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Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype
of renal cell carcinoma (RCC), which accounts for majority of RCC-related deaths.
It is clearly essential to further identify more novel prognostic signatures and
therapeutic targets.

Material and Methods: \We identified differentially expressed genes (DEGs) between
ccRCC and adjacent normal tissues in GEO database using a Robust Rank Aggregation
(RRA) method. An mRNA signature (MRNASIg) based on DEGs was developed using
Cox and LASSO analysis in the TCGA database and validated in the ICGC database.
Afterward, the influence of MRNASig mRNAs on the immune microenvironment in
ccRCC was explored using comprehensive bioinformatics analysis.

Results: A total of 957 robust DEGs were identified using the RRA method. mRNASIg
comprised CEP55, IFI44, NCF4, and TCIRG1 and was developed and validated to
identify high-risk patients who had poorer prognosis than low-risk patients. A nomogram
was also constructed based on mRNASig, AJCC stage, and tumor grade. The
MRNASIg were closely related to a variety of tumor-infiltrating lymphocytes, especially
including CD8+ T cells, activated CD4+ memory T cells, regulatory T cells, activated
NK cells, and resting NK cells. The mRNASIig were also correlated positively with the
expression of CTLA4, LAG3, PDCD1, TIGIT, and HAVCR2.

Conclusion: We developed and validated mRNASIg to assist clinicians in making
personalized treatment decisions. Furthermore, CEP55, IFI44, NCF4, and TCIRG1 may
be novel potential targets for future treatment of ccRCC.

Keywords: clear cell renal cell carcinoma, Robust Rank Aggregation method, nomogram, TCGA, GEO, ICGC

INTRODUCTION

The renal cell cancer (RCC) is a common malignant tumor of the urinary system with increasing
incidence and accounts for 3% of all the new cancer cases (Siegel et al., 2020). According to the
global cancer statistics of 2018, there were approximately 403,262 (2.2%) newly diagnosed cases
and around 175,098 (1.8%) deaths due to RCC (Bray et al., 2018). The clear cell renal cell carcinoma
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(ccRCC) is the most common subtype of RCC and accounts
for majority of RCC-related deaths (Hsieh et al., 2017). The
ccRCC has an insidious onset and does not often show any early
clinical symptoms. More than 30% of patients usually are at
metastasis by the time they are diagnosed (Cairns, 2010). There
are about 30% of the localized ccRCC patients with curative
intent who eventually have recurrence or develop metastatic
disease following radical or partial nephrectomy (Meskawi et al.,
2012; Wolff et al., 2016; Hsieh et al., 2017). Therefore, it
is essential to identify more novel prognostic signatures and
therapeutic targets.

The open access of microarray and high-throughput
sequencing data have allowed increasing number of researchers
to use comprehensive bioinformatics such as mRNA (He et al.,
2020), miRNA (Xiao et al., 2020), and IncRNA (Wu et al., 2019)
to explore the novel signatures related to tumor progression and
prognosis of ccRCC patients. However, the small sample size of
individual studies and differences in sequencing platforms and
lab protocols can render great variability among the studies. The
Robust Rank Aggregation (RRA) method can solve this problem,
which directly integrates the lists of differentially expressed
genes (DEGs) analyzed by different datasets (Kolde et al., 2012)
and identifies more robust cancer-related gene sets (Griffith
et al., 2006). Besides, the combination of novel signatures with
clinicopathological information may improve the prediction
of prognosis in ccRCC patients, but this has not been widely
applied in clinical practice (Chen et al., 2019a; Zhang et al,
2020). Thus, it is necessary to find more novel signatures through
comprehensive bioinformatics to establish a more accurate
nomogram than just the clinicopathological information.

In this study, we aim to

(a) Identify the robust DEGs between ccRCC and adjacent
normal tissue using seven GEO datasets;

(b) Use the univariate Cox regression analysis and Least
Absolute Shrinkage and Selection Operator method
(LASSO) to develop the mRNA signature (mRNASig) that
can predict the prognosis of ccRCC patients in the TCGA
cohort and validate the mRNASig by internal validation in
the TCGA cohort as well as external validation in ICGC
cohort;

(c) Construct a nomogram by combining the signature and
clinicopathological information;

(d) Explore the potential molecular mechanism and tumor
immune microenvironment relevance of mRNASig
mRNAs.

MATERIALS AND METHODS

Data Acquisition and Processing

The matrix file series of microarray datasets were downloaded
from the GEO dataset'. The selection criteria of microarray
datasets were as follows: (1) human kidney tissue samples; (2)
containing at least 10 ccRCC and adjacent normal tissue samples.

Uhttps://www.ncbi.nlm.nih.gov/geo/

However, the “Xenograft” and “cell line” were excluded from the
study. Eventually, seven microarray datasets that met the above
criteria were included in the study for DEG analysis: GSE16449,
GSE17895, GSE36895, GSE40435, GSE53757, GSE66270, and
GSE71963. We used the annotation files provided by the platform
to match the probes with the gene symbols. If multiple probes
matched a single gene, then the average of the multiple probes
was considered to be the expression value of the gene.

