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Background: Stomach adenocarcinoma (STAD) is one of the most common
malignancies worldwide with poor prognosis. It remains unclear whether the prognosis
is associated with somatic gene mutations.

Methods: In this research, we collected two independent STAD cohorts with both
genetic profiling and clinical follow-up data, systematically investigated the association
between the prognosis and somatic mutations, and analyzed the influence of
heterogeneity on the prognosis-genetics association.

Results: Typical association was identified between somatic mutations and overall
prognosis for individual cohorts. In The Cancer Genome Atlas (TCGA) cohort, a list of 24
genes was also identified that tended to mutate within cases of the poorest prognosis.
The association showed apparent heterogeneity between different cohorts, although
common signatures could be identified. A machine-learning model was trained with
20 common genes that showed a similar mutation rate difference between prognostic
groups in the two cohorts, and it classified the cases in each cohort into two groups
with significantly different prognosis. The model outperformed both single-gene models
and TNM-based staging system significantly.

Conclusion: The study made a systematic analysis on the association between STAD
prognosis and somatic mutations, identified signature genes that showed mutation
preference in different prognostic groups, and developed an effective multi-gene model
that can effectively predict the overall prognosis of STAD in different cohorts.

Keywords: stomach adenocarcinoma, prognosis, prediction, multi-gene model, heterogeneity

INTRODUCTION

Stomach adenocarcinoma (STAD) represents the global fifth most common malignancy and the
third leading cause of cancer mortality, with estimated 1,033,701 newly diagnosed cases and 782,685
deaths in 2018 (Bray et al., 2018). Screening of STADs at early stages with endoscopy and biopsy
sampling remains the most effective approach to improve prognosis and reduce the mortality
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(Banks et al., 2019). However, the majority of STADs worldwide
except Japan and Korea were diagnosed at a late stage, due to
the lack of symptoms at early stages, invasiveness of endoscopy,
and unsound early-screening programs (Banks et al., 2019).
Surgical resection and chemotherapy remain the main treatment
regimens (Charalampakis et al., 2018). Although new therapies,
such as targeted and immune therapies, have been applied to
STADs, the overall outcome was only improved moderately (Tran
et al., 2017; Charalampakis et al., 2018).

Multi-omics studies disclosed a high heterogeneity of STADs
in genetics (Cancer Genome Atlas Research Network, 2014;
Cristescu et al., 2015; Oh et al., 2018), gene expression
(Boussioutas et al., 2003; Tan et al., 2011; Lei et al., 2013),
and other molecular levels (Ooi et al., 2016; Ni et al., 2019;
Zhang et al., 2019). The molecular heterogeneity could be
associated with the complexity of anatomic regions of stomach,
cell origins, and etiologies (Cancer Genome Atlas Research
Network, 2014; Choi et al., 2014; Cristescu et al., 2015; Waldum
and Fossmark, 2018; Ni et al., 2019; Zhang et al., 2019). STADs
could originate from different anatomic sites such as cardia
or gastroesophageal junction, fundus, lesser curvature, greater
curvature, angular incisures, antrum, and pylorus, each with
different cell compositions (Soybel, 2005; Choi et al., 2014).
STADs are divided by the Lauren classification system into
intestinal and diffuse types, the latter of which show poor clinical
outcomes generally (Laurén, 1965; Shen et al., 2013). The World
Health Organization proposed an alternative system, dividing
STADs into papillary, tubular, mucinous (colloid), and poorly
cohesive carcinomas (Bosman et al., 2010). Recently, genome-
based molecular signatures were comprehensively identified
and employed by The Cancer Genome Atlas (TCGA) to
classify STADs into four subtypes, namely, Epstein–Barr virus
positive (EBV), microsatellite instable (MSI), genome stable
(GS), and chromosomal instability (CIN) (Cancer Genome
Atlas Research Network, 2014). A gene expression-based study
from the Asian Cancer Research Group (ACRG) also classified
STADs into two major subtypes, MSI and microsatellite
stable (MSS), while MSS STADs were further subdivided into
three subtypes, epithelial-to-mesenchymal transition (EMT),
TP53 active (TP53+), and TP53 inactive (TP53-) (Cristescu
et al., 2015). The new molecular classification schemes could
have more prospective clinical utilities in guiding STAD
therapies and prognosis.

