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In this study, we aimed to develop novel genic simple sequence repeat (eSSR)
markers and to study phylogenetic relationship among Pistacia species. Transcriptome
sequencing was performed in different tissues of Siirt and Atlı cultivars of pistachio
(Pistacia vera). A total of 37.5-Gb data were used in the assembly. The number of
total contigs and unigenes was calculated as 98,831, and the length of N50 was
1,333 bp after assembly. A total of 14,308 dinucleotide, trinucleotide, tetranucleotide,
pentanucleotide, and hexanucleotide SSR motifs (4–17) were detected, and the
most abundant SSR repeat types were trinucleotide (29.54%), dinucleotide (24.06%),
hexanucleotide (20.67%), pentanucleotide (18.88%), and tetranucleotide (6.85%),
respectively. Overall 250 primer pairs were designed randomly and tested in eight
Pistacia species for amplification. Of them, 233 were generated polymerase chain
reaction products in at least one of the Pistacia species. A total of 55 primer pairs that
had amplifications in all tested Pistacia species were used to characterize 11 P. vera
cultivars and 78 wild Pistacia genotypes belonging to nine Pistacia species (P. khinjuk,
P. eurycarpa, P. atlantica, P. mutica, P. integerrima, P. chinensis, P. terebinthus,
P. palaestina, and P. lentiscus). A total of 434 alleles were generated from 55 polymorphic
eSSR loci with an average of 7.89 alleles per locus. The mean number of effective allele
was 3.40 per locus. Polymorphism information content was 0.61, whereas observed
(Ho) and expected heterozygosity (He) values were 0.39 and 0.65, respectively. UPGMA
(unweighted pair-group method with arithmetic averages) and STRUCTURE analysis
divided 89 Pistacia genotypes into seven populations. The closest species to P. vera
was P. khinjuk. P. eurycarpa was closer P. atlantica than P. khinjuk. P. atlantica–P. mutica
and P. terebinthus–P. palaestina pairs of species were not clearly separated from each
other, and they were suggested as the same species. The present study demonstrated
that eSSR markers can be used in the characterization and phylogenetic analysis of
Pistacia species and cultivars, as well as genetic linkage mapping and QTL (quantitative
trait locus) analysis.
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INTRODUCTION

Pistacia L. genus is a member of the Anacardiaceae family that
also contains important species such as mango, pepper tree, and
sumac (Kafkas, 2006a). The sex habit of Pistacia is dioecious with
several exceptions (Kafkas et al., 2000). The genus of Pistacia
consists of 13 or more species (Gundesli et al., 2019), and Pistacia
vera is believed to be the most ancestral species, whereas the other
species probably derived from Zohary (1952) and Kafkas (2019).
Currently, the main pistachio producers in the world are Iran, the
United States, Turkey, and Syria (FAO, 2019).

The first taxonomic study in the genus Pistacia was done
morphologically by Zohary (1952). After discovery of different
molecular markers, they have been used in Pistacia as well. The
first detailed molecular study in Pistacia was performed based
on chloroplast DNA profiles by Parfitt and Badenes (1997).
Microsatellites or simple sequence repeats (SSRs) and repeats of
1- to 6-nucleotide-long DNA motifs have high reproducibility,
multiallelic character, and extensive tandem repeats in the
whole genome (Powell et al., 1996). SSRs have advantages over
other marker systems because of their codominant inheritance,
suitability for automation, and well-distribution throughout
eukaryotic genomes. Recently, SSRs have been widely used
in genetic map construction, DNA fingerprinting, genetic
diversity, quantitative trait locus (QTL) mapping, and marker-
assisted selection (MAS) (Dong et al., 2018; Yang et al., 2018;
Zhang et al., 2019).

Genic SSRs or eSSRs are obtained by expression sequence tags
that are created by gene transcripts that have been converted
into cDNA (Adams et al., 1991). Recently, eSSR markers have
been used for identifying plant species because of its design
from coding regions (Varshney et al., 2005; Ellis and Burke,
2007). The concern here is that because eSSRs are located
within the genes, and more conserved, they may be used for
identification of alleles related to some agronomically significant
traits (Chen et al., 2017; Dong et al., 2018; Yang et al., 2018).
Conventionally, SSR development needs to be labor-intensive,
such as cloning DNA and constructing library, and generates
particularly less SSRs compared with next-generation sequencing
(NGS) technology (Zalapa et al., 2012; Zhang et al., 2012).
The advantage of NGS technologies, especially next-generation
transcriptome sequencing, provides a large amount of sequences
with cost-effective and high-quality data in a short period (Wang
et al., 2010; Taheri et al., 2019; Zhang et al., 2019).

RNA sequencing (RNA-seq) is considered to provide
information about functional genes, used to detect reliable and
high-throughput eSSR markers (Wang et al., 2018; Taheri et al.,
2019). Using RNA-seq, eSSRs have been reported in several plant
species such as bean (Chen et al., 2015), grape (Huang et al.,
2011), coffee (Ferrão et al., 2015), tomato (Zhou et al., 2015),
barley (Zhang et al., 2014), cotton (Tabbasam et al., 2014), wheat
(Gupta et al., 2003; Gadaleta et al., 2009), cucumber (Hu et al.,
2010), walnut (Zhu et al., 2009), and citrus (Chen et al., 2006).

The aims of the study were (i) to develop novel genic SSR
markers from transcriptome sequences of pistachio (P. vera)
and (ii) to determine phylogenetic relationship among Pistacia
species using novel eSSRs.

