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Lung cancer is one of the most common human cancers both in incidence and
mortality, with prognosis particularly poor in metastatic cases. Metastasis in lung
cancer is a multifarious process driven by a complex regulatory landscape involving
many mechanisms, genes, and proteins. Membrane proteins play a crucial role in the
metastatic journey both inside tumor cells and the extra-cellular matrix and are a viable
area of research focus with the potential to uncover biomarkers and drug targets. In
this work we performed membrane proteome analysis of highly and poorly metastatic
lung cells which integrated genomic, proteomic, and transcriptional data. A total of
1,762 membrane proteins were identified, and within this set, there were 163 proteins
with significant changes between the two cell lines. We applied the Tied Diffusion
through Interacting Events method to integrate the differentially expressed disease-
related microRNAs and functionally dys-regulated membrane protein information to
further explore the role of key membrane proteins and microRNAs in multi-omics
context. Has-miR-137 was revealed as a key gene involved in the activity of membrane
proteins by targeting MET and PXN, affecting membrane proteins through protein–
protein interaction mechanism. Furthermore, we found that the membrane proteins
CDH2, EGFR, ITGA3, ITGA5, ITGB1, and CALR may have significant effect on cancer
prognosis and outcomes, which were further validated in vitro. Our study provides
multi-omics-based network method of integrating microRNAs and membrane proteome
information, and uncovers a differential molecular signatures of highly and poorly
metastatic lung cancer cells; these molecules may serve as potential targets for
giant-cell lung metastasis treatment and prognosis.
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INTRODUCTION

Lung cancer remains the leading cause of cancer-related
mortality in the world, with an overall 5-year survival rate of
18% (Siegel et al., 2017). In 2016, over 155,000 people died
from lung cancer in the United States alone (Siegel et al.,
2017). These low survival rates are partly due to the fact that
over 50% of patients are diagnosed at a later stage, for which
the 5-year survival is only 4%. Approximately 80–85% of lung
cancer cases are non-small cell lung cancer (NSCLC), and the
remaining 15–20% are small-cell lung cancer cases (Giaccone
and Zucali, 2008). In NSCLC, it is estimated that over 40%
of patients have metastases at the time of diagnosis (Waqar
et al., 2018). The prognosis is poor in metastatic cases -only
∼1% of such NSCLC patients will survive five or more years
(Borghaei et al., 2017).

Cancer metastasis involves tumor cell invasion across
interstitial tissues and basement membranes (Jiang et al., 2015;
Qiao et al., 2019). Abnormal expression of membrane proteins
in cancer tissues and cells has been shown to play a key role
in cancer occurrence and metastasis (Lethlarsen et al., 2009;
Kampen, 2011). In a recent study of hepatocellular carcinoma
(HCC), golgi membrane protein 1 (GOLM1) was shown as
a key target of miR-382, HCC cells metastasis status was
inhibited when GOLM1 is down-regulated in HCC cells (Zhang
et al., 2018). N-cadherin (CDH2), a direct target of miR-
145, is a cell-cell adhesion molecule that contributes to the
invasive/metastatic phenotype in many cancers such as gastric
cancer, breast cancer, and lung cancer (Lei et al., 2017; Mo et al.,
2017; Ye et al., 2018). β-catenin (CTNNB1), involved in the
regulation of cell adhesion, promote ovarian cancer metastasis
and liver cancer (Arend et al., 2013; Ding et al., 2014). Mucin
1(MUC1) protein, a membrane-tethered mucin glycoprotein, is
also associated with poor prognosis and enhanced metastasis
in human pancreatic cancers (Wu et al., 2018). In addition,
microRNAs have important roles in cancer metastasis (Nicoloso
et al., 2009), and multiple microRNAs, such as hsa-miR-1, hsa-
miR-217, hsa-miR-206, and has-miR-577 were previously shown
to play key roles in cancer metastasis (Liu et al., 2015; Chen et al.,
2017; Samaeekia et al., 2017).

The complex regulatory landscape of cancer metastasis
underscores the need of integrative approaches in cancer
research. Multi-omics computational studies are an active area
of investigation and perform analysis of genomic, proteomic,
and transcriptional data combined with prior knowledge of
regulatory relationships to uncover clinically relevant discovery
such as biomarkers, therapeutically targets, and outcome
prediction (Liu et al., 2017; Jiang et al., 2019; Xu et al., 2020). One
such recently proposed method – the Tied Diffusion Through
Interacting Events (TieDIE) algorithm uses a network diffusion
approach to connect genomic perturbations to transcriptional
changes (Paull et al., 2013). With the help of the TieDIE
algorithm, a contributing factor (small GTPase RHEB) to the
differences observed between BRAF and RAS mutants was
discovered; in another cancer study, researchers combined
transcriptional regulators, mutated genes, and differentially
expressed kinases with TieDIE and synthesized a robust

signaling network which consists of drug-able kinase pathways
(Drake et al., 2016).