For a variety of tumors, prognosis has been reported to be
associated with somatic gene mutations (Loi et al., 2013; Lee et al.,
2017; Zhang et al., 2017; Cho et al., 2018; Yu et al., 2019). Despite
the large heterogeneity of STADs, common genetic factors (e.g.,
BRCA2 and MUC16) were still identified and reported to be
associated with the prognosis (Chen et al., 2015; Li et al., 2018).
Currently, there is still a lack of systemic exploration of the
association between STAD prognosis and somatic mutations. To
achieve this goal, here, we collected the publically available data
from two STAD cohorts that contained both genetic mutation
profiles and clinical follow-up information (Cancer Genome
Atlas Research Network, 2014; Chen et al., 2015), analyzed the
STAD prognosis–genetics association globally and the influence
of heterogeneity on the prognosis–genetics association, and

identified a list of common genetic signatures that can be used
widely for the guidance of STAD prognosis.

MATERIALS AND METHODS

Datasets, Stratification, and Mutation
Frequency Comparison
Two STAD cohorts were used in this study, the TCGA
cohort and a Chinese cohort (Cancer Genome Atlas Research
Network, 2014; Chen et al., 2015). The TCGA cases were
multiethnic but mostly white people, while the Chinese cohort
was comprised by Chinese patients exclusively. Both the clinical
data and the somatic mutation data were downloaded. Mutations
causing codon changes, frame-shifts, and premature translational
terminations were retrieved for further analysis. For prognosis–
genetics association analysis, first, the cases were removed
that received targeting therapies. Furthermore, only the ones
with both somatic mutation data and corresponding prognostic
follow-up information were recruited. The included cases were
classified into two categories according to prognosis (“good”
or “poor”). The “good” prognosis group included the patients
surviving through the preset follow-up period while the “poor”
one indicated the patients died within the observed period.
The TNM (tumor-nodal-metastasis) staging system was used
for stratification, and for the sake of convenience in binary
classification, two categories, “early” (Stages I and II) and “later”
(Stages III and IV) were predefined. In addition, considering the
possible effects of different anatomic sites of tumor on prognosis,
subdivisions were used for stratification as well. To compare the
somatic gene mutation frequency between prognostic groups, a
matrix was prepared to record the mutations of all the genes
for each case, followed by counting the number of cases with
mutations for each gene in each group. A genome-wide rate
comparison test (EBT) proposed recently that could balance
statistic power and precision was adopted to compare the gene
mutation rates (Hui et al., 2017). To test the robustness of
gene mutation signatures identified by EBT tests, a repeated
resampling strategy was adopted, by which a subset (70% of the
total sample size) of the training cases was randomly selected
for 100 rounds, gene mutation rates were compared for each
round, and the signature genes were observed for the recurrence
among the top 50 genes with smallest p-values for each round
(Hui et al., 2017).

Feature Extraction, Representation, and
Model Training
Two strategies were adopted for the feature extraction in this
research, p-value based and empirical. For the p-value-based
strategy, the top n genes with the most significant mutation
frequency difference were used as the genetic features. For the
empirical strategy, the difference of mutation rates was calculated
per gene between the two prognostic groups and ordered, and
the genes with a minimal 10% (or any indicated percentage)
mutation rate difference and with recurrent mutations in either
group were retrieved as candidate features.
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For each case, Pj (j = 1, 2,., mi) belonging to a certain
category Ci, where i equaled to 1 or 0, and mi represented
the total number of cases of the category Ci, the genetic
features were represented as a binary vector Fj (g1, g2,.,
gn) in which gk (k = 1, 2,., n) represented the kth genetic
feature, taking the value of 1 if the corresponding gene was
mutated and 0 otherwise. There was an mi

∗n matrix for
category Ci. When stage was used as an additional feature,
the size of the matrix was enlarged to mi

∗(n + 1), and the
stage feature was also represented in a binary form in the
additional column, for which 1 and 0 represented “early”
and “later,” respectively. The anatomic sites were represented
as two-bit features, i.e., “cardia/gastro-esophagus junction,”
“fundus/corpus,” and “antrum/pylorus” being represented as
“00,” “01,” and “10,” respectively.

An R package, “e1071,” was used for training SVM
models using each training dataset1. During the training
stage, all four kernels, “Radial Base Function (RBF),” “linear,”
“polynomial,” and “sigmoid,” were tested and the parameters
were optimized based on a 10-fold cross-validation grid search.
The best kernel with optimized parameters was selected for
further model training.