MATERIALS AND METHODS

Plants Materials
In this study, RNA isolation and transcriptome sequencing were
performed in bud, flower, leaf, shoot, whole nut, pericarp, and
kernel of Siirt (female) and Atlı (male) cultivars (Supplementary
Table 1). The sampled tissues were immediately frozen in liquid
nitrogen and stored at -80◦C until RNA isolation.

The genomic DNAs belonging to 11 P. vera L., 5
P. khinjuk stocks, 13 P. atlantica Desf., 5 P. mutica F.&M.,
3 P. atlantica × P. integerrima hybrids (UCB1), 8 P. integerrima
Stewart, 8 P. chinensis Bunge, 11 P. terebinthus L., 5 P. palaestina
Boiss., 12 P. lentiscus L., and 6 unknown Pistacia genotypes
were used to verify eSSR markers. The leaf samples from
these genotypes were collected from germplasm collections in
Çukurova University in Adana, Pistachio Research Institute in
Gaziantep. Wild P. atlantica and P. eurycarpa genotypes growing
in the nature in Manisa and Gaziantep provinces were used as
well. Two P. eurycarpa genotypes were about 500–600 years old
in Göbek village (Figure 1 and Supplementary Table 2).

RNA Extraction, Sequencing,
Transcriptome Assembly
Total RNA was extracted from different tissues of pistachio
and was sequenced by BGI (Beijing Genomic Institute) using
an Illumina (Hi-Seq 2500) NGS platform. The raw reads
were first cleaned from adaptors and filtered for low-quality
sequences with higher than 20% Q value < 20 bases. Those
called as “clean reads” were assembled using Trinity software
(v2.0.6) (Grabherr et al., 2011). After de novo assembly, Trinity
sequences were named as transcripts obtained from contigs
that were not extended on each ends The transcripts were
clustered and obtained final unigenes with TGIGL (Pertea et al.,
2003) software. Simple sequence repeats were searched using
MIcroSAtelite (MISA) (Haas et al., 2013) search module in all
unigenes. The search parameters were set for the detection of
dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and
hexanucleotide SSR motifs with a minimum of six, five, four, four,
and four repeats, respectively. Primers pairs were designed using
online software Batchprimer 3.0 with the standard parameters
(You et al., 2008) (Supplementary Table 3). The sequence data
have been deposited in the National Center for Biotechnology
Information under BioProject accession number PRJNA648340.

DNA Extraction, Polymerase Chain
Reaction Amplification, eSSR Validation
The genomic DNAs of 89 Pistacia samples were extracted
from fresh leaves using the CTAB method of Doyle and
Doyle (1987) with minor modifications (Kafkas et al., 2006).
DNA concentrations were measured using a Qubit Fluorimeter
(Invitrogen) or were estimated by comparing the band intensity
with λ DNA of known concentrations following 0.8% agarose
gel electrophoresis and ethidium bromide staining. DNA samples
were subsequently diluted to a concentration of 10 ng/µL for
eSSR–polymerase chain reaction (PCR).
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FIGURE 1 | Pictures of two old P. eurycarpa genotypes. (A) PE-1, (B) PE-2.

Initially, a total of 250 randomly selected primer pairs were
screened in eight Pistacia individuals, and 55 primer pairs
were selected for the characterization of 89 Pistacia genotypes
belonging to 10 Pistacia species.

eSSR-PCR was carried out using a three-primer strategy
according to the method utilized by Schuelke (2000) with minor
modifications (Topçu et al., 2016). PCR was performed in a total
volume of 12.5 µL containing 20 ng DNA; 75 mM Tris–HCl
(pH 8.8); 20 mM (NH4)2SO4; 2.0 mM MgCl2; 0.01% Tween
20; 200 µM each dNTP; 10 nM M13 tailed forward primer at
the 5′ end; 200 nM reverse primer; 200 nM universal M13 tail
primer (5 TGTAAAACGACGGCCAGT-3) labeled with one of
FAM, VIC, NED, or PET dyes; and 0.6 U hot-start Taq DNA
polymerase. Amplification was performed in two steps as follows:
initial denaturation at 94◦C for 3 min, followed by 10 cycles at
94◦C for 30 s, 58◦C for 45 s, and 72◦C for 60 s. The second
step included 30 cycles at 94◦C for 30 s, 58◦C for 45 s, and
72◦C for 60 s and a final extension at 72◦C for 10 min. After the
PCR was completed, the reactions were subjected to denaturation
for capillary electrophoresis in an ABI 3130xl genetic analyzer
[Applied Biosystems Inc., Foster City, CA, United States (ABI)]
using a 36-cm capillary array with POP7 as the matrix (ABI).
Samples were fully denatured by mixing 0.5 µL of the amplified
product with 0.2 µL of the size standard and 9.8 µL formamide.
The fragments were resolved using ABI data collection software
3.0, and SSR fragment analysis was performed with GeneScan
Analysis Software 4.0 (ABI).

Genetic Diversity
The 55 polymorphic eSSR loci were used for the genetic diversity
of 11 P. vera and 78 wild Pistacia genotypes. The number
of alleles (Na), the number of effective alleles (Ne), observed
(Ho), and expected (He) heterozygosity were calculated using
GenAlEx version 6.5 according to Peakall and Smouse (2012).
The polymorphism information contents (PICs) of each marker
were calculated using PowerMarker software version 3.25 (Liu
and Muse, 2005). The SSR bands scored as present (1) or
absent (0) consisted of a dendrogram using NTSYSpc v2.21c
(Rohlf, 2009) software by unweighted pair-group method with

arithmetic averages (UPGMA). A principal coordinate analysis
(PCoA) was performed using NTSYSpc v2.21c (Rohlf, 2009).