In addition, the raw counts of ccRCC RNA-sequencing and
corresponding clinical data were downloaded from the TCGA
dataset’ and were analyzed in the study. The selection criteria
of TCGA samples were as follows: (1) pathological diagnosis was
ccRCC, (2) having complete clinical information, and (3) follow-
up of more than 30 days. Finally, there were 517 ccRCC patients
who were selected from the TCGA dataset and were randomly
assigned to the cohort training and internal validation cohort
to a ratio of 1:1. The raw counts of RNA-sequencing data were
transformed into transcripts per million (TPM) values and were
further log2-transformed (log2TPM) for subsequent analyses
(Wagner et al., 2012). The mRNA matrix data expression profile
and follow-up data were downloaded from the ICGC dataset as
an external validation cohort’. There were a total of 91 ¢ccRCC
patients who were included in the external validation analysis.

Identification of Robust DEGs

The DEGs between ccRCC and adjacent normal tissue were
identified using “limma” package in R software (version 3.6.2).
The RRA method based on “RobustRankAggregation” package
was performed to integrate the DEGs of those seven microarray
datasets to find the robust DEGs. In the RRA analysis, the genes
with |log2FC| > 1 and false discovery rate (FDR) < 0.05 were
considered robust DEGs.

Function Enrichment Analysis of Robust
DEGs

The GO enrichment analysis included biological processes (BPs),
cellular components (CCs), molecular functions (MFs), and
KEGG enrichment analysis of robust DEGs that were performed
using “clusterprofiler” package. The value of FDR < 0.05 was
considered statistically significant (Yu et al., 2012).

Survival Analysis of Robust DEGs and

Development of mMRNASig

We constructed the mRNASig to predict the survival probability
of ccRCC patients in the training cohort. Firstly, we performed
univariate Cox regression analysis to identify the survival-
related DEGs. The robust DEGs with HR (hazard ratio) # 1
and P < 0.05 were considered as survival-related DEGs and
were included in subsequent analyses. Secondly, the LASSO
analysis was performed to further screen candidates DEGs
with best predictive performance based on “glmnet” package
and the 10-fold cross-validation was used to identify the
optimal lambda value such that the error is limited within a

Zhttps://cancergenome.nih.gov/
3https://icgc.org/
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minimum of 1 standard error (Friedman et al., 2010). Finally,
the mRNASig was constructed based on LASSO coeflicients
(L;) derived from LASSO model multiplied with the relative
expression levels of mRNAs (Exp;), Riskscore = Z?zl L; x
Exp;.

The patients in the training cohort were divided into
high- and low-risk groups based on the cutoff value of
median risk score. The Kaplan-Meier analysis with log-
rank test was performed to compare the survival differences
between high- and low-risk groups. The area under the curve
(AUC), time-dependent receiver operating characteristic
(tROC) curve, and concordance index (C-index) were
used to evaluate the prognostic performance of mRNASig.
The prognostic performance of clinical variables such as
age, AJCC-stage, T-stage, N-stage, M-stage, and grade were
used as controls.

Internal and External Validation of

mRNASig

To evaluate the potential and applicability of mRNASig, the
validation was done in the internal validation cohort, entire
cohort, and external validation cohort. In the internal validation
cohort, the risk score of each patient was calculated using the
same formula and the same cutoff value. The patients were then
divided into high- and low-risk groups and the Kaplan-Meier
analysis with log-rank test was performed to compare the survival
differences between the groups.

Identification of Independent Prognostic

Variables of ccRCC Patients

To identify the independent prognostic value of mRNASig
and other clinical variables, the univariate and multivariate
Cox regression analyses were performed in the training
cohort, validation cohort, and entire cohort on mRNASig
and clinical variables (including age, AJCC-stage, T-stage,
N-stage, M-stage, and grade). In the multivariate Cox
regression analysis, the stepwise method was used to screen
variables. To investigate the predictive value of the signature
in different subgroups stratified by clinical variables, we used
Kaplan-Meier analysis to access overall survival difference
between high- and low-risk groups of different subgroups in
the entire cohort.

Construction and Validation of a

Nomogram

A nomogram was constructed based on mRNASig and clinical
variables using a stepwise Cox regression model to predict the
probability of OS in ccRCC at 1, 3, and 5 years in the entire
cohort. Furthermore, a clinical model was constructed based
on clinical variables through a stepwise Cox regression model
to evaluate whether mRNASig could improve the predictive
performance of the clinical variables. Additionally, the net
benefits derived from the use of clinical model, mRNASig, and
nomogram were determined by using the decision curve analysis
(Vickers and Elkin, 2006).

