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Background: Emerging evidence suggests that the immune system plays a crucial role
in the regulation of the response to therapy and long-term outcomes of patients with
breast cancer (BRCA). In this study, we aimed to identify a significant signature based
on immune-related genes to predict the prognosis of BRCA patients.

Methods: The expression data were downloaded from The Cancer Genome Atlas
(TCGA). The immune-related gene list, the transcription factor (TF) gene list, and
the immune infiltrate scores of samples in the TCGA database were acquired from
the ImmPort database, the Cistrome Cancer database, and the TIMER database,
respectively. Univariate Cox regression analysis was utilized to identify prognostic
immune-related differentially expressed genes (DEGs) (PIRDEGs) in BRCA. A prognostic
immune signature containing 15 PIRDEGs in BRCA was established using the least
absolute shrinkage and selection operator (LASSO) model with 1,000 iterations followed
by a stepwise Cox proportional hazards model with a training set of 508 samples
in TCGA. An independent assessment of the prognostic prediction ability of the
signature was conducted using Kaplan-Meier survival analysis with a testing set of 505
samples in TCGA.

Results: We identified 466 PIRDEGs and 80 TFs among the DEGs. A gene signature
containing 15 PIRDEGs was constructed. Risk scores of BRCA patients were calculated
using this model, which showed a high accuracy of prognosis prediction in both
the training set and testing set and could be an independent prognostic factor
of BRCA patients.

Conclusions: Our study revealed that a PIRDEG signature could be a candidate
prognostic biomarker for predicting the overall survival (OS) of patients with BRCA.

Keywords: breast cancer, immune-related genes, transcription factors, prognosis, risk-score model

Abbreviations: AUC, area under the curve; BRCA, breast cancer; DEGs, differentially expressed genes; ID, identity; OS,
overall survival; PIRDEGs, prognostic immune-related differentially expressed genes; ROC, receiver operating characteristic
curve; TCGA, The Cancer Genome Atlas; TF, transcription factor; TILs, tumor-infiltrating lymphocytes.
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INTRODUCTION

As one of the most common malignancies, breast cancer
(BRCA) threatens the wellness and health of women worldwide,
and the incidence and mortality rates of BRCA are nearly
30 and 15%, respectively (Siegel et al, 2019). Owing to its
high heterogeneity, BRCA harbors a plethora of molecular
subtypes, which lead to a variety of treatment therapies for
BRCA. Hormone exposure is the major risk factor for BRCA,
and estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER2) are the most
common endocrine markers involved in BRCA categorization.
Based on the new definition of BRCA molecular subtypes
issued by the 2013 St. Gallen International Breast Cancer
Conference, BRCA can be classified into the following subtypes:
luminal A (ER/PRT, HER2™, Ki67t < 20%), luminal B
(ER/PRT < 20%, HER2™, Ki67t > 20%), HER2TB2 (ER/PR*
and HER2 overexpression), HER2 overexpression (ER™, PR™,
and HER2 overexpression), basal-like TNBC (ER™, PR™, and
HER27), and other subtypes (Goldhirsch et al., 2013). The
treatment of BRCA is multidisciplinary and includes local
surgery excision, radiation therapy, endocrine therapy, and other
chemotherapies, such as anti-HER2 therapy. Consequently, the
classification of BRCA subtypes before deciding on a treatment
strategy is critical for BRCA patients. For patients with ER™ or
PRT BRCA, endocrine therapy is considered the most effective
way to cure cancer. However, for patients with ER™, PR7,
and HER2™ BRCA, traditional endocrine therapy seems to lack
efficacy. Thus, screening of the ER or PR state is usually the
first step in the clinic toward choosing the treatment method
for BRCA patients (Harbeck et al., 2019). In recent years, with
the development and application of comprehensive therapies in
the clinic, the overall survival (OS) rates for BRCA patients have
increased, and the 5-year survival rates have improved to some
extent (local stage, >96%; regional stage, >81%; distant stage,
>26%) (DeSantis et al., 2017). However, the prognosis of BRCA
patients is primarily related to the molecular subtypes, and almost
all patients who develop metastatic disease will succumb to it.
Thus, it is important to search for novel prognostic biomarkers
to predict the response rates to individual therapy of patients with
different clinical characteristics or distinct molecular subtypes.
The immune system has been considered a determining
factor during cancer initiation and progression (Gentles et al.,
2015). Emerging evidence suggests that the immune system
plays a crucial role in the regulation of response to therapy
and long-term outcomes of patients with BRCA (Savas et al,
2016). Furthermore, oncology and immunology are interwoven,
especially in the selection of tumor therapy and prognosis
prediction. Thus, the development of oncoimmunology has
revealed that tumor-infiltrating lymphocytes (TILs), which are
immune cells that infiltrate tumor tissues and increase the
expression of immune-related genes, are closely related to the
better survival of patients with specific subtypes of BRCA
(Gooden et al., 2011; Karn et al., 2011). TILs have been declared
in various types of solid tumors, including BRCA, colon cancer,
melanoma, cervical cancer, and lung cancer (Underwood, 1974;
Savas et al.,, 2016). Elevated levels of lymphocytic infiltrate were