Model Performance Assessment
A 5-fold cross-validation strategy was used in this study.
The original feature-represented matrix for each category was
randomly split into five parts with identical size. Every four parts
of each category were combined and served as a training dataset
while the rest one of each category was used for testing and
performance evaluation.

The Receiver Operating Characteristic (ROC) curve, the area
under the ROC curve (AUC), Accuracy, Sensitivity, Specificity,
and Mathews Correlation Coefficient (MCC) were utilized to
assess the predictive performance. In the following formula,
Accuracy denotes the percentage of both positive instances
(“good prognosis”) and negative instances (“poor prognosis”)
correctly predicted. Specificity and Sensitivity represent the true
negative rate and true positive rate, respectively, while the default
threshold value from “e1070” (0.0) was used to define the
Sensitivity and Specificity in the research. An ROC curve is a
plot of Sensitivity versus (1 – Specificity) and is generated by
shifting the decision threshold. AUC gives a measure of classifier
performance. MCC takes into account true and false positives and
false negatives and is generally regarded as a balanced measure
which can be used even if the classes are of very different sizes.

Accuracy = (TP+ TN)/(TP+ FP+ TN+ FN),

Specificity = TN/(TN+ FP), Sensitivity = TP/(TP+ FN),

MCC = ((TP∗TN)− (FN∗FP))/Sqrt((TP+ FN)∗

(TN+ FP)∗(TP+ FP)∗(TN+ FN)).

Survival Analysis
The follow-up survival information of STAD cases was annotated.
To evaluate the survival of prediction results of each model,

1https://cran.r-project.org/

all the 5-fold cross-validation testing results were collected and
grouped, followed by the survival analysis for each predicted
group. Kaplan–Meier overall survival analysis was performed
with R survival package1. The Gehan–Breslow–Wilcoxon test was
used to compare the difference of overall survival curves, and the
significance level was set as 0.05.

TML Analysis
Both Tumor Mutation Load (TML) and Missense TML were
analyzed for STAD cases of different prognostic groups. TML
is defined as logarithm transformation of mutation rate per
megabase, while Missense TML only counts the mutations
causing amino acid changes. The Wilcoxon rank-sum test was
performed to compare the distributions of TML or Missense
TML, with the preset significance level as 0.05.

RESULTS

Somatic Mutation Profile Difference
Between Prognostic Groups of TCGA
STADs
In total, 142 TCGA STAD cases remained after filtering the
duplicates, the ones missing somatic mutation or clinical
information and those treated with targeting therapies. The
general clinical properties are shown in Supplementary Table S1.
A somatic mutation profile analysis for these cases disclosed
a list of genes with high mutation rates (>30%), including
TTN, PCDHAC2, PCDHGC5, TP53, MUC16, SYNE1, and CSMD
(Supplementary Table S2). The cases were also stratified
according to sex and anatomic site, and the somatic mutation
profiles were compared among the corresponding strata. Six
genes were found with significant somatic mutation rates
between male and female (EBT, p < 0.05), while 5 genes showed
marginally significant somatic mutation rates among different
anatomic sites (EBT, p < 0.10) (Supplementary Table S2).