Although both membrane proteome and microRNA have
been shown of great importance previously, there was no
systematic combined analysis using membrane proteome
together with microRNA data on lung squamous cell carcinoma
(LUSC). In this study, we utilized quantitative membrane
proteome and microRNA expression together with multiple
regulation networks to perform comparative analysis of highly
and poorly metastatic lung cancer cell lines (95C and 95D). In the
following, we described the methodology used for experiment
and computational analysis; differentially expressed membrane
proteins are identified, then using joint analysis method to
integrate microRNA expression data. Finally the significance of
the study is discussed.

MATERIALS AND METHODS

The methods utilized in the work aim to discover biomarkers
which are associated with disease outcomes measured by overall
survival (OS). We integrated experimental and computational
approaches, proteomics and genomics (microRNA) data, and
bioinformatics analysis to drive bio-medical discovery. The
overall work-flow is depicted in Figure 1.

Experimental Data Collection – Protein
Identification and Quantification
Cell Culture and Membrane Protein Preparation
Human giant cell lung cancer cell lines of poorly (95C) and
highly (95D) metastatic potential were purchased from the
Institute of Biochemistry and Cell Biology of the Chinese
Academy of Sciences (Shanghai, China). Cells were cultured
in DMEM and RPMI 1640 medium supplemented with 10%
fetal bovine serum for 95D and 95C cells respectively at 37◦C
and 5% CO2 incubator. All culture media were supplemented
with 100 U/mL penicillin and 100 mg/mL streptomycin sulfate.
All cultured cells were tested for mycoplasma contamination
before use. Membrane proteins isolation was performed with
the Pierce R© Cell Surface Protein Isolation Kit (Pierce, Thermo
Fisher Scientific, United States), and followed the protocol
described by de Wit et al. (2012). All reagents were cooled
to 4◦C before protein biotinylation. The cells were washed
twice with ice-cold phosphate buffered saline (PBS) followed
by incubation with 0.25 mg/mL Sulfo-NHS-SS-biotin (Pierce)
in 48 mL ice-cold PBS per flask on orbital shaker for 30 min
at 4◦C. Then, 500 µL of quenching solution were added to
each flask to quench the reaction. After being washed with
ice-cold PBS, harvested by gentle scraping, and pelleted by
centrifugation, the cells were lysed using the Lysis Buffer
(Pierce) which was added with protease inhibitors for 30 min
on ice with vortexing every 5 min for 5 s. The cell lysates
were centrifuged at 10,000 × g for 2 min at 4◦C to remove
cell remnants. Before clarified supernatant was used to purify
biotinylated proteins on NeutrAvidin Agarose (Pierce), 500 µL
of NeutrAvidin Agarose slurry was added and centrifuged 1 min
at 1,000 × g and the flow-through was discarded followed by
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FIGURE 1 | Overall workflow of multi-omics integrative analysis.

washing with Pierce Wash Buffer in a provided column (Pierce)
trice. The clarified supernatant was added and incubated for
2 h at 4◦C using an end-over-end tumbler to mix vigorously
and allow the biotinylated proteins to bind to the NeutrAvidin
Agarose slurry. Unbound proteins were removed by washing
with 1% Non-idet-P40 and 0.1% SDS in 500 µL PBS thrice
and then by washing with 0.1% Non-idet-P40 and 0.5 M

NaCl in 500 µL PBS trice. Finally, the captured proteins
were eluted from the biotin-NeutrAvidin Agarose and were
collected by column centrifugation at 1,000 × g for 2 min.
Three biological replicates were obtained for both cell lines. All
protein concentrations were quantified using the BCA protein
Assay Kit (Pierce) and the lysates were stored at −20◦C for
further analysis.
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Liquid Chromatography Tandem Mass Spectrometry
(LC-MS/MS)
Equal amount of proteins was digested overnight at 37◦C by
trypsin (Promega, Madison, WI, United States) using the FASP
approach. Briefly, 30 µg membrane proteins were used and three
biological repeats of each cell line were prepared. Equal amount of
peptide was injected into Easy-nLC 1,000 m (Thermo Scientific)
coupled with a Q-Exactive mass spectrometer (Thermo Fisher
Scientific) (Michalski et al., 2011; Kelstrup et al., 2012). Peptides
were eluted to analytical column (75 µm × 15 cm) packed with
Jupiter Proteo resin (3 µm, C18, 300 Å, Phenomenex, Torrance,
CA, United States). The mobile phase consisted of buffer A (2%
acetonitrile and 0.1% formic acid in water) and buffer B (0.1%
formic acid in 95% acetonitrile). A flow rate of 250 nL/min
and 60 min of the gradient from 12% B to 32% B was applied
for the separation of peptides. MS Scan range was from 300 to
1,600 m/z with the resolution of 70,000. For MS/MS, scan range
was from 200 to 2,000 m/z with the resolution of 17,500. We
performed full MS scan in a positive mode and then selected the
five most dominant icons from the initial MS scan for collision-
induced dissociation.