reported to be associated with HER2 amplification and portended
long-term clinical outcomes (Tang et al, 1990). A strong
linear relationship between the TIL number in patients with
triple-negative breast cancer and the recurrence-free survival
endpoints that increased over time has been reported (Loi
et al, 2013). A previous study showed that high infiltration
of lymphocytes in BRCA tissues might predict the response to
neoadjuvant therapy and may also have a significant prognostic
value after adjuvant chemotherapy (Denkert et al., 2016). An
increasing number of reports have confirmed that immune
cells and immune-related genes have significant prognostic and
predictive values. However, little is known about the genomic
features driving high or low immune infiltration in BRCA;
thus, it is of great value to better understand the interaction of
BRCA and the immune system and to discover more potential
immuno-oncological prognostic and predictive markers.

Owing to technique limitations, an accurate assessment of
TILs has not been achieved; for instance, tissue-based methods,
including flow cytometry and immunohistochemistry, cannot be
applied to the high-throughput examination of multiple markers
and large number of samples simultaneously. Progress in the field
of single-cell genomes and transcriptomes has provided us with
gene expression data to assess immune-related classifications
and their associations with tumor cells (Charoentong et al,
2017; Liu and Mardis, 2017). The development of bioinformatics
techniques enables the integration of gene expression data into
biological data; numerous emerging databases offer large-scale
data with gene expression, clinical information, and biological
characteristics; and various bioinformatics tools provide
opportunities to merge different resources derived from different
studies. For example, Li et al. (2016) created the web resource
database TIMER to evaluate the clinical impact of immune
cells in diverse cancers. The ImmPort database was put in place
to function as a critical repository for immunology-related
clinical and molecular data (Bhattacharya et al.,, 2014). With
all these approaches, researchers have begun to quantify TILs
using the expression values of immune-related genes and identify
individualized immune-related signatures in the tumor prognosis
of various types of cancers, including melanoma, lung cancer,
glioblastoma, and BRCA (Cheng et al., 2016; Li et al., 2019; Song
etal, 2019; Yang et al., 2020). Cheng et al. (2016) identified eight
genes (FOXO3, IL6, IL10, ZBTB16, CCL18, AIMP1, FCGR2B,
and MMP9) with the highest prognostic value in glioblastoma
using The Cancer Genome Atlas (TCGA) database. Li et al.
(2019) identified four immune-related genes (APOD, CXCL14,
IL33, and LIFR) correlated with BRCA prognosis.

In this study, we focused on investigating the role of
immune-related genes that are differentially expressed in
BRCA tissues compared with healthy tissues and on exploring
a model composed of immune-related genes to predict the
prognosis of patients with BRCA. With this goal, we combined
multiperspective databases, such as TCGA, ImmPort, TIMER,
and Cistrome, with multidimensional analysis methods, such
as differential analysis, univariate or multivariate Cox analysis,
risk-score model construction, survival analysis, receiver
operating characteristic (ROC) curve analysis, prognosis
verification, and correlation analysis. As a result, we found a

Frontiers in Genetics | www.frontiersin.org

September 2020 | Volume 11 | Article 912


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Pei et al.