STRUCTURE 2.3.4 software (Pritchard et al., 2000) was
also used to determine the possible number of populations
and for the construction of the population structure. Structure
analysis computes the proportion of the genome of an individual
originating from each interfered population. Possible K’s (where
K is an assumed fixed number of subpopulations in the entire
population) were from 1 to 10 with five replications to ensure
consistency of results. Ln P(D)s mean possible estimated K’s.
There are Ln P(D) values for each K value. By using Ln
P(D) values for every K calculate 1K that shows a possible
number of populations. Each replication run was conducted
with a burn-in period of 100,000 and 100,000 Markov chain
Monte Carlo.

RESULTS

Sequencing and Assembly
Sixteen transcriptome libraries were constructed from different
tissues of Siirt (female) and Atlı (male) cultivars, and a total of
374,726,850 clean reads were obtained. A total of 98,831 unigenes
were generated by the Trinity software, and the N50 of unigenes
was computed as 1,333 bp (Supplementary Table 4). All unigenes
were classified according to size of the sequences; 55,101 (55.75%)
were 100–500 bp, 18,462 (18.68%) were 500 bp–1 kb, 10,615
(10.74%) were 1–1.5 kb, 6,804 (6.88%) were 1.5–2 kb, and the rest
of sequences 7,849 (7.94%) were >2 kb (Table 1).

Identification and Distribution of SSR
Motifs
The MISA search module was used to search for SSRs with
the 98,831 unigenes. In total, 37,793 potential genic SSRs were
identified from 98,831 unigene sequences, of which 23,485 were
mononucleotide repeats (Supplementary Table 5).

A total of 14,308 dinucleotide, trinucleotide, tetranucleotide,
pentanucleotide, and hexanucleotide SSR motifs were
detected, and the most abundant type of the repeats was
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TABLE 1 | Length distribution of assembled unigenes.

Nucleotides length Unigenes

100–500 bp 55,101

500–1 kb 18,462

1–1.5 kb 10,615

1.5–2 kb 6,804

>2 kb 7,849

N50 bp 1,333

Mean length (bp) 776

Max length (bp) 660

Min length (bp) 379

All unigenes 98,831

trinucleotide motifs (29.54%), followed by dinucleotide
(24.06%), hexanucleotide (20.67%), pentanucleotide (18.88%),
and tetranucleotide motifs (6.85%) (Table 2 and Supplementary
Table 6). The most abundant repeats were AG/CT (15.4%),
AAG/CTT (9.8%), and AT/AT (6.5%). The most abundant
tetranucleotide, pentanucleotide, and hexanucleotide repeat
motif types were AAAT/ATTT (2.6%), AAAAT/ATTTT (4.7%),
and AAAAAT/ATTTTT (2.4%), respectively (Figure 2).

Validation of SSRs
The 250 genic SSR primer pairs were designed from assembled
short RNA sequences. The 250 eSSR primer pairs were screened
in eight Pistacia species (P. vera, P. khinjuk, P. atlantica,
P. mutica, P. integerrima, P. chinensis, P. terebinthus, and
P. lentiscus) by agarose gel electrophoresis (1.5%). In total,
233 were amplified at least in one of the Pistacia species,
and 82 were amplified in all tested eight Pistacia species
(Supplementary Table 7). Of them, 55 eSSR primer pairs were
used for characterization of 89 Pistacia accessions because of

their polymorphism and having amplification in the tested
Pistacia species.

Functional Annotation and Classification
A total of 98,831 assembled unigenes were aligned to different
universal databases. Annotation demonstrated that 52,839
unigenes (53.46%) were found important in the Nr database,
49,727 (50.31%) in the Nt database, and 34,419 (34.82%) in the
Swiss-Prot database. The annotation of 58,401 (59.09%) unigenes
was successfully achieved in at least one of the six public databases
(Supplementary Table 8).

According to Gene Ontology (GO) analysis, there were
40,405 annotated unigenes classified into three functional
categories: biological process, cellular component, and
molecular function. The largest classes in biological process
were “cellular process” (25,241), “metabolic process” (24,781),
and “single organism process” (17,507), respectively. The cellular
component category mostly consists of proteins involved in
“cell” (29,529), “cell part” (29,528), and “organelle” (23,825).
The highest classes in the molecular function category were
detected as “binding” (19,780), “catalytic activity” (20,554), and
“transporter” (2,654), respectively (Supplementary Table 9 and
Figure 3).

The unigenes were aligned to COG database, and classification
of 19,349 (19.58%) unigenes was divided into 25 specific
categories (Supplementary Table 10 and Figure 4). Among
these categories, “general function prediction only” (6,665),
“transcription” (3,584), “replication, recombination and
repair” (3,276), “signal transduction mechanisms” (2,774),
“posttranslational modification, protein turnover, chaperones”
(2,627), and “translation, ribosomal structure, and biogenesis”
(2,343) formed the largest groups.

KEGG Orthology (KO) database was used for metabolic
pathway analysis. In the results constructed in a total 128 KEGG

TABLE 2 | Number of repeats; number of dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide SSR motifs; total number of SSR motifs;
percentage of SSR motifs; and total number of SSR motifs in P. vera.

No. of repeats Dinucleotide Trinucleotide Tetranucleotide Pentanucleotide Hexanucleotide

4 0 0 0 2,286 2,467

5 0 0 736 361 486

6 0 2,354 201 54 4

7 1,228 1,139 43 1 0

8 714 590 0 0 0

9 449 136 0 0 0

10 414 3 0 0 0

11 345 3 0 0 0

12 238 1 0 0 0

13 51 0 0 0 0

14 1 0 0 0 0

15 2 0 0 0 0

16 0 0 0 0 0

17 1 0 0 0 0

Total 3,443 4,226 980 2,702 2,957

% 24.06 29.54 6.85 18.88 20.67

Total of repeats 14,308
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FIGURE 2 | The most abundant types of repeats belonging to dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide SSR motifs and the
numbers of SSR motifs.