Comprehensive Bioinformatics Analysis
of mMRNASig mRNAs

The differences in mRNA expression level and protein expression
of mRNAs between ccRCC and adjacent normal tissue were
validated in the TCGA dataset using the UALCAN website*.
The data of protein expression analysis provided by UALCAN
was from the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) Confirmatory/Discovery dataset (Chen et al., 2019b).
Moreover, we also used the TISIDB website to analyze the
association between the mRNA expression level and clinical
traits, including the overall survival analysis, cancer staging, and
tumor grading’.

The sensitivity (true positive rate) and specificity (true
negative rate) of mRNASig mRNAs for ccRCC diagnosis were
evaluated by ROC curve analysis, and the AUC was calculated
using “pROC” package in R software. The data of ccRCC and
normal tissues protein expression was downloaded from the
CPTAC database® and was used to analyze the efficacy of the
corresponding proteins in diagnosing ccRCC.

The Gene Set Enrichment Analysis (GSEA) was conducted
to explore the potential molecular mechanisms of mRNASig
mRNAs. The TCGA ccRCC dataset was divided into low- and
high-expression groups according to the median expression of
mRNAs. The GSEA was performed in GSEA 4.0.0 software based
on the Molecular Signatures Database V7.0 (MSigDB) and was
used to explore the enriched KEGG pathways according to the
reference gene set “c2.cp.kegg.v6.2.symbols.gmt.” [NES| > 1 and
FDR < 0.05 were regarded as statistically significant.

Tumor Immunity Analysis of the
Signature mRNAs

The TIMER web server” was used to evaluate the relationship
between mRNASig mRNAs expression levels and six tumor-
infiltrating lymphocytes (TILs: B cells, CD4+ T cells, CD8+
T cells, neutrophils, macrophages, and dendritic cells). The
abundance of the six TILs was estimated by TIMER algorithm
(Li et al, 2016; Li et al, 2017). The co-relations were
further investigated using the CIBERSORT website®, which is
a deconvolution algorithm to estimate TILs of complex tissues
based on gene expression and was used to measure the abundance
of 22 TILs (Chen et al., 2018). The input data included TPM
data of TCGA ccRCC and gene signature matrix (LM22), which
were used to distinguish the 22 types of TIL. The permutation
parameter was set as 1000 to create a meaningful P-value. The
output included a fraction of estimated TIL types in each sample
and a P-value for the global deconvolution of each sample.
Therefore, to ensure a high reliability of the estimation, a P-
value < 0.05 was set up.

In addition, immune, stromal, and estimate scores
of each TCGA ccRCC patient were obtained from the

*http://ualcan.path.uab.edu/analysis.html
Shttp://cis.hku.hk/TISIDB/index.php
Chttps://proteomics.cancer.gov/programs/cptac
“https://cistrome.shinyapps.io/timer/
8https://cibersort.stanford.edu/

Frontiers in Genetics | www.frontiersin.org

September 2020 | Volume 11 | Article 1017


http://ualcan.path.uab.edu/analysis.html
http://cis.hku.hk/TISIDB/index.php
https://proteomics.cancer.gov/programs/cptac
https://cistrome.shinyapps.io/timer/
https://cibersort.stanford.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Wu et al.

A Novel ccRCC Signature

7 GEO datasets

A
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FIGURE 1 | Flowchart showing the process of developing the mRNA signature and the nomogram of ccRCC in this study.
TABLE 1 | Details of seven GEO datasets included in this study.
Dataset ID Sample size Platform
Normal Tumor
GSE16449 52 18 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F
GSE17895 22 138 Affymetrix GeneChip Human Genome U133 Plus 2.0 Array (MBNI v11 Entrez Gene ID CDF)
GSE36895 23 53 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
GSE40435 101 101 lllumina HumanHT-12 V4.0 expression beadchip
GSEb53757 72 72 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
GSEB66270 14 14 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
GSE71963 16 32 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F

ESTIMATE website’ to evaluate the association of mRNASig
mRNAs and the tumor microenvironment. The ESTIMATE
algorithm is based on single sample GSEA to evaluate
tumor purity (Yoshihara et al, 2013). The expression
levels of immune checkpoints have become a biomarker
for selecting the ccRCC patients for immunotherapy.
Therefore, we assessed the correlation between mRNASig
mRNAs and expression levels of critical immune checkpoints

(CTLA4, LAG3, PDCDI, TIGIT, and HAVCR2) using
the TISIDB website.

Patients Samples

Primary ccRCC specimens and adjacent normal renal

tissues were obtained from 36 patients diagnosed with

“https://bioinformatics.mdanderson.org/estimate/index.html

ccRCC who underwent surgical resection at the Urology
Department of the First Affiliated Hospital of Guangzhou
Medical University between January 2018 and November
2019. ccRCC tissues were stocked at —80°C for further
processing. All the patients did not receive preoperative
treatment, such as chemotherapy or radiation. All the patients
arranged their written informed consent to participate in
this study, and the study was approved by the Ethics
Committee of First Affiliated Hospital of Guangzhou
Medical University.