Protein Identification and Quantitation
To identify proteins from the acquired data, MS/MS spectra
were searched against the Human SwissProt database (548, 208
sequences) (Jungo et al., 2012) using the MASCOT software
(version 2.0) (Matrix Science, London, United Kingdom).
SwissProt database is a high quality manually annotated and non-
redundant protein sequence database, and now more and more
bioinformatics data mining algorithms are designed using this
database (Le et al., 2017a, 2019a).

The parameters for searching were the MASCOT defaults –
enzyme of trypsin, two missed cleavage, fixed modifications of
carbamidomethyl (C), and variable modifications of oxidation
(M). We set mass tolerance to 20 ppm for MS precursors and
0.05 Da for fragment ions, and then peptide charges of +2, +3,
and+4 were retained. For protein identification, we used p-value
less than 0.05 and false discovery rate (FDR) less than 0.01 at the
protein level as the criteria to distinguish two peptides. Label-
free quantification was performed by intensity-based absolute
quantification (iBAQ), which was based on at least two unique
peptides to quantify the different protein profiling in the 95C cell
and 95D cell membrane. Quantile normalization was performed
to ensure that each sample had the same distribution, the two-
fold change and p-value less than 0.01 cut-off was set up for the
screening of differentially expressed proteins.

Bioinformatics Analysis
Protein Subcellular Localization Annotation and
Transmembrane Domain Prediction
The first step of the bioinformatics analysis aimed to identify
membrane proteins. Here, we used the following process to
annotate the membrane proteins. First, Gene Ontology (GO)
cellular component annotation of all identified proteins was
performed by the R go.db package. The GO is a human
and machine readable gene annotation resource, which has
been widely used to enable computational discovery in diverse

areas such as protein function identification (Le et al., 2017b,
2019b), text mining in life sciences (Przybyla et al., 2016),
and underlying molecular disease mechanisms (Kramarz et al.,
2020). Second, additional subcellular location information was
downloaded from the UniProt database (Jungo et al., 2012) and
added to the protein subcellular localization annotation. Third,
transmembrane domains in all identified membrane proteins
were predicted by TMHMM1 Serve v.2.0 (Krogh et al., 2001). This
gave us a list of 3,240 membrane proteins which were utilized in
the downstream analysis.

Differential Expression Analysis and Enrichment
Analysis
In the second step of the bioinformatics analysis we searched
for protein differential expression and enrichment. Utilizing
the Student’s t-test, we tested the 3,240 membrane proteins for
differential expression between poorly metastatic 95C and highly
metastatic 95D cell lines. Proteins with a p-value <0.05 and
|log2FC| > 1 were considered to be significantly differentially
expressed and included in the reduced set (n = 163) for further
analysis. GO and KEGG pathway enrichment analysis by the
clusterprofiler R package (Yu et al., 2012) was performed on
the differentially expressed membrane proteins in order to
understand which function they may affect. Gene set enrichment
analysis (GSEA) were performed by the GSEA software v.3.0
(Subramanian et al., 2005) using the molecular signatures
database MSigDB (Liberzon et al., 2011). At the end of this step
we obtained a list of 163 differentially expressed proteins and 87
enriched genes.

Multi-Omics Data – MicroRNA
To integrate genomics data into our analysis, microRNA
expression array data of 95D and 95C cells (GSE47788) was
downloaded from the Gene Expression Omnibus (GEO) database
(Edgar et al., 2002; Wang X. M. et al., 2013). We directly
used the differential expression results provided by the study.
For the 64 differentially expressed microRNAs, we applied the
miRWALK2.0 (Dweep and Gretz, 2015) software to build a list
of microRNAs and their gene targets.

Generation of Biological Pathway Subnetwork
Connecting MicroRNA and Enriched Genes
Having obtained (1) the set of 87 enriched genes and (2) the set
64 of differentially expressed microRNA and their gene targets,
we build a sub-network which significantly close-connects these
genes and microRNAs. We used the Tied Diffusion through
Interacting Events (TieDIE) software (Paull et al., 2013; Drake
et al., 2016). The Multinet pathway database (Brown et al., 2013)
together with the validated microRNA-target pairs selected by
miRWALK2.0 in the previous step served as the background
network of the TieDIE program. 32 membrane protein genes and
180 linker genes were selected in this step.