FIGURE 3 | Gene ontology classification of assembled unigenes. The 40,405 matched unigenes were classified into three functional categories: biological process,
cellular component, and molecular function.
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FIGURE 4 | COG classification of all unigenes according to 25 specific categories.

pathways, 30,746 unigenes were categorized into five KEGG
biochemical pathways: Cellular Processes (A), Environmental
Information Processing (B), Genetic Information Processing (C),
Metabolism (D), and Organismal Systems (E). The pathways
involving the highest number of unique transcripts were
“metabolic pathways” (6,857), followed by “biosynthesis of
secondary metabolites” (3,498), “plant-pathogen interaction”
(2,329), and “plant hormone signal transduction” (1,738)
(Supplementary Table 11 and Figure 5).

Genetic Diversity in Pistacia
Diversity analyses were performed in 11 pistachio cultivars
(P. vera) and in 78 wild Pistacia accessions. Allele ranges, number
of alleles (Na), effective number of alleles (Ne), PICs, and
expected and observed heterozygosities of 55 eSSR loci are given
in Table 3.

A total of 434 alleles were amplified by 55 eSSR loci,
ranging from 4 to 20 per locus. The highest number of allele
(Na = 20) was amplified by the CUPVEST3927 locus. The
effective number of allele ranged from 1.36 (CUPVEST9032)
to 12.31 (CUPVEST3927). The highest observed heterozygosity
(Ho = 0.92) was obtained from the CUPVEST1146 locus. The
average expected heterozygosity was calculated as 0.65, ranging
from 0.26 (CUPVEST9032) to 0.92 (CUPVEST3927). The PICs
ranged from 0.25 (CUPVEST9032) to 0.92 (CUPVEST3927),
with an average of 0.61 (Table 4).

In P. vera, a total of 150 alleles were amplified by 55 eSSR loci.
The polymorphism rate was 92.7%. A total of 51 eSSR loci were
polymorphic, whereas four loci were monomorphic. The average
and the highest numbers of alleles were calculated as 2.73 and 6.00
(CUPVEST1313 and CUPVEST4033), respectively. The highest
effective number of the allele (Ne = 4.94) was obtained from the
CUPVEST4033 locus. The averages of expected heterozygosity,
observed heterozygosity, and PIC values were calculated as
0.40, 0.38, and 0.34, respectively (Table 3 and Supplementary
Table 12).

In P. khinjuk, a total of 152 alleles were produced by
52 polymorphic and 3 monomorphic eSSR loci with 94.6%
polymorphism rate. An average of 2.76 alleles were obtained
from 52 polymorphic loci, and the highest number of alleles
(Na = 5) was in the CUPVEST3826 and CUPVEST4033 loci.
The effective number of alleles ranged from 1.00 to 3.85, with an
average of 2.17. The highest He (0.74) value was calculated in the
CUPVEST1313 and CUPVEST3826 loci. The averages of Ho, He,
and PIC values were 0.61, 0.49, and 0.42, respectively (Table 3 and
Supplementary Table 13).

The lowest polymorphism (61.8%) was in P. eurycarpa with 34
polymorphic SSR loci. The number of alleles ranged from 1 to 4,
with a total of 105 alleles. The highest values for Na, Ne, and He in
P. eurycarpa were obtained from the CUPVEST1313 locus. The
expected heterozygosity and PIC values were calculated as 0.33
and 0.27, respectively (Table 3 and Supplementary Table 14).
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FIGURE 5 | Five KEGG biochemical pathways that obtained from 128 KEGG pathways: (A) Cellular Processes, (B) Environmental Information Processing,
(C) Genetic Information Processing, (D) Metabolism, and (E) Organismal Systems.

TABLE 3 | Mean of population genetic parameters SSR loci in each of Pistacia species.

Population No. of alleles Polymorphic allele (%) Polymorphic/monomorphic markers Na Ne Ho He PIC

Pistacia 434 100.00% 55/1 7.89 3.40 0.39 0.65 0.61

P. vera 150 92.73% 51/4 2.73 1.93 0.38 0.40 0.34

P. khinjuk 152 94.55% 52/3 2.76 2.17 0.61 0.49 0.42

P. eurycarpa 105 61.82% 34/21 1.91 1.76 0.48 0.33 0.27

P. atlantica 191 94.55% 52/3 3.47 2.12 0.34 0.40 0.36

P. mutica 117 65.45% 36/19 2.13 1.71 0.30 0.30 0.25

UCB-1 109 70.91% 39/16 1.98 1.83 0.56 0.36 0.30

P. integerrima 104 69.09% 38/17 1.89 1.72 0.63 0.34 0.27

P. chinensis 151 90.91% 50/5 2.75 1.82 0.34 0.35 0.31

P. terebinthus 180 83.64% 46/9 3.27 2.02 0.34 0.38 0.33

P. palaestina 114 61.81% 34/21 2.07 1.63 0.28 0.28 0.31

P. lentiscus 131 69.09% 38/17 2.38 1.65 0.24 0.29 0.27

Unknown 163 96.36% 53/2 2.96 2.10 0.45 0.46 0.41

Pistacia atlantica had the highest number of alleles among
Pistacia species in this study. A total of 191 alleles were obtained
from 52 polymorphic and three monomorphic SSR loci. The
CUPVEST3927 locus amplified the highest number of allele and
the effective number of the allele. The averages of Na and Ne
values were 3.47 and 2.12, respectively. The highest Ho value
(Ho = 0.92) in P. atlantica was calculated in CUPVEST8600
locus, whereas the highest expected heterozygosity (He = 0.88)

was calculated in the CUPVEST3927 locus. The expected
heterozygosity value ranged from 0.00 to 0.88, with an average
of 0.40. The average of PIC value was calculated as 0.36 (Table 3
and Supplementary Table 15).