RNA Extraction and Quantitative
Real-Time PCR Assays

Total RNAs were extracted and purified from human
ccRCC samples using a Trizol kit (Invitrogen Corporation,
Carlsbad, CA, United States) according to the manufacturer’s
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FIGURE 2 | Prognostic analysis of mMRNASIg in the training cohort. (A) Kaplan—Meier analysis of mRNASIg. (B) The distribution of risk score (a), survival status (b),
and mRNAs expression levels of patients (c) in training cohort. (C) Time-dependent ROC analysis of mMRNASIg. (D) Comparison of the predictive power among risk
score, age, AJCC-stage, T-stage, N-stage, M-stage, and grade.

recommended protocol. ¢cDNAs were synthesized by using
the reverse transcription kit (Takara Biotechnology Dalian,
China) with the following conditions: reverse transcription
at 37°C for 15 min, followed by incubation at 85°C for
5 s in 20 pl of reaction volume. The reaction mixture for
real-time PCR was prepared by following the manufacturer’s
recommended protocols (Takara Clontech, Kyoto, Japan).
Primer sequences of CEP55, IFI44, NCF4, T-cell immune
regulator 1 (TCIRG1), and GAPDH are summarized in
Supplementary Table S1. The cycle threshold (CT) values

were standardized to CT values of GAPDH. The relative
levels of individual mRNA in each sample transcript

compared to control GAPDH were calculated using the
2~ AACt method.

Statistical Analysis

The 95% confidence interval (CI) and HR were generated
by univariate and multivariate Cox proportional hazards
regression analysis. The AUC of tROC curve and C-index
were used to validate the prognostic performance of
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the mRNASig. The C-index and calibration plot were
performed as an internal validation of the nomogram.
The calibration plot was used to compare the predicted
probability of OS versus actual OS at 5 years using the
200 bootstrap resamples to reduce overfitting bias. The
Spearman correlation analysis was performed to assess the
association between mRNA expression level and tumor
microenvironment. Difference comparisons of two groups were
conducted by Wilcoxon test. All the statistical analyses were

performed in R version 3.6.2. and P < 0.05 was considered as
statistically significant.

RESULTS

Identification of Robust DEGs
The flowchart of this study is shown in Figure 1. Table 1 shows
the details of seven eligible GEO datasets (GSE16449, GSE17895,
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TABLE 2 | Cox regression analysis of mMRNASig and OS of ccRCC in the
training cohort.

Variables Univariate analysis Multivariate analysis
HR (95% CI) P HR (95% CI) P
Age 1.08 (1.01-1.05) 0.002 1.04 (1.01-1.06) 0.005
T stage
™ Ref
T2 1.53(0.74-3.14) 0.2
T3 2.7 (1.61-4.45) <0.001
T4 9.79 (3.70-25.89) <0.001
N Stage
NO Ref
N1 5.72 (2.42-13.52) <0.001
NX 0.69 (0.43-1.10) 0.2
M Stage
MO Ref
M1 4.67 (2.98-7.29) <0.001
MX 0.56 (0.076-4.08) 0.6
AJCC Stage
Stage | Ref
Stage Il 0.90 (0.34-2.41) 0.8 0.85 (0.31-2.27) 0.7
Stage Il 2.0 (1.10-3.65) 0.02 1.22 (0.65-2.28) 0.5
Stage IV 6.28 (3.64-10.84) <0.001 4.32 (2.43-7.70) <0.001
Grade
G1and G2 Ref
G3 and G4 2.94 (1.79-4.84) <0.001 2.24 (1.33-3.77) 0.002
Risk score
Low Ref
High 2.73(1.71-4.35) <0.001 2.49 (1.52-4.05) <0.001

GSE36895, GSE40435, GSE53757, GSE66270, and GSE71963),
which were identified as 5334, 6250, 4090, 7082, 4033, 3180, and
5314 DEGs, respectively. There were a total of 957 robust DEGs
that included 445 up-regulated and 512 down-regulated mRNAs
that were identified using RRA analysis. The top 20 up-regulated
and down-regulated robust DEGs identified by RRA analysis are
shown in the heat map (Supplementary Figure S1).

Function Enrichment Analysis of Robust

DEGs

The GO term has BP, CC, and MF as its categories. As
shown in Supplementary Figure S2A, the GO term of BP
including the small-molecule catabolic process, organic anion
transport, carboxylic acid biosynthetic process, and nephron
development for robust DEGs were detected. The CC with
apical part of cell, apical plasma membrane, and extracellular
matrix were significantly enriched. The significantly enriched
MF included cofactor binding, active transmembrane transporter
activity, and coenzyme binding. According to the KEGG pathway
analysis (Supplementary Figure S2B), the phagosome, carbon
metabolism, and cell adhesion molecules (CAMs) were mostly
associated with the robust DEGs.