The overall survival of the included TCGA STAD cases
appeared poor, with a median of 805 days (Figure 1A). The
cases were classified into good and poor prognostic groups
with identical sample size (each with 40 cases) based on a
cutoff survival period (573 days), and somatic gene mutation
rates were compared between the groups (Supplementary
Figure S1A). In total, 52 genes were identified with most striking
difference (EBT, p < 0.20) (Supplementary Table S3). A random
resampling procedure further indicated that these genes were
stably associated with STAD prognosis (50/52 with the largest
recurrence among the top 50 genes of smallest p-values for
each resampling test; Supplementary Table S3). Genes involved
in collagen chain trimerization were significantly enriched
(Supplementary Figure S1B; Fisher’s Exact, FDR = 0.013). Most
of the genes (82.7%) were reported to be associated with cancers
and 16 (30.8%) with gastric cancer, including MUC16, for which
higher mutation rates were recently found to be associated with
prognosis and the immune therapy outcome of gastric cancer (Li
et al., 2018; Supplementary Table S3). With subsets or all of the
52 genes as features, SVM models were trained to predict the
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FIGURE 1 | Association between the overall prognosis of TCGA STADs and somatic gene mutations. (A) The Kaplan–Meier overall survival curve of the TCGA STAD
cases. The median was indicated with an arrow. The analysis throughout the figure used the median survival as stratification cutoff of STAD prognosis. (B) The 5-fold
cross-validated ROC curves of genetic models predicting the prognosis of STADs. (C) The Kaplan–Meier overall survival curves of the TCGA STAD cases classified
by f52 with a 5-fold cross-validation strategy. (D) The distribution of TMLs for TCGA cases of good and poor prognosis groups. The p-value of the Wilcoxon
rank-sum test was indicated. (E,F) The Kaplan–Meier overall survival curves of the TCGA STAD cases stratified by TNM stage information (E) or the combined f52s
model with a 5-fold cross-validation strategy (F). (G) The 5-fold cross-validated ROC curves of the genetic model f52 and the combined models f52s and f52sa
predicting the prognosis of STADs. (H) The Kaplan–Meier overall survival curves of the TCGA STAD cases stratified by presence or absence of MUC16 mutations.
Gehan–Breslow–Wilcoxon tests were performed to compare the overall survivals, and the p-values were shown in context.

tumor prognosis. Generally, the model performance improved as
the number of features increased (Figure 1B). The 52-gene model
(f52) could classify the cases into good and poor prognostic
groups most accurately, with average 5-fold cross-validated
accuracy (ACC), area under the receiver operating characteristic
(ROC) curves (AUC), and Mathews Correlation Coefficient
(MCC) of 0.81, 0.82, and 0.64, respectively (Supplementary
Table S4). Cases classified by the model f52 showed significantly
different overall survival (Figure 1C; Gehan–Breslow–Wilcoxon
test, p = 3e-07).

To test whether the observed mutation–prognosis association
was biased by tumor mutation load (TML), we compared
the TML distribution between the cases with good and poor
prognosis. However, neither total TML nor missense TML
showed significant difference between the two groups of cases
either classified by the median survival time or predicted by the
f52 model (Figure 1D and Supplementary Figure S2; Wilcoxon
rank-sum test, p > 0.05). Distribution analysis on clinical factors
of the training cases demonstrated that clinical TNM stage could
be a significant co-founding factor (Supplementary Figure S3).
We developed a model featured by stage information, and
found that its performance was far inferior to that of f52,
despite its ability in classifying the cases into two groups with
significantly different overall survival (Supplementary Figure S4,
Supplementary Table S4, and Figure 1E). A model combined
the 52 genetic features and stage information, f52s, but achieved

better performance (Supplementary Table S4), which could
classify the cases into two groups with more significant survival
difference (Figure 1F; Gehan–Breslow–Wilcoxon test, p = 7e-08).
The models further integrated with other clinical information-
based features (e.g., anatomic site, f52sa), however, performed not
better than f52s (Figure 1G and Supplementary Table S4).

MUC16 was recently reported to be associated with the
prognosis of gastric cancer (Li et al., 2018). The gene was
also included in our multi-gene feature list. We also found
that the MUC16 prognosis-prediction model can classify the
cases into two prognostic groups, but the significance was
much lower than our multi-gene models (Figure 1H; Gehan–
Breslow–Wilcoxon test, p = 0.03). Other performance measures
further demonstrated the superiority of multi-gene models over
the individual MUC16 model (Supplementary Figure S5 and
Supplementary Table S4).

Taking together, we identified a list of genes, whose somatic
mutation profile could be used for effective prediction of
prognosis for TCGA STAD cases.

Somatic Mutation Indicators for Poor
Prognosis of TCGA STADs
We noticed that the f52 model showed lower classifying power
for short-term prognosis of TCGA STAD cases (Figure 1C). All
of the 52 genes were also found with higher mutation rates in
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cases with good prognosis (Supplementary Table S3). Finally,
the stratification for STAD prognosis was based on the median
overall survival, and it would be also interesting to observe
the dynamic changes of gene mutation rates between groups
stratified with different cutoff survival times. To this end, we
grouped the cases using overall survival of 1, 2, and 3 years as
prognosis cutoff respectively besides the median and compared
the gene mutation rates. Similar to the comparison results based
on 573 days, an absolute majority of top significant genes showed
higher mutation rates in the group of good prognosis than that
of poor prognosis stratified by 2-year overall survival (Figure 2A;
3-year not shown due to the very limitation of case number for
good prognosis). For 1-year stratification, however, the results
demonstrated a contrary trend, i.e., most of the top significant

genes showing higher mutation rates in the poor-prognosis group
(Figure 2A). The consistent intersect between the top significant
genes (50, 100, or 200) of 573-day and 2-year stratification
was much larger than that between 573-day or 2-year and 1-
year (Figure 2B).