In P. mutica, 117 alleles were obtained from 36 polymorphic
SSR loci and 19 monomorphic SSR loci in five accessions. The
mean Na and Ne values were determined as 2.13 and 1.71,
respectively. The highest observed and expected heterozygosities
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TABLE 4 | Novel genic SSR genetic diversity values in 89 Pistacia individuals: allele ranges, number of allele (Na), number of effective allele (Ne), observed heterozygosity
(Ho), expected heterozygosity (He), and (PIC) values of 55 loci.

SSR loci Repeat motifs Allele ranges (bp) Na Ne Ho He PIC

CUPVEST1146 (AAAGA)4 150–173 9 3.37 0.92 0.7 0.65

CUPVEST1313 (GGTGGT)4 167–216 12 7.04 0.56 0.86 0.84

CUPVEST1566 (GTT)8 168–190 7 4.80 0.26 0.79 0.76

CUPVEST1855 (TTTAT)4 124–156 9 5.01 0.59 0.80 0.77

CUPVEST1887 (CAT)8 154–179 10 4.68 0.49 0.79 0.75

CUPVEST1981 (ATGGGC)4 105–145 10 3.26 0.50 0.69 0.66

CUPVEST2110 (TCTTC)4 162–205 7 2.48 0.21 0.6 0.53

CUPVEST2125 (ATC)8 151–170 15 5.32 0.57 0.81 0.79

CUPVEST2611 (TGA)7 105–122 6 1.42 0.06 0.30 0.28

CUPVEST2680 (CCTTC)4 93–146 4 1.89 0.28 0.47 0.43

CUPVEST2831 (AAG)7 154–171 9 4.27 0.30 0.77 0.74

CUPVEST3015 (TTCAA)4 127–158 9 3.49 0.26 0.71 0.67

CUPVEST3655 (AAG)7 164–181 8 2.83 0.38 0.65 0.60

CUPVEST3826 (CGG)5 83–136 14 3.97 0.35 0.75 0.72

CUPVEST3917 (AGAAG)4 129–145 6 2.51 0.23 0.60 0.52

CUPVEST3927 (TAG)7 147–179 20 12.31 0.61 0.92 0.92

CUPVEST3929 (TGAG)5 123–136 9 2.54 0.45 0.61 0.56

CUPVEST4033 (TTGT)5 164–179 11 4.01 0.40 0.75 0.71

CUPVEST4068 (GAT)8 138–167 10 3.79 0.55 0.74 0.70

CUPVEST4100 (GTTTA)4 140–241 11 3.73 0.50 0.73 0.67

CUPVEST4140 (CTCA)5 153–168 6 1.75 0.17 0.43 0.41

CUPVEST4279 (GGGGA)4 165–179 7 3.82 0.23 0.74 0.70

CUPVEST4680 (ATCATA)4 165–183 4 2.15 0.27 0.53 0.43

CUPVEST4746 (ATG)7 142–160 8 3.67 0.54 0.73 0.68

CUPVEST5225 (CAT)8 126–165 6 1.48 0.15 0.32 0.32

CUPVEST5301a (TGGGG)4 161–171 5 3.38 0.43 0.70 0.66

CUPVEST534 (TTGTT)4 116–127 6 2.35 0.50 0.57 0.54

CUPVEST5726 (ATCAC)5 149–175 9 4.96 0.38 0.80 0.77

CUPVEST5746 (GAAGG)4 99–123 5 3.46 0.23 0.71 0.66

CUPVEST5786 (CTC)7 146–162 6 3.64 0.37 0.73 0.68

CUPVEST5836 (TCA)8 124–145 7 2.17 0.19 0.54 0.50

CUPVEST5852 (AACCCT)4 128–147 6 1.53 0.16 0.34 0.31

CUPVEST6009 (CTTTTT)4 112–135 12 4.13 0.48 0.76 0.74

CUPVEST6106 (AGA)7 131–146 5 3.28 0.34 0.70 0.65

CUPVEST6113 (GAA)7 109–124 5 2.67 0.85 0.63 0.55

CUPVEST6536 (GAAGAT)4 136–161 6 2.49 0.36 0.60 0.52

CUPVEST6656 (AAAT)6 115–123 6 3.38 0.42 0.70 0.68

CUPVEST6662 (TTG)8 181–187 4 2.34 0.26 0.57 0.48

CUPVEST6733 (GAA)7 103–179 4 2.37 0.34 0.58 0.48

CUPVEST6938 (ACG)7 172–179 5 2.93 0.48 0.66 0.59

CUPVEST7025 (CT)10 157–171 7 4.57 0.49 0.78 0.74

CUPVEST7130 (GTGAGT)4 126–145 5 2.82 0.59 0.65 0.60

CUPVEST7232 (GTGGA)4 151–162 6 3.13 0.41 0.68 0.63

CUPVEST8057 (CAA)7 144–177 12 4.75 0.40 0.79 0.77

CUPVEST8360 (TAG)7 119–134 6 4.15 0.36 0.76 0.73

CUPVEST8592 (AAGGGA)4 166–174 6 2.09 0.33 0.52 0.47

CUPVEST8600 (TGATT)5 160–178 12 2.61 0.63 0.62 0.60

CUPVEST8824 (TTTCT)4 146–167 10 4.78 0.41 0.79 0.76

CUPVEST8845 (GATAAG)4 146–171 13 2.21 0.43 0.55 0.52

CUPVEST901 (TTTCTT)4 134–150 7 3.35 0.27 0.70 0.65

CUPVEST9032 (CTCA)5 96–116 6 1.36 0.25 0.26 0.25

(Continued)
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TABLE 4 | Continued