Survival Analysis of Robust DEGs and
Development of mRNASig

Through the univariate Cox regression analysis, a total of 209
robust DEGs were identified to be closely associated with OS,
which included 91 up-regulated DEGs with HR > 1 and 118
down-regulated DEGs with HR < 1. Later, these 209 survival-
related DEGs were included into LASSO analysis with 10-fold
cross-validation (Supplementary Figure S3). The mRNASig
consisting of mRNASig that included CEP55, IFI44, NCF4, and
TCIRG1 was developed according to the LASSO coefficient and
the relative expression levels of the mRNAs. The up-regulated
CEP55, IF144, NCF4, and TCIRG1 with HR > 1 were regarded
as oncogenes. The formula of risk score was as follows: Risk
score = (CEP55 x 0.248 + IFI44 x 0.259 + NCF4 x 0.196 +
TCIRGI x 0.37).

The patients of the training cohort were stratified into low-
and high-risk groups based on the cutoft value of 0.919. The
Kaplan-Meier analysis revealed that the group with higher
risk scores had significantly unfavorable OS (P < 0.001)
(Figure 2A). The distribution of risk score, survival status,
and mRNA expression levels of patients in training cohort is
shown in Figure 2B. In addition, the mRNASig had a good
predictive performance with AUCs of 0.718, 0.755, and 0.735
at 1, 3, and 5 years, respectively (Figure 2C), with C-index of
0.70 (95% CI, 0.62-0.79). The AUC value of 5 years of the
mRNASig was higher than clinical variables, which suggested
that the mRNASig may be a better predictor of OS of ccRCC
patients (Figure 2D).

Internal and External Validation of
mRNASIg

We used the internal validation cohort, the entire cohort, and
the external validation cohort to assess the mRNASig constructed
in the training cohort. Being consistent with the result of
the training cohort, the Kaplan-Meier analysis of the three
validation cohorts revealed that the prognosis of ccRCC patients
was worse in the high-risk group than in the low-risk group
(P < 0.001; Figures 3A-C). The mRNASig also had an excellent
predictive performance in the internal validation cohort with
AUC of 0.747, 0.722, and 0.754 at 1, 3, and 5 years, and with
C-index of 0.70 (95% CI, 0.61-0.78) (Figure 3D). AUC for 1-,
3-, and 5-year OS of the entire cohort was 0.732, 0.737, and
0.745, and C-index was 0.70 (95% CI, 0.62-0.80) (Figure 3E).
Similarly, the AUC for 1-, 3-, and 5-year OS of the external
validation cohort was 0.734, 0.713, and 0.703, respectively, with
a C-index of 0.68 (95% CI, 0.60-0.77) (Figure 3F). The AUC
value of 5 years of the mRNASig was higher than clinical
variables in the internal validation cohort and the entire cohort
(Figures 3G,H).

Identification of Independent Prognostic
Variables in ccRCC

The univariate Cox proportional hazards regression analysis
revealed that the risk score, age, AJCC stage, grade, T stage,
N stage, and M stage were significantly associated with OS
of ccRCC in the training cohort (Table 2), the internal
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validation cohort (Supplementary Table S2), and the entire
cohort (Supplementary Table S3). Moreover, the multivariate
Cox proportional hazards regression analysis revealed that
risk score, age, AJCC stage, and grade were independent
prognostic factors of OS. Subsequently, we used the Kaplan-
Meier analysis to investigate the predictive value of the
mRNASig in different subgroups stratified by age, AJCC stage,
grade, and T stage of the entire cohort. The patients of
the high-risk groups had an unfavorable OS compared to
the patients of low-risk groups in <60 years, >60 vyears,
T1 and T2, T3 and T4, AJCC stage I and II, AJCC stage

I and IV, Grade 1 and 2, and Grade 3 and 4 subgroups
(Supplementary Figures S4A-H).

Construction and Validation of a

Nomogram

To facilitate the clinical decision making, we constructed a
nomogram based on the entire cohort to predict the probability
of 1-, 3-, and 5-year OS of ccRCC patients. The risk score, age,
AJCC stage, and grade were also included in the nomogram
by a stepwise Cox regression model (Figure 4A). Kaplan-Meier
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analysis revealed that group with higher risk scores had
significantly unfavorable OS (P < 0.001) (Figure 4B). In addition,
we constructed a clinical model based on age, AJCC stage, and
grade using a stepwise Cox regression model. The C-index of
the nomogram was 0.78 (95% CI, 0.75-0.82), while that for the
clinical model was 0.76 (95% CI, 0.67-0.85) and the risk score
was 0.70 (95% CI, 0.61-0.79). The calibration plots showed that
the prediction probability of nomogram is consistent with actual
probability of OS at 5 years (Figure 4C). Moreover, the DCA
for 5-year survival probability prediction shows that nomogram
had the highest net benefit across 0-50% threshold probabilities
(Figure 4D). Meanwhile, the net benefit of mRNASig was higher
than age, AJCC stage, and grade.