Prognostic Signature in Breast Cancer

prognostic risk-score model for BRCA patients who contained
15 prognostic immune-related differentially expressed genes
(DEGs) (PIRDEGs) in BRCA. We constructed a regulatory
network of transcription factors (TFs) and IRDEGs in BRCA.
We verified the application value of the risk-score model and
analyzed the correlation between the risk score and the number
of immune cells in BRCA tissues. Overall, our study discovered
a prognostic signature model with relatively high application
potential in BRCA. The workflow is shown in Figure 1.

RESULTS

Identification of Differentially Expressed
Genes and Prognostic Imnmune-Related
Differentially Expressed Genes in Breast

Cancer

A cohort of 1,222 samples, consisting of 1,109 BRCA patients
and 113 normal individuals from the TCGA database, was
used to identify the DEGs between BRCA tissues and normal
tissues. We downloaded the RNA-Seq data from TCGA and
genes that met the criteria: |log2-fold change] > 1 and
false discovery rate (fdr) < 0.05 were defined as DEGs.
As shown in Supplementary Table 1, we finally identified
4,575 DEGs, of which 2,698 were upregulated and 1,877 were
downregulated (Supplementary Figures 1A,B). Then, to identify

the immune-related genes that play a regulatory role in BRCA,
we searched and downloaded all 2,498 immune-related genes
from the immunological database ImmPort (Supplementary
Table 2). We matched these immune-related genes with DEGs
in BRCA, and then we obtained 366 immune-related genes that
also belonged to the set of DEGs in BRCA and their detailed
expression pattern (Figure 2A and Supplementary Figure 2A
and Supplementary Table 3).

The Regulatory Network Between
Transcription Factors and Prognostic
Immune-Related Differentially Expressed

Genes

As key factors regulating gene expression, TFs function as
gene transcription accelerators or inhibitors by modulating
the transcription of downstream genes. To reveal the crucial
mechanisms underlying the transcriptional regulation of
immune-related genes in BRCA, we constructed a transcriptional
regulatory network of immune-related genes in BRCA. First, 318
tumor-related TFs were downloaded from the Cistrome Cancer
database and were matched with the identified DEGs in BRCA
(Supplementary Table 4). There were 80 tumor-related TFs
among the DEGs (Figure 2B and Supplementary Table 5 and
Supplementary Figure 2B). To construct a model, we randomly
classified the 1,013 BRCA samples in TCGA (96 samples were

TCGA

(BRCA tissues
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(non-cacner ( num immune
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FIGURE 1 | The workflow of risk-score model construction. The blue, yellow, and red cells indicate the corresponding datasets or gene lists.
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FIGURE 2 | Screening of the prognostic immune-related differentially expressed genes (DEGs) in breast cancer (BRCA). The volcano plot of immune-related DEGs
(A) and transcription factor (TF)-related DEGs (B) in BRCA. Each plot indicates a gene; genes with | log2-fold change| < 1 or false discovery rate (fdr) > 0.05 are
shown in black; genes with log2-fold change > 1 and fdr < 0.05 are shown in red; and genes with log2-fold change < -1 and fdr < 0.05 are shown in green.

(A) A total of 366 immune-related DEGs, 193 of which were upregulated (red) and 173 of which were downregulated (green), were identified. (B) Eighty TF-related
DEGs: 38 were upregulated (red) and 42 were downregulated (green). (C) Forest plot of gene expression and prognosis of BRCA patients. Univariate Cox analysis
identified 41 immune-related DEGs correlated with the overall survival of BRCA patients; red cells indicate high-risk genes, and green cells indicate low-risk genes.
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excluded owing to the lack of enough clinical information) into
two groups: a training set (n = 508) and a testing set (n = 505).
To discover which immune-related genes affected the prognosis
of BRCA patients, we subjected the expression values of all 366
immune-related DEGs to a univariate Cox proportional hazards
regression analysis in the training set and identified 41 PIRDEGs
that strongly correlated with patient OS (p < 0.05). Twenty of the
41 PIRDEGs were high-risk genes, and the other 21 PIRDEGs
were low-risk genes for OS in BRCA patients (Figure 2C). All
41 PIRDEGs and 80 TFs among DEGs were used to construct
the transcriptional regulatory network of PIRDEGs via Pearson’s
correlation analysis. To find strong correlations between TFs
and PIRDEGs, we set the correlation analysis parameter filters
as |correlation coefficient >0.4| and p < 0.001. As shown in
Figure 3 and Supplementary Tables 6, 11 TFs among DEGs and
19 PIRDEGs constituted the transcriptional regulatory network
of PIRDEGs. In this network, almost all of the TFs played a
positive regulatory role, and only the regulatory relationship
between TEADI1 and PSME2 was negative. In this network, the
correlation degree was indicated using the color of the edge lines:
the light red lines indicated that the correlation coefficient was
between 0.4 and 0.6; the red lines indicated that the correlation
coefficient was between 0.6 and 0.8; and the dark red lines
indicated a correlation coefficient higher than 0.8.