SSR loci Repeat motifs Allele ranges (bp) Na Ne Ho He PIC

CUPVEST9042 (AGT)7 136–165 7 3.03 0.44 0.67 0.62

CUPVEST921 (CAGAGC)4 140–165 5 2.77 0.40 0.64 0.6

CUPVEST9273 (AGAAGG)4 126–144 7 2.17 0.23 0.54 0.49

CUPVEST9343 (TTC)7 124–138 7 2.85 0.21 0.65 0.58

Total 434

Mean 7.89 3.40 0.39 0.65 0.61

were calculated as 0.30. The average PIC value was 0.25 in
P. mutica (Table 3 and Supplementary Table 16).

In P. atlantica × P. integerrima (UCB1) hybrids, 39 of the 55
eSSR loci were polymorphic, with 70.9% polymorphism. A total
of 109 alleles were produced by 55 eSSR loci. The highest
number of the allele was obtained from the CUPVEST1146,
CUPVEST4746, and CUPVEST8824 loci. The average number
of allele and the effective number of allele values were 1.98
and 1.83, respectively. The highest He value was generated by
CUPVEST1146, CUPVEST4746, and CUPVEST8824 loci. The
average Ho and He values were calculated as 0.56 and 0.36,
respectively. The average PIC value in UCB1 seedings was 0.30
(Table 3 and Supplementary Table 17).

In P. integerrima, the number of alleles ranged from 1 to 4.
A total of 104 alleles were produced by 55 eSSR loci with 69.1%
polymorphism. The average number of alleles was calculated as
1.89. The CUPVEST6536 locus amplified the highest effective
number of the allele with 3.20. The highest value for He (0.69) was
obtained from the CUPVEST6536 locus. The average Ho and He
values were 0.63 and 0.34, respectively. The average PIC value was
calculated as 0.27 in P. integerrima (Table 3 and Supplementary
Table 18).

In P. chinensis, a total of 151 alleles were generated by 50
polymorphic and 5 monomorphic loci, ranging from 1 to 6 with
an average 2.75 alleles per locus. The average Ne, Ho, He, and PIC
were calculated as 1.82, 0.34, 0.35, and 0.31, respectively (Table 3
and Supplementary Table 19).

In P. terebinthus, 180 alleles were obtained from 46
polymorphic and 9 monomorphic loci. The average number of
the allele was 3.27. The highest number of the alleles was obtained
from the CUPVEST3927 and CUPVEST6009 loci. The average
effective number of allele and the highest effective number of
alleles were 2.02 and 6.54, respectively. The CUPVEST3927 SSR
locus produced the highest expected heterozygosity value. The
average Ho, He, and PIC values were calculated as 0.34, 0.38, and
0.33, respectively (Table 3 and Supplementary Table 20).

In P. palaestina, 197 alleles were generated from 34
polymorphic and 21 monomorphic loci. The average number
of the allele was detected as 2.07. The average effective number
of allele was 1.63. The average Ho, He, and PIC values were
calculated as 0.28, 0.28, and 0.31, respectively (Table 3 and
Supplementary Table 21).

In P. lentiscus, 38 of 55 eSSR loci were polymorphic with
69.1%. A total of 131 alleles were amplified with an average of
2.38 alleles per locus. The average effective number of the allele
was detected as 1.65. The highest number of allele (Na = 7), the

effective number of the allele (Ne = 3.90), observed heterozygosity
(Ho = 0.92), and expected heterozygosity (He = 0.74)
values were obtained from the CUPVEST3826, CUPVEST5726,
CUPVEST1146, and CUPVEST5726 loci, respectively. The
average values for Ho and He were 0.24 and 0.29, respectively.
The average PIC value was calculated as 0.27 (Table 3 and
Supplementary Table 22).

Genetic diversity values of unknown accessions were
calculated as well. A total of 53 eSSR loci were polymorphic with
96.4%. The average numbers of Na, Ne, Ho, He, and PIC values
were 2.96, 2.10, 0.45, 0.46, and 0.41, respectively (Table 3 and
Supplementary Table 23).

Clustering and Structure Analysis
The maximum Delta K value was at K = 7 (Figure 6). Pistacia
accessions were grouped in seven main clusters: Cluster 1
included P. vera cultivars, whereas P. khinjuk was the closest
species to P. vera. P mutica and P. atlantica were in Cluster 3
together with P. eurycarpa, which was clearly separated from
P. mutica and P. atlantica. Cluster 4 included P. integerrima and
UCB1 (P. atlantica × P. integerrima) accessions. Three UCB1
accessions were clearly separated from P. integerrima. P. chinensis
accessions were in Cluster 5. P. terebinthus and P. palaestina
accessions were grouped in the same cluster (Cluster 6) together
with unknown Pistacia accessions. Cluster 7 consisted P. lentiscus
accessions that were separated from rest of the accessions in the
UPGMA analysis (Figure 7). A PCoA supported the structure
and UPGMA analysis (Figure 8).