Cancer Hallmarks Enrichment Calculation
The set of genes in the sub-network built with TieDIE in the
previous step were used to perform cancer hallmark enrichment

1http://www.cbs.dtu.dk/services/TMHMM/
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which is now a popular functional analysis method for a
gene clustering (Drake et al., 2016; Ge et al., 2020). Cancer
hallmark definitions were also downloaded from the MSigDB
database, and the cancer hallmark pathway enrichment were
performed by calculating the probability of overlap between
input genes and the hallmark pathway gene sets and evaluated
by hyper geometric test with Benjamini and Hochberg (1997)
correction of p-values. The source code for cancer hallmark
enrichment analysis is publicly available at: https://github.com/
YankongSJTU/CHEA.

Survival Analysis
Integrating the above-obtained gene lists with survival data, we
performed patient survival analysis to determine if the selected
genes have impact on cancer related outcomes. We downloaded
mRNA expression data (FPKM values) for the 32 membrane
protein genes from the Human Protein Atlas2 (Uhlen et al., 2010)
of lung adenocarcinoma (LAC) and LUSC patients (Tomczak
et al., 2015), 925 samples in total. From the same source we
also obtained patient OS data. For each gene, FPKM values from
the 20th to 80th percentiles were used to group the patients;
significant differences in the survival outcomes of the groups
were examined and the value yielding the lowest log-rank p-value
was set to be the best cut-off value. Patients were classified
into two groups: group 1 with values above the cutoff (high
expression level group) and group 2 with values below the
cutoff (low expression level group). The outcome differences
for each group were calculated using the Log-rank test by the
Kaplan–Meier method (Bland and Altman, 1998). Prognostic
analysis was performed by using the R packages KMsurv, survival,
and survminer (Latouche and Aurelien, 2019). All p-values
were derived from two-tailed statistical tests, and p-value <0.05
was considered as statistically significant. At the completion
of the bioinformatics analysis, six significant gene biomarkers
significantly correlated with OS were determined.

We also constructed a prognostic risk index with these selected
membrane proteins:

Risk Index =
∑

expression (Pi) ∗
HRi

maximum
(
expression (Pi)

)
(1)

where Pi (i = 1,2,3,. . .,K) means the selected K membrane
proteins. Samples are grouped according to the risk factor levels,
and the prognosis differences are compared.

Experimental Verification
The cellular expression of the six candidate proteins were
verified experimentally via Western Blot analysis. Total cell
lysates were obtained using RIPA buffer (Thermo Fisher
Scientific, United States). Proteins were separated by SDS-
polyacrylamide gel electrophoresis (SDS–PAGE) and transferred
to polyvinylidene fluoride (PVDF) membrane (Millipore,
Burlington, MA, United States). The membranes were blocked
in PBS, 10% (w/v) skim milk for 1 h in phosphate buffer saline-
Tween 20 (PBS-T), and incubated for 3 h at RT in 5% milk in

2https://www.proteinatlas.org

PBS-T with primary antibodies: CDH2, EGFR, ITGA3, ITGA5,
ITGB1, and CALR (Abcam, Cambridge, United Kingdom).
Then, after washing, the PVDF membrane was incubated with
secondary antibody (The Jackson Laboratory, United States)
for 40 min at RT. Thermo Scientific SuperSignal West Pico
PLUS Chemiluminescent Substrate kit (Thermo Fisher Scientific,
United States) was used for visualization.

RESULTS AND DISCUSSION

Protein Identification and Differential
Expression Analysis
We first sought to determine the full set of membrane proteins
detected by mass spectrometry and then identify the subset of
differentially expressed ones. A total of 3,241 unique proteins
were identified and quantified. A total of 3,107 proteins
(95.9%) were annotated by GO cellular component analysis
and 2,887 proteins (89.1%) were annotated by using the
UniProt subcellular localization database. Subcellular localization
annotation analysis predicted that 1,762 proteins were membrane
proteins (54.7%), whereas the TMHMM algorithm predicted that
590 proteins (18.3%) had a transmembrane domain. Significant
differences between 95D and 95C cells were observed in the
expression of 163 membrane proteins (|log2FC| > 1 and
p-value < 0.05). We provide detailed subcellular localization
annotations together with TMHMM results of all proteins in
Supplementary Table S1. All differential expression results are
listed in Supplementary Table S2.