An Immune Gene Signature Model
Predicted the Overall Survival of Breast

Cancer Patients

As described above, we identified 41 PIRDEGs using univariable
Cox regression analysis. We used the least absolute shrinkage
and selection operator (LASSO) Cox regression model to
select the most useful model, and a gene model above the
minimum deviance with 25 genes was identified (Figures 4A,B
and Supplementary Table 7). Next, we further performed a
stepwise Cox proportional hazards regression model and finally
obtained a model consisting of 15 PIRDEGs - PSME2, TINAGL1,
MMP9, CSRP1, ROBO3, IGHE, SEMA6D, ADM, FGF7, SCG2,
TSLP, FGFR4, GHR, SSTR1, and TNFRSF8 (Figure 4C and
Table 1) - among which PSME2, CSRP1, TSLP, and TNFRSF8
with negative coefficients were low-risk PIRDEGs and TINAGLI,
MMP9, ROBO3, IGHE, SEMA6D, ADM, FGF7, SCG2, FGFR4,
GHR, and SSTR1 with positive coefficients were high-risk
PIRDEGs. The high-risk IRDEGs negatively correlated with
the prognosis of BRCA patients, while the low-risk IRDEGs
positively correlated with the prognosis of BRCA patients.
Subsequently, a formula composed of the expression values and
coefficients of genes in this model was chosen to calculate the
risk score of each sample as follows: risk score = (—0.01612
x expression value of PSME2) + (0.025082 x expression value
of TINAGLI) + (0.000253 x expression value of MMP9)
+ (—0.03458 x expression value of CSRP1) + (0.635804 x
expression value of ROBO3) + (0.094539 X expression value of
IGHE) + (0.106281 x expression value of SEMA6D) + (0.019012
x expression value of ADM) + (0.138697 x expression value of
FGF7) + (0.001191 x expression value of SCG2) + (—2.59049
x expression value of TSLP) + (0.048535 x expression value of

FGFR4) + (0.100568 x expression value of GHR) + (0.070616
x expression value of SSTR1) + (—1.07935 x expression value
of TNFRSF8). On the basis of this formula, we obtained the
risk score of each sample in the training set and the testing set
(Supplementary Table 8).