To further explore the possible factors causing the observed
contrary trends, we identified genes with the most strikingly
different mutation rates (with a minimal difference of 10%)
between poor and good prognostic groups stratified by 1 year,
and observed the mutation rate changes along with overall
survival time (Figures 2C,D and Supplementary Table S5). The
results suggested that all of these (24) genes inclined to mutate
in cases with the poorest prognosis (<1-year overall survival)
(Figures 2C,D). As control, the genes showed no or much fewer

FIGURE 2 | Somatic mutation indicators for poor prognosis of TCGA STADs. (A) The distribution of top 50 significant genes of good and poor prognosis groups
stratified with different cutoff survival time. Genes with higher mutation rates were counted for either the good or poor prognosis group and represented as
“good-higher” or “poor-higher,” respectively. The total number was also indicated. (B) The consistent intersect among the top significant genes (50, 100, or 200)
identified by 573-day, 1-year, and 2-year stratifications. (C,D) The number of cases with mutation (C) and the mutation rate changes (D) of the top 24 significant
genes selected in the good and poor prognostic groups stratified by 1 year along with overall survival time. The total case number for either prognostic group
stratified by each survival cutoff was shown on the top of (C). (E,F) The Kaplan–Meier overall survival curves of the TCGA STAD cases stratified by f1y24 (E) or the
combined f76 model (F) with a 5-fold cross-validation strategy. Gehan–Breslow–Wilcoxon tests were performed to compare the overall survivals, and the p-values
were shown in context.
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mutations in cases with good prognosis, and the case number
with mutations or mutation rates decreased generally for the
patients with longer prognosis (Figures 2C,D).

The above results suggested that these gene mutations could
be indicators for poorest prognosis. As validation, we used these
genes as features and trained models based on 1-year-stratified
TCGA training data (Supplementary Table S4). The 5-fold cross-
validated results suggested that the optimized model (f1y24)
could distinguish the cases with different prognoses in spite
of a weaker distinguishing power (Figure 2E; Gehan–Breslow–
Wilcoxon test, p = 0.03). Compared to f52, f1y24 did show
better performance for the short-term prognosis classification
(Figure 2E). Combination of the 24 short-term gene markers
and 52 medium- and long-term markers generated a new model,
f76, which showed a balanced classification power for both short-
term and long-term prognosis classification, although the general
significance was not comparable to f52 (Supplementary Table S4
and Figure 2F; Gehan–Breslow–Wilcoxon test, p = 1e-05).

Heterogeneity of Prognosis-Associated
Genetic Signatures Between TCGA and
Chinese STAD Cohorts
The overall survival of the Chinese cohort with 78 STAD
cases appeared better than the TCGA cohort, with a median

of 1353 days (Figure 3A). We also stratified the Chinese
cases into good and poor prognostic groups according to
1-, 2-, and 3-years, and median overall survival, respectively.
Different from TCGA results, the top significant genes showed
large consistence between 1-year and other survival time
stratifications (Figures 3B,C).

To our surprise, the Chinese and TCGA cohorts showed
an unexpected heterogeneity on the prognosis-associated gene
mutation signatures. Very few common genes were identified
in both cohorts with either higher or lower mutation rates
in good prognostic groups (Figure 3D, upper; 4 with higher
and 5 with lower mutation rates in good prognostic groups).
More genes even showed the contrary trends in the TCGA
and Chinese cohorts, e.g., higher mutation rates in the good
prognostic group of TCGA cohort and the poor prognostic group
of Chinese cohort (Figure 3D, lower; 48 genes). Further analysis
for ethnicity stratification of the TCGA cases was precluded since
the number of included Asian cases was too limited, and the
secondary prognosis stratification and mutation rate comparison
were infeasible.