Functional Characterization of
Differentially Expressed Membrane
Proteins
Differential expressed membrane proteins may play a key role
in tumor metastasis. Membrane proteins as well as extra-
cellular matrix (ECM) molecules, cell adhesion molecules
and adhesion receptors form into functional complex units
and maintain cell–cell adhesions. These complexes, once
disassembled, will increase tumor metastasis and invasion
(Gumbiner, 1996; Vadakekolathu et al., 2018). To further
examine the mechanistic role in cancer metastasis of differentially
expressed membrane proteins, we performed two-step functional
enrichment analysis.

First, GO and KEGG functional enrichment analysis revealed
that differentially expressed membrane proteins were mainly
centered on focal adhesion and cell-substrate adherens junctions,
and many metabolic pathways. For example, the three most
significantly enriched GO terms were GO:0005925∼focal
adhesion (q-value = 7.2e−43), GO:0005924∼cell-substrate
adherens junction (q-value = 7.2e−43), and cell-substrate
junction (q-value = 1.2e−42), and the three most significantly
enriched KEGG pathway terms were hs03010∼Ribosome
(q-value = 1.07e−16), hsa05412∼Arrhythmogenic right
ventricular cardiomyopathy (ARVC) (q-value = 1.65e−4), and
hsa05416∼Viral myocarditis (q-value = 3.22e−3). All detailed
enrichment results are shown in Supplementary Table S4.
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In the second step of this analysis, GSEA revealed that
differentially expressed membrane proteins were enriched in 13
GO categories (MSigDB c6 Gene Ontology or GO categories)
including of GO_POSITIVE_REGULATION_OF_LOCO-
MOTION and GO_CELL_JUNCTION_ORGANIZATION.
KEGG_FOCAL_ADHESION pathway was also enriched.
Similar molecular terms, “KEGG_FOCAL_ ADHESION” and
“REACTOME_HEMOSTASIS” were also identified using other
functional gene sets (MSigDB c6 KEGG or Reactome categories)
(Table 1). Of all 87 enriched genes, 21 were considered as
a core enrichment set, i.e., genes which were considered to
contribute the most to the enrichment result According to the
differential expression analysis, all core enrichment genes were
significantly up-regulated, including ALCAM, LDOA, TP1A1,
TP1B1, TP1B3, CDH2, CTNNB1, CXADR, EGFR, EPHA2,
GLG1, ITGA3, ITGA5, ITGB1, ITGB3, JAM3, MPZL1, NEGR1,
PARK7, PTPRF, and SLC16A3 (see Supplementary Table 5).

MicroRNAs and Significant Sub-Network
Derived From TieDIE Program
MicroRNAs are non-coding RNAs which participate in cellular
activity by regulating target genes. Increasing number of studies
have reported that microRNAs are frequently differentially
expressed in numerous types of human cancer and play an
important role in the progression and development of NSCLC
(Inamura and Ishikawa, 2016; Berrout et al., 2017; Chang et al.,
2017; Zhang et al., 2017; Iqbal et al., 2018). Although microRNAs
act only in the cell where they are synthesized, they can also
influence the functions of neighboring cells or play a role in
the tumor micro-environment by modulating the ECM state
(Rutnam et al., 2013).

Utilizing the TieDIE program (a pathway-based multi-omics
method which extends on the heat diffusion strategies and uses
a network diffusion approach to connect proteins and genes
related to diseases) we were able to link differentially expressed
microRNAs with membrane proteins.

First, 64 differentially expressed microRNAs were obtained
directly from a previous study (Supplementary Table S2). We
successfully found 300 targets of 64 microRNAs with the help
of MIRWALK 2.0 and synthesized a validated microRNA-
regulated target network (Supplementary Table S3) which
served as background database together with the Multinet
database (Khurana et al., 2013). The input membrane proteins
and microRNAs were found to be significantly close (p < 0.001)
in a pathway space based on a background model generated by
1,000 permutations of the data (Paull et al., 2013), where each
input set (membrane proteins, microRNAs) was swapped with
genes of similar network connectivity while the other one was
fixed (Figure 2A).

We selected a compact sub-network with a high level of
specificity, which consisted of 216 nodes – four microRNAs (hsa-
miR-137, hsa-miR-483-5p, hsa-miR-638, and hsa-miR-127-3p),
32 differentially expressed membrane proteins (HSPA5, CANX,
TJP1, FN1, ITGA3, ITGA4, ITGA5, XPO1, JAM3, F11R, SDC1,
FLNB, DCTN2, VDAC2, ALCAM, RAB10, SRC, LDLR, CDH2,
EGFR, CTNNB1, ITGB1, ITGB3, CD44, CD47, HGS, ARHGEF7,
HGF, LMNA, CALR, PTPRF, and GNA13) and 180 linking
proteins connected by 244 edges (Supplementary Table S6).
We manually deleted those linker proteins whose degree was 1
and constructed a sub-network consisting of four microRNAs,
32 membrane proteins, and 38 linker proteins with 101 edges
(Figure 2B). Focusing on differentially expressed membrane
proteins, we found 32 membrane proteins which were connected

TABLE 1 | Gene set enrichment result of differentially expressed membrane proteins.