Validation of the Immune Gene Signature

for Survival Prediction

To verify whether this risk-score model could precisely predict
the prognosis of BRCA patients, we utilized the training set
and testing set to validate the prognosis prediction ability of
this model. The cutoff value of the risk score was the median
risk score in the training set. On the basis of this parameter,
we divided all samples in the training set and the testing
set into high-risk groups or low-risk groups. Kaplan-Meier
survival analysis was performed. As expected, the high-risk
group showed a poorer OS rate than the low-risk group in
both the training set and testing set (Figures 5A,B). Next, we
examined the predictive performance of this risk-score model
for OS using ROC curves, and the results showed that the
areas under the ROC curve (AUCs) in the training set and the
testing set were 0.905 and 0.708, respectively (Figures 5C,D).
The nomograms of this model in the training set and the testing
set are shown in Figures 5E,F, respectively. We then ranked
the risk scores of patients and analyzed the distribution of
OS status of each patient in the training set and the testing
set. As shown in Figures 6A,B, in the upper panel, the red
dot plots indicate the high-risk patients, while the green dot
plots indicate the low-risk patients; in the lower panel, the
pink dot plots indicate patients who were dead, and the cyan
dot plots indicate patients who were alive. It was clear that,
in the lower panel, the number of pink dot plots increased
with the rise of risk scores of patients. The bar plots show the
expression pattern of risk genes in patients in the high- and
low-risk groups (Figures 6C,D). We performed univariate and
multivariate Cox regression analyses to examine whether the
immune gene signature was an independent prognostic factor
in BRCA patients. We first analyzed the correlations between
clinical factors, including age, gender, TNM stage, or risk scores,
and OS of BRCA patients in the training group. In the univariate
Cox analysis, age, TNM stage, and risk score were independent
prognostic factors of BRCA patients (p < 0.05) (Figure 6E).
Survival outcomes of tumor patients can be affected by multiple
factors; thus, we defined all these clinical features as covariates
and performed multivariate Cox analysis. As shown in Figure 6F,
the prognostic prediction power of the 11 immune gene
signatures was independent of the clinical features (HR = 1.012,
95% CI: 1.007-1.017, p < 0.001).

The Associations of the Inmune Gene
Signature and Clinical Characteristics in
Breast Cancer

We then investigated the correlations between the risk scores
derived from this model and the clinical characteristics in
BRCA patients. The results indicated that risk scores in the T4
group were higher than those in the T1, T2, and T3 groups
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(p = 0.048); however, we observed that the sample number the risk scores showed a gradual increase with increasing
of the T4 group was smaller than that of the other groups; lymph node invasion degree (Figure 7A). We also analyzed
thus, this result may need further verification. Additionally, the correlation between the specific expression level of immune
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FIGURE 4 | Establishment of the immune gene signature. (A) A 1,000-fold cross-validation for tuning parameter selection in the least absolute shrinkage and
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included in each LASSO model. (B) LASSO coefficient profiles of the most useful prognostic genes. Numbers in the top margin indicate the gene numbers included
in each LASSO model. Each line indicates an individual gene in the LASSO model. (C) Forest plot of immune genes in the model in the training set.

genes in this model and the clinical characteristics of BRCA
(Supplementary Figure 3).

The Associations of the Immune Gene

Signature and Immune Cell Infiltration

Previous studies reported that immune cell infiltration levels
were associated with favorable outcomes of patients (Cheng
et al, 2016; Li et al, 2019; Song et al, 2019; Yang et al,
2020). Thus, we analyzed the correlation of risk scores and the
numbers of six infiltrating immune cell types in patients with
BRCA, namely, B cells, CD4™ T cells, CD8* T cells, neutrophils,

dendritic cells, and macrophages. As shown in Figure 7B, the risk
scores of BRCA patients displayed negative correlations with the
infiltration of B cells, CD4™ T cells, CD8" T cells, neutrophils,
and dendritic cells in BRCA tissues, while the risk scores of BRCA
patients displayed positive correlations with the infiltration of
macrophages (p < 0.05).

DISCUSSION

Immune system dysregulation has been documented in many
types of cancers. Investigators have reported the activation of
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TABLE 1 | The immune-genes signature model.

ID Coeff HR HR.95L HR.95H p-value

PSME2 —0.01612 0.984011 0.970359 0.997856 0.023753
TINAGL1 0.025082 1.025399 1.011599 1.039387 0.000286
MMP9 0.000253 1.000253 1.000076 1.000429 0.005004
CSRP1 —0.03458 0.966014 0.948765 0.983576 0.000169
ROB0O3 0.635804 1.888541 1.541644 2.313495 8.25E-10
IGHE 0.094539 1.0991562 1.062536 1.137029 4.52E-08
SEMAGD 0.106281 1.112134 1.046724 1.181632 0.000589
ADM 0.019012 1.019194 1.002936 1.035716 0.020491
FGF7 0.138697 1.148776 1.079188 1.222851 1.36E-05
SCG2 0.001191 1.001191 0.999118 1.003269 0.26023