This dramatic genetic heterogeneity could likely make
the TCGA-based prognosis prediction models ineffective in
application for the Chinese cohort. The application of the f52,
f1y24, and f76 models confirmed the following assumption: none
of them could well classify the Chinese cases into groups with

FIGURE 3 | Heterogeneity of prognosis-associated genetic signatures between TCGA and Chinese STAD cohorts. (A) The Kaplan–Meier overall survival curve of the
Chinese STAD cases, with a median of 1353 days. (B) Distribution of the top 50 significant genes with different mutation rates between the good and poor
prognostic groups stratified by different cutoff survival times. Genes with higher mutation rates were counted for either the good or poor prognosis group and
represented as “good-higher” or “poor-higher,” respectively. The total number was also indicated. (C) The consistent intersect among the top significant genes (50,
100, or 200) identified by 1-, 2-, and 3-years stratifications. (D) The consistent intersect between the prognosis-associated gene mutation signatures of TCGA and
Chinese STAD cohorts. Genes were merged for the 1-year, 2-year, and 573-day stratifications for the TCGA cohort and merged for the 1-year, 2-year, and 3-year
stratifications for the Chinese cohort in the first place. (E–G) The Kaplan–Meier overall survival curves of the Chinese STAD cases classified with different models built
on the TCGA training data.
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different prognosis (Figures 3E–G; Gehan–Breslow–Wilcoxon
test for f52, p = 0.5; f1y24 and f76 classifying all Chinese cases
as good and poor prognosis, respectively).

Common Signatures Effectively Predict
STAD Prognosis of Both TCGA and
Chinese Cohorts
To overcome the generalization drawbacks of the prognosis
prediction models based on individual cohorts due to the genetic
heterogeneity, we came up with a new strategy to identify
and test a list of new signatures by screening the genes with
the same change trend of somatic mutation rates between
prognostic groups in the TCGA and Chinese cohorts. Genes
were extracted with different levels of mutation rate difference
(≥15%, ≥10%, and ≥5%) between prognostic groups for both
cohorts stratified, respectively, and the common ones were
further identified correspondingly to serve as signatures. To
reduce the biases caused by imbalanced sample size between
groups, the prognostic groups were stratified by an overall
survival period of 576 days for the TCGA cohort and 3 years
for the Chinese cohort, respectively, with which the two groups
in either cohort showed the identical sample size. There were
0, 4 (MUC16, ATP10A, MPDZ, and VPS13A) and 20 genes
showing ≥15%, ≥10%, and ≥5% mutation rate differences

between prognostic groups for both cohorts with the same
direction (Supplementary Table S6). Furthermore, the 20 genes
(with ≥ 5% mutation rate difference) were tested for the
prognosis prediction performance as signatures. With these
common feature genes, we trained a prognosis prediction model
(cf20) based on the TCGA training data stratified with the
median survival time. The 5-fold cross-validation performance
on TCGA data was not comparable to f52, however, it remained
to be effective in classifying the data into two prognostic groups
(Figure 4A; Gehan–Breslow–Wilcoxon test, p = 0.008). The
model appeared much more effective in prognosis prediction of
the Chinese cohort (Figure 4B; Gehan–Breslow–Wilcoxon test,
p = 4e-06). It consistently showed good performance to predict
the different stratifications of prognosis for the Chinese cohort,
especially for 3- and 2-year prognosis (Figure 4C).

We also integrated the TNM staging information in cf20 to
generate a new model, cf20s. For TCGA data and based on the 5-
fold cross-validation evaluation, cf20s apparently outperformed
cf20 (Figure 4D; Gehan–Breslow–Wilcoxon test for cf20s,
p = 4e-06). When testing in the Chinese cohort, however, the
performance deteriorated, in spite that it remained effective to
predict the prognosis (Figure 4E; Gehan–Breslow–Wilcoxon test,
p = 4e-06). Both cf20 and cf20s, however, outperformed the
single-gene models in predicting the prognosis of the STAD
cases (Figure 4F).

