsampling the Number of Populations
	Tradeoff Between Number of Individuals and Populations
	Comparison Between Samplings and Between Datasets

	Test for Local Adaptation

	Results
	Summary Statistics for the Entire Datasets
	Simulated Datasets
	Empirical Datasets

	Varying the Number of Sampled Individuals
	Varying the Number of Sampled Loci
	Varying the Number of Sampled Populations
	Tradeoff Between Number of Individuals and Number of Populations
	Varying the Number of Populations in the Identification of Candidate SNPs

	Discussion
	Comparing Datasets
	Sampling a Different Number of Loci
	Sampling a Different Number of Individuals
	Sampling a Different Number of Populations
	Sampling a Different Number of Populations for Detecting Outlier SNPs

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