TSLP —2.59049 0.074983 0.009463 0.594155 0.01417

FGFR4 0.048535 1.049732 1.030649 1.069168 2.16E-07
GHR 0.100568 1.105799 1.028374 1.189063 0.00662

SSTR1 0.070616 1.073169 1.052606 1.094133 8.43E-13
TNFRSF8 —1.07935 0.339816 0.173307 0.666304 0.001679

immune-related genes in BRCA (Ascierto et al, 2012). An
increasing number of studies have emphasized the significance
of prognostic biomarkers in predicting cancer outcomes and
recommended that more investigators include these biomarkers
into therapeutic research (Li et al.,, 2016). Several studies have
suggested that immune-related genes can be used as prognostic
biomarkers in BRCA (Gingras et al., 2015; Li et al, 2019). In
the past years, most studies about immune-related prognostic
biomarkers focused on TILs, and TILs have been identified as
prognostic biomarkers in multiple malignancies. High infiltration
of CD45RO™ (memory) and CD8* (cytotoxic) TILs (used to
calculate the immunoscore) was strongly related to the clinical
outcomes of patients with lung, breast, colon, ovarian, prostate,
and head and neck cancers (Vano et al., 2018). For instance, it
has been reported that the densities and type of CD8* TILs were
correlated with tumor progression without interference from the
tumor stage in colorectal cancer. Thus, the immunoscore was
considered a valuable prognostic factor (Baxevanis et al., 2019).
The core of TILs is immune cells, and related studies have focused
on the cell level. However, the definition of cell type, especially
an immune cell type, is still dependent on molecular protein
markers. Thus, we proposed as the original aim of our study
to develop a series of immune-related biomarkers composed
of immune genes rather than immune cells. In our study, to
identify the molecular biomarkers in BRCA, we first identified the
DEGs between BRCA and healthy tissues using public datasets
from TCGA. Then, our study aimed to develop immune-related
biomarkers; thus, the immune-related database ImmPort was
used to identify the immune genes and help us obtain the IRDEGs
in BRCA. PIRDEGs were selected using univariate Cox analysis.
Transcription factors play a crucial role in controlling the
expression of genes by binding to a particular DNA region,
such as an enhancer or promoter. TFs were also found to be
associated with the progression of glioblastoma (Wei et al., 2015).
To construct a regulatory network of immune genes in BRCA,
we selected 80 TFs from the DEGs in BRCA on the basis of
information from the Cistrome database. Then, we constructed

the regulatory network of TFs-PIRDEGs in BRCA on the basis
of their correlations. As shown in Figure 3 and Supplementary
Table 6, we found four key TFs - EOMES, FOXP3, FLII,
and STAT1 - which had the most downstream PIRDEGs and
relatively high correlation coeflicients. Among the 41 PIRDEGs
in this regulatory network, 21 PIRDEGs were the downstream
genes of EOMES, and the correlation coefficient between EOMES
and CXCR3 was up to 0.86. EOMES has been demonstrated to
be involved in the differentiation of CD8" T cells during the
immune response by regulating the expression of lytic effector
genes (Atreya et al, 2007) and to be an independent good
prognostic factor for progression-free survival and OS, likely due
to its association with a favorable immune signature in metastatic
renal cell cancer patients (Dielmann et al, 2016). FOXP3 is
an essential TF in maintaining immune system hemostasis by
regulating Treg lineage function, and it has been described to be
a strong prognostic factor for distant metastasis-free survival of
BRCA patients (Merlo et al., 2009). In the TF-PIRDEG network,
we found many T-cell receptor-coding genes, including T-cell
receptor beta variable and constant genes (TRBV5-6, TRBV28,
TRBV18, TRBV12-3, and TRBC2).