FIGURE 4 | Prediction of STAD prognosis with the genetic models based on 20 common somatic mutation features. (A) The Kaplan–Meier overall survival curves of
the TCGA STAD cases classified by cf20 with a 5-fold cross-validation strategy. (B) The Kaplan–Meier overall survival curves of the Chinese STAD cases stratified by
the cf20 model. (C) The 5-fold cross-validated ROC curves of cf20 model predicting the prognosis of Chinese STAD cohorts stratified by different cutoff survival
time. (D) The Kaplan–Meier overall survival curves of the TCGA STAD cases classified by the cf20s model which was combined 20 common-gene features and TNM
stage information. (E) The Kaplan–Meier overall survival curves of the Chinese STAD cases stratified by the combined cf20s model. (F) The Kaplan–Meier overall
survival curves of the Chinese STAD cases stratified by models based on example individual genes, including MUC16, ATP10A, APC, and TRPC6.
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DISCUSSION

In this research, we found the association between overall
prognosis of STADs and somatic gene mutations from the TCGA
cohort. Despite that the rate comparison-based feature extraction
strategy involved division of the cases into different prognostic
groups according to a survival cutoff preset subjectively, the
model (f52, median survival as cutoff) could well classify the
cases into two groups with significantly differentiated survival
(Figures 1B,C). It is noteworthy that 5-fold cross validation
was used for assessment of model performance, independent
between each training subset and testing subset, and the survival
comparison was performed between the predicted groups for
all testing cases. Therefore, the observed association was not
biased by the model-training scheme. Except tumor stage, other
possible co-founding clinical factors, including sex, anatomic site,
and histopathology, did not show a biased distribution between
the prognostic groups. The TNM staging system could predict
STAD prognosis independently but was not comparable to the
f52 genetic model (Figure 1E and Supplementary Figure S4).
Combination of the genetic features and stage information
improved the prognosis-classifying performance significantly
(Figure 1F). Therefore, as for the TCGA cohort, the prognosis
is associated with genetic factors.

It was noted that all the 52 genes with most significant
difference showed higher mutation rates in the good prognosis
group of TCGA cases stratified by the median survival time
(Figure 2A). It was consistent with previous findings in lung
adenocarcinomas (Yu et al., 2019). Recently, a study identified
the association between higher MUC16 gene mutation rate
and better prognosis of STADs. Meanwhile, the more frequent
MUC16 mutation was associated with a higher TML (Li et al.,
2018). Maruvka et al. argued that a larger MUC16 mutation
frequency could only be an accompanying result of high TML
(Maruvka et al., 2019). MUC16 was also present in our 52-gene
list. We suspected that the list of signature genes with different
mutation rates in prognostic groups could be merely caused by
different TMLs. However, no significant difference was detected
for either TMLs or missense TMLs between the prognosis
groups of the TCGA data (Figure 1D and Supplementary
Figure S2). Interestingly, we noticed that, for TML or missense
TML, although there was no difference in the medians or lower
quartile, the good prognosis group always showed a larger upper
quartile (Figure 1D). Therefore, a higher TML could be an
important but not unique factor predicting better prognosis. The
identified signatures could partially represent TML difference
and also represent other unknown mechanisms influencing the
prognosis of STAD.

With the analytic strategy in this study, we also got an
interesting finding that the composition of genes and the
direction of mutation rate difference between groups stratified
by 1-year survival were totally different from those identified
for median (573-day) or 2-year stratification (Figures 2A,B).
The latter two stratifications showed larger consistency between
each other (Figures 2A,B). A list of genes was identified with
different mutation rates between prognostic groups stratified by
1 year, which showed more frequent mutations in the group of
poor prognosis (Figure 2C). These genes tend to mutate in cases

of poorest prognosis (Figures 2C,D), unlike those identified in
median (or 2-year) stratification for which the mutation rate
showed a linear correlation with overall survival period generally.
The model trained with the 1-year gene features could only
distinguish the cases with poorest prognosis (Figure 2E), further
demonstrating that the mutations of these signatures could be the
indicators of very poor prognosis of STAD.