Comprehensive Bioinformatics Analysis

of mMRNASig mRNAs

According to the results of the UALCAN website, the mRNA
expression levels of CEP55, IFI44, NCF4, and TCIRG1 were
significantly up-regulated in ccRCC tissues compared to

non-tumorous tissues (Figures 5A-D). The protein level of
mRNASig mRNAs was detected by the UALCAN website, and
the results were similar to the mRNA expression levels in
ccRCC tissues (Figures 5E-H). We explored the association
between the mRNASig and clinical traits including overall
survival analysis, cancer stage, and tumor grade on the
TISIDB website (Supplementary Figure S5). As shown in
Supplementary Figure S5, the four up-regulated mRNAs did
not only have poorer prognosis than down-regulated mRNAs
but correlated positively as well with higher AJCC stage and
tumor grade, suggesting an important contribution to the
pathogenesis of ccRCC. Furthermore, the Kaplan—Meier analysis
of the mRNASig was performed in the external cohort (the
ICGC cohort) and showed that the high expression of mRNAs
had worse OS compared with the low expression mRNAs
(Supplementary Figure S5).

The ROC curve analysis was performed to assess the sensitivity
and specificity of mRNASig mRNAs and the corresponding
proteins for the diagnosis of ccRCC in the TCGA database. The
ROC curves of CEP55, IF144, NCF4, and TCIRG1 in the TCGA
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database are displayed and show good efficacy in diagnosing
ccRCC with AUC of 0.934, 0.881, 0.924, and 0.913 respectively
(Supplementary Figure S6A). Moreover, we found that the
corresponding proteins also have good efficacy in diagnosing
ccRCC with AUC of 0.725, 0.685, 0.929, and 0.975, respectively
(Supplementary Figure S6B).

To further investigate the potential molecular mechanisms
of CEP55, IFI144, NCF4, and TCIRGI in ccRCC, we performed
GSEA using TCGA ccRCC RNA-seq data. As shown in Figure 6,
genes in high-expression groups of CEP55, IFI144, NCF4, and
TCIRG1 were all enriched with “Natural killer cell mediated
cytotoxicity” and “Primary immunodeficiency” pathways; the
“T cell receptor signaling pathway” was enriched in high-
expression groups of CEP55, IFI44, and NCF4, whereas the
“Intestinal immune network for IgA production” pathway was
enriched in CEP55, NCF4, and TCIRG1 high-expression groups,

respectively. The results of GSEA revealed that CEP55, IFI44,
NCF4, and TCIRG1 were all closely associated with immune
signaling pathways.

Validation of mMRNASig mRNAs in Human

ccRCC Tissues

To further confirm the correlation of mRNASig mRNAs
expression with tumor progression in ccRCC, we conducted
quantitative real-time PCR (qRT-PCR) assays in human
tissue samples. The clinicopathological characteristics of
36 patients are presented in Supplementary Table S4. As
shown in Figure 7, CEP55, IFI44, NCF4, and TCIRGlI
mRNA expression were found to be remarkedly higher
in ccRCC tissues than those in adjacent normal renal
tissues (n = 36, P < 0.001). This result implied that these
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mRNASig mRNAs were increased significantly in most of
ccRCC tissues and might be used as valuable biomarkers
for ccRCC patients.

Tumor Immunity Analysis of mMRNASig

mRNAs
The CEP55, IF144, NCF4, and TCIRGI participated in a variety
of immune signaling pathways as per the results of GSEA.
Moreover, the immune environment was closely related to
the development of tumor and the effect of immunotherapy.
Therefore, we used the TIMER website to further explore the
relationship between mRNASig mRNAs and TILs. As shown
in Supplementary Figure S7, the mRNA expression levels of
CEP55, IFI44, NCF4, and TCIRG1 were positively correlated
with TILs, including B cells, CD4+ T cells, CD8+4 T cells,
neutrophils, macrophages, and dendritic cells. These results
revealed that mRNASig mRNAs play a critical role in immune
infiltration in ccRCC.

The 22 TILs were measured on the CIBERSORT website,
and the correlation between them and mRNASig mRNAs
was validated using the Spearman correlation analysis. The

abundance fraction of 22 TILs in the 396 ccRCC samples
was different (Figure 8A). Therefore, the difference in the
proportion of TILs between individuals might represent
tumor heterogeneity. In addition, the correlation between
the proportion of different TIL subpopulations ranged
from weak to moderate (Figure 8B). The Spearman
correlation analysis results between the mRNASig mRNAs
and 22 TILs are shown in Figure 8C and revealed that
mRNASig mRNAs were closely related to a variety of
TILs, especially including CD8+ T cells, activated CD4+
memory T cell, regulatory T cell, follicular helper T cells, and
activated NK cells.