GS(follow, link, to, MSigDB) Size ES NES NOM, p-value FDR, q-value

GO_POSITIVE_REGULATION_OF_DEVELOPMENTAL_PROCESS 17 0.49060193 2.2359705 0 0.044999983

GO_POSITIVE_REGULATION_OF_LOCOMOTION 15 0.52440554 2.2129607 0 0.044999983

GO_CELL_PROJECTION_PART 18 0.46777532 2.201335 0 0.044999994

GO_PLASMA_MEMBRANE_REGION 24 0.5549008 2.1945791 0 0.044999983

GO_CELLULAR_COMPONENT_MORPHOGENESIS 16 0.51833624 2.1498182 0 0.044999994

KEGG_FOCAL_ADHESION 17 0.45756185 1.9556208 0 0.044999994

REACTOME_HEMOSTASIS 26 0.38783315 1.9427094 0 0.045000017

GO_CELL_JUNCTION_ORGANIZATION 16 0.48022297 1.9331897 0 0.044999983

GO_REGULATION_OF_CELL_DIFFERENTIATION 18 0.49768242 1.9189458 0 0.044999994

GO_MEMBRANE_MICRODOMAIN 15 0.5177578 1.9009451 0 0.044999994

GO_TISSUE_DEVELOPMENT 32 0.38096464 1.8797828 0 0.045

GO_ANATOMICAL_STRUCTURE_FORMATION_INVOLVED_IN_MORPHOGENESIS 18 0.3993144 1.8518116 0 0.044999994

GO_REGULATION_OF_PHOSPHORUS_METABOLIC_PROCESS 23 0.42798108 1.8506685 0 0.045000024

GO_REGULATION_OF_PROTEIN_MODIFICATION_PROCESS 21 0.46240425 1.8467267 0 0.045000017

GO_ENZYME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY 15 0.5241594 1.8411065 0 0.04499999

GO_RECEPTOR_BINDING 24 0.39534718 1.8257784 0 0.044999983

GO_MEMBRANE_REGION 31 0.420572 1.8051884 0 0.051817805

GO_PROTEIN_COMPLEX_BINDING 28 0.36254478 1.787877 0 0.051439002

GO_REGULATION_OF_CELLULAR_COMPONENT_MOVEMENT 24 0.39252102 1.7859758 0 0.05110011

ES, NES, and FDR are enrichment score, normalized ES, and false discovery rate, respectively.
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FIGURE 2 | Characterization of the TieDIE network. (A) The distribution of background scores and real score. The distribution of background scores is shown as
blue bars, while the green line represents the real score. (B) Compact subnetwork after manually deleting linker proteins whose degree was one from the raw
subnetwork constructed by the TieDIE program. The rhombus nodes represent for microRNAs, the circle nodes represent for linker proteins, while the square nodes
represent differentially expressed membrane proteins. The node color changes according to the fold change values. (C) PPI subnetwork of 32 differentially
expressed membrane proteins. (D) Wheel plot of cancer hallmark enrichment of the TieDIE subnetwork.

through protein–protein interactions (PPI) directly (Figure 2C).
Regarding the four microRNAs in the sub-network (hsa-miR-
137, hsa-miR-483-5p, hsa-miR-638, and hsa-miR-127-3p) – only
hsa-miR-137 was up-regulated in the 95D cell line and the other
three were down-regulated in the 95D cell lines as comparing
with the 95C cell lines.

We also found that the four sub-network microRNAs were not
independent of each other but connected by at least one linker
protein. The three down-regulated microRNAs were previously
reported to be associated with tumor metastasis in recent studies,
and to influence the expression of both XPO1 and ALCAM (Ma
et al., 2014; Herr et al., 2017; Shi et al., 2018; Yue et al., 2018).
We focused on has-miR-137, which was up-regulated in the high-
metastatic (95D) cell line and increases invasion and metastasis of
NSCLC cells (Chang et al., 2017) Four up-regulated membrane
proteins, HGF, CTNNB1, ITGB1, and ITGA4, involved in
focal adhesion pathway, were linked to has-miR-137 by two
mediation genes – PXN and MET (Figure 2B). Paxillin (PXN),
whose expression was negatively correlated with has-miR-137

(Jiang et al., 2018), encodes a focal adhesion-associated protein
and plays an important role in signal transduction, regulation of
migration, proliferation and apoptosis. MET encodes tyrosine-
protein kinase Met (c-Met) which possesses tyrosine kinase
activity and is a well-characterized driver of oncogenesis occurs in
multiple cancers include of NSCLC (Gentile et al., 2008). In this
study, we found that MET and PXN, which are regulated by has-
miR-137, may affect membrane proteins through PPI. Although
proto-oncogene tyrosine-protein kinase SRC was found to be
down regulated in the high-metastasis (95D) cell line in this
study, many other research indicated SRC was highly expressed
in NSCLC (Giaccone and Zucali, 2008; Rothschild et al., 2010).