Heterogeneity of STADs and their genetics was not
surprisingly identified between cohorts, and yet the dramatic
difference of prognosis-associated genetic signatures between
the TCGA and Chinese cohort was unexpected (Figure 3D).
Direct application of the signatures and models trained in
the TCGA cohort showed an awful performance in prognosis
prediction of the Chinese cohort (Figures 3E–G). There was
a large heterogeneity of genes with mutation rate difference
identified from the two cohorts. Many genes even showed
a contrary trend for the mutation rate in prognostic groups
(Figure 3D). We attempted to isolate the Asian cases from
the TCGA cohort but failed to evaluate the gene mutation
rates within different prognosis groups due to the very limited
number of the cases. It remains to be clarified whether the
heterogeneity between cohorts is related with ethnicity of STAD
cases. Two prognostic biomarker genes, BRCA2 and MUC16
(Chen et al., 2015; Li et al., 2018), were found with a mutation
rate difference between the good and poor prognostic groups,
and with the same trend in the two cohorts. We modified the
signature-identification strategy, with an attempt to find out
all the common genes with a consistent mutation difference
between prognostic groups within each cohort. In total, 20 genes
were identified, including MUC16 and BRCA2. A model (cf20)
was trained with these genes as features and the TCGA cohort
as training data. The model well predicted the prognosis of both
TCGA cases based on a cross-validation evaluation, and the
Chinese cases independently (Figures 4A–C). The multi-gene
model also outperformed the ones based on individual genes
strikingly (Figure 4F). However, the problems of over-fitting
cannot be totally excluded despite of the use of only TCGA
data for model training and cross-validation evaluation, and the
Chinese cohort as an independent validation dataset, because
the signatures were identified using both the cohorts. The
effective sample sizes for the cohorts (especially the Chinese
cohort) were too small so that they were hardly further divided,
and therefore resampling or cross-validation-based feature
identification strategies appeared difficult. It would be better
to, but currently we cannot, find one or more independent
STAD datasets (with both gene mutation profiling data and
clinical follow-up information) to make further assessment.
New larger datasets are also in need to further evaluate
the potential heterogeneity caused by human ethnicity and
develop more ethnicity-specific models like the f52 for the
TCGA population.

Besides somatic mutation signatures, germline variants could
also be associated with tumor prognosis. Recently, Milanese et al.
reported different germline variants in recurred and non-
recurred patients of breast cancers (Milanese et al., 2019).
These signature germline variants could potentially facilitate the
formation of the pro-tumorigenic environment by impairing
adaptive and innate immune pathways and could be used
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for prediction of breast cancer outcomes (Milanese et al.,
2019). In another study, Xu et al. (2019) observed negative
associations between the number of germline defective genes
in natural killer cells and survival time in a variety of cancer
types. It is interesting to understand whether there is also
heterogeneity between different cohorts for the associations
between germline mutations and STAD prognosis. Combination
of both germline variants and somatic mutations as well as other
signatures, e.g., hypermethylation signatures, and RNA markers,
could also further improve the model prediction performance
on STAD prognosis.
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FIGURE S1 | The general prognosis of TCGA STAD cases and the functional
enrichment analysis of the prognosis-associated genes. (A) The good and poor
prognostic groups of STAD cases within different survival periods, including 1, 2,
and 3 years and the median of 573 days. (B) Gene Ontology (GO) enrichment
analysis of the top 52 genes with significant mutation rate difference between the
prognostic groups stratified by the median survival time.

FIGURE S2 | TML distribution for different prognostic groups of the TCGA cases.
The distribution of TMLs (A) and missense TMLs (B,C) for TCGA cases of good
and poor prognosis groups for the raw TCGA training dataset stratified by
573-day survival or classified by the f52 model. The p-value of Wilcoxon rank-sum
test was indicated.

FIGURE S3 | Distribution analysis on clinical factors of the training cases. Sex (A),
anatomic regions of stomach (B), clinical TNM stage (C), and the two main
histological types of gastric carcinoma (D) were involved. Chi-square tests were
performed and the p-values were indicated.

FIGURE S4 | Performance comparison of the prognosis prediction models based
on 52 somatic mutation features and clinical TNM stage information. Specificity
(Sp), Sensitivity (Sn), Accuracy (ACC), and Mathews Correlation Coefficient (MCC)
were utilized to assess the predictive performance. The model f52 was based on
the 5-fold cross-validation results. Pairwise one-tail Student’s t-tests were
performed, and the p-values were indicated.

FIGURE S5 | Performance comparison of the prognosis prediction models based
on 52 somatic mutation features and MUC16. Specificity (Sp), Sensitivity (Sn),
Accuracy (ACC), and Mathews Correlation Coefficient (MCC) were utilized to
assess the predictive performance. The model f52 was based on the 5-fold
cross-validation results. Pairwise one-tail Student’s t-tests were performed, and
the p-values were indicated.
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