We constructed a prognostic risk-score model using LASSO
Cox regression analysis and obtained an immune gene signature
to predict the OS of BRCA patients. As shown in Table 1,
four low-risk IRDEGs and 11 high-risk IRDEGs constituted this
risk-score model, and each patient was assigned a risk score
based on this model. One of the immune genes in the signature
and a high-risk factor in this model, FGF7, had the highest
coefficient at 0.14. FGF7 is secreted by mesenchymal origin
cells and acts as a paracrine cytokine targeting nearby cells via
locally secreted signals, thus participating in immune reactions
during tumor progression or inhibition (Finch and Rubin,
2006). In urothelial carcinoma of the upper urinary tract and
bladder, FGF7 overexpression is an independent prognosticator
(Fan et al., 2015). TSLP, TINAGL1, TNFRSF8, and PSME2 in
this model exerted negative correlations with the OS of BRCA
patients. TSLP is a member of cytokine resembling cytokine
IL-7 and has recently been reported to be a regulator of type
2 inflammatory responses (Sims et al., 2000). The function of
TSLP in various types of tumors is tumor context dependent,
and its role in BRCA is also controversial. One study revealed
that an IL-18-TSLP pathway could blunt antitumor immunity.
In contrast, another study proposed its pro-tumor role with the
evidence that the keratinocyte-specific overexpression of TSLP
(in K14-TSLP transgenic mice) could inhibit the development
of early BRCA (Corren and Ziegler, 2019). In our study, TSLP
showed a protective effect on the OS of BRCA patients. PSME2
is a subunit of proteasome activator PA28 participating in the
generation of class I binding peptides such as antigens from
viruses or tumors (Sijts et al., 2002).

All these prognostic signatures identified in our study
are immune system regulators and play a significant role in
the cellular immune reaction under different situations. By
combining them, we obtained a prognosis prediction model.
The efficacy of this model was verified in the training set
and the testing set simultaneously, the OS rates of high- and
low-risk-score groups of BRCA patients showed a significant
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in the training set (C) and testing set (D). (E,F) Nomograms of the risk-score model in the training set (E) and testing set (F).

difference, and the number of dead BRCA patients increased
with the increase in risk scores of BRCA patients. Both
univariate and multivariate Cox analyses revealed that the risk BRCA that mainly comprised CD8" T cells, CD4T T cells,

score derived from this model was an independent prognostic
factor for BRCA patients. Early studies identified TILs in
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CD19" B cells, and rare NK cells (Savas et al, 2016). In
our study, we found that the risk scores showed negative
correlations with the numbers of B cells, CD8" T cells, CD4*
T cells, and neutrophil cells. The prognostic value of TILs
is somewhat debatable; for instance, in most human cancers,
increased densities of CD3", CD8*, and memory CD45RO*
T cells are associated with favorable prognosis. However, the
prognostic value of these cells may be influenced by other
immune cells residing in the same tumor (Baxevanis et al,
2019). Hence, we may conclude that infiltrating immune cells as
prognostic biomarkers in tumor patients are, to a large extent,
dependent on the comprehensive assessment of various types
of immune cells.

In our study, we focused on the gene level rather than the
cell level by screening PIRDEGs using bioinformatics analysis in
BRCA, and the TF-PIRDEG network was used to identify crucial
TFs in the regulation of the transcription level of immune-related
genes in BRCA. A risk-score model consisting of immune genes
was built, and the efficacy of this model was examined using
extensive data from real samples. However, we cannot exclude
the possibility that other factors, such as age and sex, may
introduce bias in the practical values of the identified genes. In
addition, the data types and the random classification of the
training group and test group may lead to different models. For
instance, the public database TCGA offers researchers various
data types, including raw gene counts, FPKM and FPKM-UQ.
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We used the FPKM files in our study, and the other two file
types can also be used for analysis. In our study, we randomly
evenly classified the TCGA samples into two groups, which is
not the only way to categorize. We considered the different
genes and prognostic models that may be found in other
studies. Additionally, the different construction methods of the

prognostic model and various algorithms that were used during
the model construction may also lead to other models harboring
equal or higher prediction value. Furthermore, our study was
completely dependent on the reanalysis of public data, which
was appropriate but lacked validation using clinical samples. We
thought it would be more convincing if we added another test
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group using independent clinical samples, such as examination
of the expression at the transcriptional level of the identified
genes in our model using RT-PCR or Western blot. Then,
validating the regulatory network of TFs and these genes and
the molecular mechanisms of tumor immunity may also provide
investigators with more accurate and convincing evidence for
future application of such regulatory networks in the clinic.