As shown in Figure 9, the risk score and the expression
of the mRNASig were positively correlated with immune,
stromal, and estimate scores. These results suggested that
mRNASig mRNAs may serve as biomarkers and targets for
immunotherapy and revealed that the high-risk group was
more sensitive to the treatment of immunotherapy. Moreover,
we found that mRNASig mRNAs were positively correlated
with the expression of CTLA4, LAG3, PDCDI1, TIGIT, and
HAVCR?2, displaying that the poor prognosis of up-regulated
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FIGURE 8 | The landscape of immune infiltration in TCGA ccRCC patients. (A) The abundance fraction of 22 tumor-infiltrating lymphocytes (TILs) in the 396 ccRCC
samples. Each column represents a sample, and each column with a different color and height indicates the abundance fraction of TILs in this sample. (B) The
correlation between the abundance fraction of various immune cells. The value represents the correlation value. Red represents a positive correlation, and blue
represents a negative correlation. (C) The relationship between expression of CEP55, IFI44, NCF4, and TCIRG1 and 22 TlLs.

mRNASig mRNAs may be related to the immunosuppressive
microenvironment (Figure 10).

DISCUSSION

The ccRCC is the most common subtype of RCC and is a
highly malignant tumor with insidious onset, high recurrence
rate, and high mortality (Hsieh et al., 2017). At present, the
traditional TNM staging system is commonly used as a prognosis
indicator of ccRCC patients but is not precise enough to identify
the high-risk ccRCC patients who need more radical treatment
(Veeratterapillay et al., 2012). Therefore, it is necessary to develop
novel signatures to predict the prognosis of renal cancer.

In our study, we identified 957 robust DEGs of ccRCC by
the RRA method of seven GEO datasets. The GO and KEGG
analysis revealed that the robust DEGs are closely associated
with pathogenesis of ccRCC. The Univariate Cox regression
analysis identified the 209 DEGs associated with OS of ccRCC

patients. We used the LASSO analysis to establish the mRNASig,
consisting of CEP55, IFI144, NCF4, and TCIRG1. The mRNASig
had a good predictive accuracy and was validated by the internal
cohort and the external cohort. The patients in high-risk groups
had significantly poorer prognosis compared to those in low-
risk groups. Meanwhile, it is an independent prognostic factor
of ccRCC, which can greatly improve the predictive ability of
clinical models. A nomogram combined with mRNASig and
clinicopathological variables is constructed to predict OS and
to assist clinicians in making personalized treatment decisions.
Although previous studies have developed several signatures
to identify high-risk ccRCC patients, these studies did not
have enough samples and needed more independent validation
(Quetal., 2018; Wei et al., 2019). Furthermore, mRNASig had a
better prognostic performance than the other reported signature
(RCClnc4 signature and six-SNP-based classifier) for ccRCC.
The up-regulated CEP55, 1F144, NCF4, and TCIRG1 with
HR > 1 were regarded as oncogenes and were proved to be
closely related to tumor progression by using comprehensive
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bioinformatics analysis. Moreover, we found that the proteins (Yin et al,, 2018). The IFI44 is one of the interferon-a-stimulated
of CEP55, IFI44, NCF4, and TCIRGI are also up-regulated in  genes that is associated with hepatitis D (DeDiego et al., 2019)
ccRCC tissues. It is revealed that protein from these may also and limited scleroderma (Bodewes et al, 2018). In addition,
play a key role in ccRCC. The study of Chen et al. (2019¢c) the down-regulated IFI44 in lymphocytes of breast cancer leads
had shown that up-regulated CEP55 could promote epithelial- to immune dysfunction (Critchley-Thorne et al, 2009). The
to-mesenchymal transition, migration, and invasion through NCF4, an innate immunity gene, is the part of the NAPDH
the PI3K/AKT/mTOR pathway in RCC. Similarly, CEP55 was complex and is associated with an increased susceptibility to
found to be up-regulated in multiple types of cancer and Crohn’s disease (Roberts et al., 2008). There is a provided
was related to unfavorable prognosis of non-small-cell lung evidence of an association between NCF4 and increased risk
cancer patients (Jiang et al., 2018) and breast cancer patients of colorectal cancer (Ryan et al., 2014), whereas the NCF4
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FIGURE 10 | Association of expression of CEP55 (A), IFl44 (B), NCF4 (C), and TCIRG1 (D) with the expression of CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT in

rs1883112 were risk factors in diffuse large B-cell lymphoma
patients (Liu et al., 2017). The TCIRG1 was up-regulated
in hepatocellular carcinoma and significantly associated with
unfavorable prognosis of hepatocellular carcinoma patients (Yang
et al, 2018). However, there has been no study of IFI44,
NCF4, and TCIRG1 in ccRCC, and the MFs of those are worth
exploring further.