Cancer Hallmark Pathway Enrichment
We show that our TieDIE sub-network is significantly close in
the pathway space. Considering the cancer hallmark pathway
enrichment of all proteins involved in the TieDIE sub-network
(32 differentially expressed membrane proteins and 180 linker
proteins), we found the five main cancer hallmark pathway
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categories were significantly enriched, including of cell cycle
pathway category (p-value = 0.0154), inflammatory response
pathway category (p-value = 0.0105), metabolism pathway
category (p-value = 0.0196), migration and invasion pathway
category (p-value = 5.8380e−06), and PI3K/AKT mTOR pathway
category (p-value = 0.0292) (Table 2).

In addition, 10 cancer related hallmark pathways were
also significantly enriched, including apoptosis pathway
(p-value = 0.0221, cholesterol homeostasis pathway (p-
value = 0.04152), epithelial/mesenchymal transition pathway
(p-value = 0.0048), estrogen response early and late pathway (p-
value = 0.04203), G2M checkpoint pathway (p-value = 0.0322),
glycolysis pathway (p-value = 0.0048), Il6/Jak/Stat3 signaling
pathway (p-value = 0.0067), mitotic spindle pathway (p-
value = 0.0130), Mtorc1 signaling pathway (p-value = 0.0131)
and TGF beta signaling pathway (p-value = 0.0500). Hallmark
“wheels” were colored proportionally to the negative log
transformed p-values returned by the hypergeometric test
(Supplementary Table S7) (Figure 2D). These results further
demonstrate the importance of our selected membrane proteins.

Prognostic Value of Differentially
Expressed Membrane Proteins in TieDIE
Sub-Network (Overall Survival)
The OS prognostic value of the 32 membrane proteins in the
TieDIE sub-network was evaluated by performing log-rank test
in the TCGA lung cancer cohort (Supplementary Table S8).
Based on the best cut-off of each gene, Kaplan–Meier (KM)
curves were generated for the high expression level group and
the low expression level group. The expression group definition
is described in section “Survival Analysis.”

High expression of CDH2 (HR = 1.2874, 95%
CI: 1.0425–1.5898, p = 0.0279), EGFR (HR = 1.2927, 95%
CI: 1.0496–1.5921, p = 0.0166), ITGA3 (HR = 1.2965, 95% CI:
1.0202–1.6477, p = 0.0379), ITGB1 (HR = 1.5930, 95% CI:
1.2906–1.9663, p = 2.1922e−05), and ITGA5 (HR = 1.4656,
95% CI: 1.1836–1.8148, p = 5.8933e−04) was negatively

associated with OS in NSCLC patients. Low expression of CALR
(HR = 0.7930, 95% CI: 0.6454–0.9744, p = 0.0279) was associated
with worse OS for NSCLC patients (Figure 3). According to
the differential expression analysis in this work; CDH2, EGFR,
ITGA3, ITGA5, and ITGB1 were all highly expressed in the
high- metastatic cell lines while CALR has low expression (see
Supplementary Figure S1). This is consistent with the widely
accepted fact regarding NSCLC – that patients with metastasis
have a poor prognosis.

A Risk Index was computed for each sample by applying the
formula described in the section “Materials and Methods.” When
comparing the prognosis differences between the high and low
risk factor groups, we found that the high risk group showed poor
prognosis (p-value < 1e−05) (see Supplementary Figure S2).
However, not all prognosis-associated genes match this pattern.
We also found five other proteins – CD47, FN1, VDAC2, HGF,
and ITGA4, which showed significant correlation with OS of
NSCLC patients, however, the direction of the correlation was
non-intuitive. HGF, ITGA4, and CD47 were also associated with
increase in OS and we can observe that patients may live longer
when these genes are highly expressed. However, high expression
of HGF, ITGA4, and CD47 is observed in 95D cell lines (high
metastasis cell lines) as compared with low metastasis cell lines.
Finally, FN1 and VDAC2 are down regulated in the 95D cell
lines but lower expression level of these proteins will result in
longer OS (Supplementary Figure S1 – KM curve). A potential
mechanistic explanation is due to inconsistent expression of
protein level and gene level (Vogel and Marcotte, 2013).