DISCUSSION

Identification of eSSRs
The density of eSSRs distribution was computed as one SSR
per 17.75 kb in the present study and was higher than other
species such as Argyranthemum brousonetii (2.3%, 27.00 kb) and
Zingiber officinale (2.7%, 25.20 kb) (White et al., 2016; Awasthi
et al., 2017), while it was lower than in some species such
as Arachis hypogaea (17.7%, 3.30 kb), Curcuma longa (20.5%,
4.80 kb), and Curcuma alismatifolia (12.5%, 6.60 kb), respectively
(Annadurai et al., 2013; Wang et al., 2018; Taheri et al., 2019).
eSSR frequencies and their density in genomes may differ from
species to species, because each species has different genetic
construction. On the other hand, using different bioinformatics
tools and criteria for detection of SSRs may also be a reason for
the differences (Liu et al., 2018; Taheri et al., 2019).
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FIGURE 6 | The graph demonstrates number of possible population (K = 7) and subpopulation (K = 4). X axis refers to number of K, and Y axis refers to Delta K.

eSSR repeat motifs identified from dinucleotide to
hexanucleotide and trinucleotide repeats (29.54%), dinucleotide
repeats (24.06%), and hexanucleotide repeats (20.67%) were
the most abundant repeat motifs, respectively. These results
were similar to those found in previous studies in abundance
of trinucleotide motifs within the transcriptome sequences
(Awasthi et al., 2017; Park et al., 2019; Taheri et al., 2019).
A previous study in P. vera by Jazi et al. (2017) also demonstrated
that dinucleotides (44.7%) and trinucleotides (40.6%) were the
most abundant types of repeats. The most frequent types in genic
SSRs are trinucleotide repeat type, whereas the common types
of SSRs in unigene sequences are dinucleotide and trinucleotide
types (Varshney et al., 2002).

Transcriptome Assembly and Functional
Annotation
De novo sequencing and assembly without aligning with the
reference genome have been widely used to obtain first sequences
for non-model organisms (Russell et al., 2014; Wei et al., 2014;
Chen et al., 2017). The transcriptome sequences of P. vera were
the first provided by Jazi et al. (2017) for discovery of markers
about salinity-related genes. In the present study, different tissues
of a female and a male P. vera cultivars were sequenced, and N50
of unigenes was computed as 1,333 bp, similar with the study
performed by Jazi et al. (2017).

The GO database is one of the largest information sources
about detection of the genes functions ranging from model
organisms to minor organisms (Gene Ontology Consortium,
2004). For GO analysis, a total of 40,405 sequences were
associated with 325,220 GO terms, which classified different

56 subcategories in three major categories in this study.
Jazi et al. (2017) demonstrated that 68,539 sequences were
annotated with 302,375 GO terms. The results indicated that
assembled unigenes have different molecular functions involved
in different metabolic pathways. The assembled sequences
were aligned to COG database for prediction of the possible
functions. KO provides recognition of the biological pathway
of transcripts using KEGG database (Blanca et al., 2011; Torre
et al., 2014). Therefore, KEGG pathway analysis explains the
information about biological systems of organisms and the
relationships between transcripts and their molecular, cellular,
and organism levels (Kanehisa et al., 2008). A total of
30,746 unigenes were associated with 279 KEGG pathways.
The results illustrated that the KEGG pathway classification
of the P. vera will facilitate to understand related complex
traits at transcriptome level in pistachio and in closely
related species.

eSSR Polymorphism in Pistacia
SSR markers have been widely preferred for genetic diversity
studies, construction of consensus genetic linkage maps,
QTL mapping, and MAS in breeding programs (Li et al.,
2012; Dong et al., 2018). SSR markers from transcriptome
sequences are especially valuable because of their preserved
gene regions (Taheri et al., 2019). NGS provides more
opportunities than detecting classic SSRs and generates
enormous data for development of SSRs in many plant species
including P. vera (Jazi et al., 2017). The detection of potential
SSR markers in pistachio is very easy owing to its high
heterozygosity rate (Motalebipour et al., 2016; Jazi et al., 2017).
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FIGURE 7 | UPGMA dendrogram of 11 P. vera and 78 wild Pistacia genotypes belongs to P. khinjuk, P. eurycarpa, P. atlantica, P. mutica, UCB1, P. integerrima,
P. chinensis, P. terebinthus, P. palaestina, and P. lentiscus. The figure refers to the number of possible populations at K = 7 (Delta K = 7).

Although Jazi et al. (2017) detected 11,337 potential SSRs in
P. vera, a total of 14,308 genic SSR loci were determined in
this study.

In P. vera, several reports were published regarding the
development of novel genomic SSR markers in pistachio. First,
novel 14 SSR markers were developed by Ahmad et al. (2003)
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FIGURE 8 | Principal coordinate analysis of the 89 Pistacia individuals.

in P. vera. Kolahi-Zonoozi et al. (2014) designed 42 primers
from Akbari pistachio cultivar and selected 12 polymorphic
SSR loci in 45 economically important pistachio cultivars.
Then, Zaloğlu et al. (2015) constructed genomic libraries
enriched with dinucleotides and trinucleotides repeats. They
developed 47 polymorphic SSR loci from P. vera cv. Siirt.
Topçu et al. (2016) sequenced 192 clones from enriched
(GA)n and (AAG)n motifs. In total, 110 of 135 primers were
produced in PCRs, and 64 of them were found polymorphic
with 264 alleles in 12 pistachio cultivars. Currently, there
are a few studies about the development of genomic SSR
markers in Pistacia using NGS technology (Motalebipour et al.,
2016; Khodaeiaminjan et al., 2018). Motalebipour et al. (2016)
developed SSR markers from P. vera, and their transferability
was tested in five wild Pistacia species. Khodaeiaminjan et al.
(2018) developed 625 polymorphic in silico SSR markers. We
developed here genic SSR markers using NGS and generated
33,341 SSR loci.