Clear cell renal cell carcinoma has been proven to be
a hot tumor (highly immune-infiltrated), and TME plays

an important role in the control or progression of ccRCC
(Galon and Bruni, 2019). Currently, immunotherapy is an option
of systemic treatment for metastatic ccRCC (Rini et al,
2016) and had great potential. Moreover, GSEA revealed that
CEP55, 1F144, NCF4, and TCIRG1 were involved in multiple
immune signaling pathways. We found that CEP55, IFI44,
NCF4, and TCIRG1 were positively correlated with multiple
TILs, especially including CD8+ T cells, activated CD4+
memory T cells, and Tregs. The previous studies found that
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increased CD4+ and CD8+ T cells were associated with tumor
progression and poor prognosis in RCC (Nakano et al., 2001;
Remark et al., 2013). Multiple studies have shown that high
numbers of Tregs could suppress the anti-tumor immune
response and was associated with poor prognosis of RCC
(Liotta et al.,, 2011; Kang et al., 2013; Polimeno et al., 2013).
In addition, mRNASig mRNAs were negatively correlated with
activated NK cells and resting NK cells. Low NK-cell densities
were associated with poorer survival in RCC (Remark et al,
2013). These results suggest that CEP55, IFI44, NCF4, and
TCIRG1 may promote tumor progression by regulating TILs
in ccRCC. It is of great significance to further explore the
specific mechanisms by which CEP55, IF144, NCF4, and TCIRG1
regulate these TILs in ccRCC.

CTLA4 can inhibit the early activation and differentiation
of T cells, while PDCD1 regulates T cell effector function,
which may result in its exhaustion (Buchbinder and Desai,
2016; Hellmann et al., 2016). LAG3, a co-inhibitory receptor
on TILs, enhances activity of Tregs and modulates proliferation,
differentiation, and effector function of TILs (Hellmann et al.,
2016). TIGIT (Manieri et al., 2017) and HAVCR2 (a marker
for exhausted TILs) (Du et al, 2017) are possible targets
for binding to existing ICIs. In our study, we found that
mRNASig mRNAs were positively correlated with the expression
of the above immune checkpoint inhibitors, showing that
the poor prognosis of up-regulated mRNASig mRNAs may
be related to the immunosuppressive microenvironment and
mRNASig mRNAs may be novel potential targets for future
treatment of ccRCC.

Our study provides new insights into TME and immune-
related therapy of ccRCC. However, there are some limitations
to this study. First, there exists heterogeneity in this retrospective
study, and more prospective studies are needed to validate this.
Second, the molecular mechanisms of CEP55, IF144, NCF4, and
TCIRGI found in this study require further study.

CONCLUSION

In summary, we developed and validated mRNASig that is
based on mRNASig and has independent prognostic significance
for ccRCC patients. A nomogram was constructed combining
mRNASig, AJCC stage, and grade to accurately identify high-
risk patients who need more radical treatment. Furthermore,
we found that CEP55, IFI44, NCF4, and TCIRG1 contributed
to poor prognosis for ccRCC and played an important role
in the TME of ccRCC through regulating TILs or ICIs. It
suggests that CEP55, IFI44, NCF4, and TCIRG1 may be novel
potential targets for future immunotherapy of ccRCC. Notably,
our study provided new insights for researchers to explore the
treatment of ccRCC.
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FIGURE S1 | Identification of robust DEGs by RRA method. Heatmap presenting
the top 20 upregulated (Red) and top 20 downregulated (Green) mRNAs
according to P-value. The numbers in the heatmap represent log2-fold change in
each dataset calculated by the “limma” R package. DEG, differentially expressed
gene; RRA, robust rank aggregation.

FIGURE S2 | GO and KEGG analysis of the robust DEGs. (A) Top 10 of GO terms
of the robust DEGs, including biological process, cellular component, molecular
function. (B) Top 30 enriched KEGG pathways of the robust DEGs.

FIGURE S3 | (A) LASSO coefficients profiles of 209 mRNAs. (B) LASSO
regression with 10-fold cross-validation obtained 4 prognostic mRNAs that error is
within 1 standard error of the minimum.

FIGURE S4 | Kaplan—Meier analysis of mRNASIg risk score level in different
subgroups including <60 years (A), >60 years (B), T1 and T2 (C), T3 and T4 (D),
AJCC stage | and Il (E), AJCC stage lll and IV (F), Grade 1 and 2 (G), and Grade 3
and 4 (H).

FIGURE S5 | Validation of CEP55, IFI44, NCF4, and TCIRG1 in the TCGA ccRCC
database and the ICGC cohort. (A-D) Expression of CEP55 in ccRCC samples
with different AJCC-stages, tumor grade and overall survival. (E-H) Expression of
IFI44 in ccRCC samples with different AJCC-stages, tumor grade and overall
survival. (I-L) Expression of NCF4 in ccRCC samples with different AJUCC-stages,
tumor grade and overall survival. (M-P) Expression of TCRIG1 in ccRCC samples
with different AJCC-stages, tumor grade, and overall survival.

FIGURE S6 | ROC curve analysis of CEP55, IFI44, NCF4, and TCIRG1 (A) and
corresponding proteins (B) for the diagnosis of ccRCC in TCGA database.

FIGURE S7 | Association of expression of CEP55 (A), IFI44 (B), NCF4 (C), and
TCIRG1 (D) with six tumor-infiltrating lymphocytes in ccRCC. P < 0.05 is regarded
as statistically significant. Each dot represents a ccRCC sample in

the TCGA database.
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