Validation of Altered Protein Expression
To validate the quantitative differences observed by mass
spectrometry and bioinformatics analysis, the expression levels
of six proteins were verified in the two (95C and 95D) cell
lines through Western blot. The experimental results confirmed
our prediction (Figure 4). Calreticulin (CALR gene production)
showed low expression levels in high-metastasis cell lines (95D),
while the other five proteins (CDH2, EGFR, ITGA3, ITGB1, and
ITGA5) were highly expressed. The high expression of CDH2,

TABLE 2 | Cancer hallmark pathway enrichment result of all proteins involved in the TieDIE sub-network.

Hallmark main category Hallmark sub-categories p-value Enrichment ratio Gene number

Cell cycle E2F Targets, G2M Checkpoint, p53 Pathway, Mitotic Spindle,
Apoptosis

0.015443819 1.35328 29

DNA repair PI3K/AKT/mTOR signaling, MTORC1 signaling 0.914616875 0.584921 7

Inflammatory response IL2/STAT5 signaling, IL6/JAK/STAT3 signaling, inflammatory
response, interferon alpha response, interferon gamma
response, TNF alpha signaling via NFKB

0.010537424 1.56327 19

Metabolism Hedgehog signaling, Myc targets, notch signaling, TGF beta
signaling, WNT beta-catenin signaling

0.019642139 1.4941 18

Migration and invasion Apical junction, epithelial/mesenchymal transition 5.84E-06 2.35103 24

Nuclear receptor signaling DNA repair, UV response 0.199991976 1.16037 12

PI3K AKT mTOR cholesterol homeostasis, fatty acid metabolism, glycolysis,
reactive oxygen species pathway

0.029191187 1.58529 12

Stemness Angiogenesis, hypoxia 0.302419603 1.06367 11

Tumor microenvironment Androgen response, estrogen response early and late (merged
to become nuclear receptor response)

0.401740261 0.966142 6
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FIGURE 3 | Kaplan-Meier curves of overall survival for CHE2, EGFR, ITGA3, ITGA5, ITGB1, and CALR.

FIGURE 4 | Western blot verification results. (A) Western blot assays of the protein level of CDH2, EGFR, ITGA3, TIGB1, TIGA5, and CALR. (B) The gray levels of
Western blotting are shown by bar graph.

EGFR, ITGA3, ITGA5, and ITGB1 and the low expression
of CALR in lung cancer have been validated by experimental
techniques (Western blot and/or immunohistochemistry) in
previous studies (Boelens et al., 2007; Grinberg-rashi et al.,
2009; Wang H. et al., 2013; Liu et al., 2015; Wu et al., 2016;
Du et al., 2017). Combined with the results of this study,
we can infer that from the onset of lung cancer, the high
expression level of the five proteins (CDH2, EGFR, ITGA3,
ITGB1, and ITGA5) and the low expression of ACALR may
serve as biomarkers to determine whether the tumor has a high
metastasis potential.

Besides biochemical validation of the six proteins (CDH2,
EGFR, ITGA3, ITGB1, and ITGA5), we also performed literature
verification. N-cadherin (CDH2), which is a member of the
cadherin family and is involved in EMT and cancer metastasis
(Hazan et al., 2004), has been reported as being highly expressed
in LAC tissues. It was further revealed that LAC migration and
invasion are suppressed after knocking down CDH2 (Zhao et al.,
2013). Regarding epidermal growth factor receptor (EGFR), its
gene amplification was shown as significantly increased in tumor
cells and it was closely related to metastasis and TNM stage
(Jia et al., 2015). Previous studies have verified the prognostic
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value of ITGA3, ITGA5, and ITGB1 expression on relapse and
metastasis in lung cancer (Zheng et al., 2016). In addition, CALR
was shown to be an independent prognostic factor for lung
cancer (Liu et al., 2012), and the reduction in the expression
of CALR was associated with an increased rate of proliferation
(Bergner et al., 2009).

CONCLUSION

The high metastatic status of giant cell lung cancer is strongly
associated with the abnormal expression of membrane proteins,
and microRNAs play a key role in regulation of expression.
From this study, we conclude that the high expression of has-
miR-137 and its indirect targets-CDH2, EGFT, ITGA3, ITGB1,
ITGA5 and the low expression of CALR serve as markers of high-
metastasis status of giant cell lung cancer. Our study provides
a new approach to the analysis of integrated proteome and
microRNAs and the synthesized sub-network provides candidate
targets for giant-cell lung metastasis treatment.
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