Motalebipour et al. (2016) developed 204 SSR markers and
tested them in five wild Pistacia species. The means of Ho,
He, and PIC values in 24 P. vera accessions were calculated
as 0.46, 0.55, and 0.50, respectively (Motalebipour et al., 2016).
Khodaeiaminjan et al. (2018) used 613 in silico SSR loci with an
average number of allele 4.2 in 18 P. vera genotypes. Average
values for observed (Ho) and expected (He) heterozygosities and

PIC were 0.53, 0.56, and 0.51, respectively, in 18 P. vera cultivars.
In this study, we used 55 eSSR loci with an average number of
2.73 allele in only P. vera.

There are a limited number of studies about development of
SSR markers in wild Pistacia species. Albaladejo et al. (2008)
developed novel SSR markers from P. lentiscus using enriched
library method and produced 59 alleles from eight SSR markers,
ranging from 3 to 13 per locus, although a total of 131 alleles
were generated by 55 eSSR loci in P. lentiscus genotypes in this
study. Arabnezhad et al. (2011) designed 27 primer pairs enriched
for dinucleotide (AG)n and trinucleotide (ATG)n motifs from
P. khinjuk sequences. A total of 114 alleles were generated with
an average number of allele Na = 2.8 per locus in all Pistacia
accessions (Arabnezhad et al., 2011). In this study, 52 of 55
eSSRs were found polymorphic, and a total of 152 alleles were
generated with an average number of allele Na = 2.8 in five
P. khinjuk accessions.

Phylogeny of Pistacia Species
In this study, structure analysis separated Pistacia accessions
in seven main clusters. P. khinjuk was the closest species to
cultivated P. vera as in previous studies (Zohary, 1952; Kafkas
and Perl-Treves, 2001, 2002; Golan-Goldhirsh et al., 2004; Al-
Saghir and Porter, 2006; Kafkas, 2006a; Motalebipour et al.,
2016). P. lentiscus was the most distant species to P. vera in
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accordance with previous studies (Zohary, 1952; Kafkas and Perl-
Treves, 2001, 2002; Golan-Goldhirsh et al., 2004; Kafkas, 2006a,b;
Motalebipour et al., 2016).

Zohary (1952) defined that P. eurycarpa is a subspecies of
P. atlantica (var. kurdica), whereas it was classified as a different
species by Yaltırık (1967). In this study, we used two old
P. eurycarpa accessions sampled from Göbek village of Gaziantep
province to emerge relationship with other Pistacia species.
The results clearly demonstrated that P. eurycarpa was closer
to P. atlantica than P. khinjuk. Kafkas and Perl-Treves (2001)
found that P. atlantica and P. eurycarpa were closely related
species at molecular level. Therefore, the results in this study
supported statements at morphological level by Yaltırık (1967)
and at molecular level by Kafkas and Perl-Treves (2001).

Al Yafi (1978) detected different subspecies of P. atlantica
using some leaf characters. He reported that P. mutica had
been a subspecies in P. atlantica. Kafkas (2006a) described that
P. atlantica and P. mutica were not clearly diverged. Therefore,
P. mutica was grouped within P. atlantica. In this study, pairs
of species were not prominently separated from each other.
The previous findings supported that P. atlantica and P. mutica
species were one of the closest pairs of species (Al-Saghir and
Porter, 2006; Kafkas, 2006a).

P. integerrima and its hybrids have been used as rootstock for
P. vera in California. Zohary (1952) defined P. integerrima as a
subspecies of P. chinensis, whereas Parfitt and Badenes (1997)
classified it as a distinct species. In this study, P. integerrima and
P. chinensis were clearly separated from each other. Similar results
were also obtained by Kafkas and Perl-Treves (2001), Kafkas
(2006a), and Motalebipour et al. (2016).

There is still discussion about whether P. terebinthus and
P. palaestina are same or different species. The first classification
was performed by Engler (1883), who considered P. palaestina
as a variety of P. terebinthus. However, Zohary (1952) described
that P. palaestina was a different species from P. terebinthus.
On the other hand, Yaltırık (1967) reported that P. palaestina
was a subspecies of P. terebinthus. Kafkas and Perl-Treves (2001)
and Kafkas (2006a) supported Yaltirik and Engler’s classification
studies. In this study, these species were not prominently
diverged from each other. Therefore, our hypothesis is that
they are same species, and P. palaestina can be a subspecies of
P. terebinthus.

In this study, six unknown Pistacia genotypes were grouped
with P. palaestina and P. terebinthus according to UPGMA
analysis. Structure analysis demonstrated that they have close
relationships with cultivated P. vera. This situation can be
described that these genotypes may be hybrids between P. vera
and P. palaestina or P. terebinthus.

CONCLUSION

Transcriptome sequencing provided opportunities for mining
easy and cost-effective SSR markers using NGS platform. A total
of 98,831 unigenes in this study can be useful for genome
annotation in P. vera and in related species in the future.
The SSR distribution frequency in pistachio transcriptome was
one SSR per 17.75 kb. A total of 14,308 eSSRs were defined
using transcriptome data of pistachio, and they can be used
in studies such as germplasm characterization, population and
evolutionary studies, marker-assisted breeding, and association
and QTL mapping in Pistacia species. This was the first study
characterizing 10 Pistacia species by genic SSRs and provided
important findings on the taxonomy of Pistacia species.
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