MATERIALS AND METHODS

Data Collection and Preprocessing

The transcriptome profiles (HTSeq-FPKM) of 1,222 samples,
consisting of 1,109 breast tissues of patients with BRCA and
113 adjacent tissues, and corresponding clinical information
were downloaded from the TCGA database in December 2019'.
Expression data or clinical information of each sample were
combined into corresponding matrix files using Perl language®.
Ensemble IDs in the expression matrix profile were also
converted into Gene Symbols with Perl language. ID numbers
in the expression profile and clinical information profile were
matched, and samples whose ID numbers did not match were
excluded from our study. Finally, we obtained 1,097 BRCA cases
for subsequent analysis. Immune-related genes were acquired
from the ImmPort database’. Tumor-related TFs were obtained
from the Cistrome Cancer database’. The immune infiltrate
scores of samples in the TCGA database were obtained from the
TIMER database’.

Screening of Immune-Related or
Transcription Factor-Related

Differentially Expressed Genes

The RNA-Seq profiles from TCGA were transformed using
log2, and the DEGs were identified using the limma package
in R software. The parameters for DEG selection were as
follows: |log2-fold change| > 1 and false discovery rate <0.05.
Volcano plots and heatmaps were drawn using the limma or
pheatmap package in R. The genes overlapping between DEGs
and immune-related genes were defined as immune-related
DEGs. The genes overlapping between DEGs and tumor-related
TFs were defined as TF DEGs.

Survival Analysis and Risk-Score Model
Establishment Using Cox Regression
Analysis

A total of 366 immune-related DEGs were subjected to
univariate Cox proportional hazard regression analysis to identify
PIRDEGs. PIRDEGs with statistical significance in the univariate
Cox regression analysis were tested in the LASSO Cox regression
analysis to generate a coeflicient of each immune-related DEG.

Uhttps://portal.gdc.cancer.gov
Zhttp://www.perl.org/
Shttp://www.immport.org
*http://cistrome.org/CistromeCancer/
>http://cistrome.dfciharvard.edu/TIMER/

For the Cox analysis, the cox.zph function in the survival
package in R was used to guarantee that the proportional hazards
assumption is appropriate. A risk-score model was built using

n
the formula Risk Score (RS) = > (Expi*Coei), where n is the
i=1
number of IRDEGs; Expi is the expression value of each PIRDEG;
and Coei is the estimated regression coefficient of each PIRDEG
derived from the multivariate Cox regression analysis. Based on
this formula, each patient can be assigned a risk score, which
is a linear combination of the expression value of the selected
PIRDEGs weighted by their coeflicients.

Construction of the Transcription
Factor-Prognostic Inmune-Related
Differentially Expressed Gene Regulatory

Network

The coexpression relationship between TF DEGs and PIRDEGs
was analyzed using the corrplot package in R software, and
Pearson’s correlation was calculated. The selection criteria of the
correlation coeflicient were as follows: |cor| > 0.4, p < 0.001. The
network was visualized using Cytoscape software.

Value Assessment of the Risk-Score
Model

Relying on the risk score of each patient from the RS formula,
we first selected the median risk score of the training set as the
cutoff and divided all BRCA patients of the training set or testing
set into two groups: the high-risk group and the low-risk group.
The survival analysis between these two groups was conducted
using the survival package in R software. The accuracy of our
risk-score model to predict prognosis was evaluated using the
ROC curve, and the ROC curve was calculated and generated
using the survivalROC package in R software. Univariate or
multivariate Cox analyses were used to test whether the risk score
of our model is an independent prognostic factor in BRCA. Cox
analysis was performed, and forest graphs were generated using
the survival package in R.

Correlation Analysis of Clinical and

Immune Characteristics

The correlations between risk scores or gene expression value
in the risk-score model and clinical characteristics, including
tumor stages, tumor grades, and lymph node metastasis, were
performed using the beeswarm package in R. The correlation
between risk scores and immune infiltrate scores was assessed
using the corrplot package in R software.

Statistical Analysis

All statistical analyses were performed using R software. The
Wilcox test in R was applied to identify differences between the
normal group and the tumor group. The two-sided log-rank
test in the survival package in R was employed to assess the
survival difference between the high-risk and low-risk groups,
and DEG multivariate analyses were conducted using the Cox
proportional hazards regression model. p < 0.05 was considered
statistically significant.
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