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Studying transcriptome chronological change from tissues across the whole body can

provide valuable information for understanding aging and longevity. Although there has

been research on the effect of single-tissue transcriptomes on human aging or aging in

mice across multiple tissues, the study of human body-wide multi-tissue transcriptomes

on aging is not yet available. In this study, we propose a quantitative model to predict

human age by using gene expression data from 46 tissues generated by the Genotype-

Tissue Expression (GTEx) project. Specifically, the biological age of a person is first

predicted via the gene expression profile of a single tissue. Then, we combine the gene

expression profiles from two tissues and compare the predictive accuracy between single

and two tissues. The best performance as measured by the root-mean-square error is

3.92 years for single tissue (pituitary), which deceased to 3.6 years when we combined

two tissues (pituitary and muscle) together. Different tissues have different potential in

predicting chronological age. The prediction accuracy is improved by combining multiple

tissues, supporting that aging is a systemic process involving multiple tissues across the

human body.

Keywords: age prediction, aging, gene expression, RNA sequencing, genotype-tissue expression (GTEx)

INTRODUCTION

Different people may age at different rates as revealed by recent studies (Li et al., 2009; Horvath,
2013). Some people appear younger than their chronological age, and others appear older. In
an extreme case, a 16-year-old girl without any known genetic syndromes or chromosomal
abnormalities appeared to stop growing and looked like an infant (Walker et al., 2009). It is a
challenge to identify her “actual” age. Many factors, for instance, lifestyle, and environmental
factors, can hasten or delay aging (Feldman et al., 1994; Hultsch et al., 1999). Thus, a set of
biomarkers that can reliably reflect real age has practical value. There are special cases in which such
age biomarkers are particularly useful. For example, people may need to verify an athlete’s age in
sporting events such as the Olympic Games or to determine a suspect’s age in certain forensic cases.
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Different types of biomarkers have been proposed to quantify
human age (Li et al., 2009). Physical parameters, such as
visual acuity, auditory threshold, and maximum work rate, have
been used as indicators of aging for more than three decades
(Furukawa et al., 1975; Borkan and Norris, 1980). Other criteria,
such as gray hair and skin wrinkles, can also reflect chronological
age (Van Neste and Tobin, 2004). However, these parameters
often do not provide accurate estimation of age and cannot
reveal the internal molecular changes of the human body or the
underlying aging mechanisms.

With the rapid development of high-throughput technologies,
genomic, and epigenetic data are accumulating to an
unprecedented status. This provides a new route of estimating
aging at the molecular level. Associations between epigenetic
variations (e.g., DNA methylation and histone modification)
and age have been reported (Fraga and Esteller, 2007). It is
manifested that gene expression and the methylation profile of
blood (Bocklandt et al., 2011; Hannum et al., 2013; Horvath,
2013), the gene expression profile of brain (Fraser et al.,
2005), and telomere length (Harley et al., 1990; Benetos
et al., 2001) are good indicators of age in human and other
primates. In addition, these biomarkers may also provide
candidate targets for intervention to extend the human life span
(Baker and Sprott, 1988).

Previous studies on age prediction using gene expression
mainly rely on single tissues, such as blood or brain. The
predictive ability of different tissues had not been thoroughly
studied. Because aging is a concordant process involvingmultiple
tissues (Kujoth et al., 2005), it might be effective to build an age-
prediction model with information from multiple tissues. In this
study, we built an optimal age prediction model by using the
Genotype-Tissue Expression (GTEx) profile among 46 human
tissues and then compared the predictive efficiency of a single
tissue and combining two tissues.

METHODS

Tissue Gene Expression and Data
Preprocessing
From the GTEx (V6), the gene expression profiles from 46 tissues
were used. A detailed description of sample collection, RNA
preparation, RNA sequencing, gene expression estimation, etc.,
are listed in the GTEx consortium paper (The GTEx Consortium,
2015).We first normalized the original gene expression data from
GTEx via quantile normalization.

Pearson Correlation for Selecting
Age-Associated Genes
The genes in each tissue were ranked based on the Pearson
correlation of donor age and corresponding gene expression.
Then, we picked top genes from 50 to 6400 with multiples of 2
as a model input and tuned it by 10-fold cross-validation (CV).

Abbreviations: GTEx, The Genotype-Tissue Expression; RMSE, The

root-mean-square error; PCC, The Pearson correlation coefficient;

CV, Cross-validation.

Accuracy of the Models
In this paper, we use root-mean-square error (RMSE) to measure
the accuracy of the models. RMSE is a frequently used measure
of the differences between values (sample or population values)
predicted by a model or between an estimator and the values
observed. In the age-prediction models, we use RMSE tomeasure
the quality of the model: the smaller the RMSE, the higher
the accuracy of the model—and on the contrary, the lower
the accuracy of the model. The RMSE of predicted value ŷ,
a regression’s dependent variable y, is computed for different
predictions as the square root of the mean of the squares of
the deviations:

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
.

Prediction Based on Single Tissue
Our age-prediction model is based on the elastic net algorithm
(Zhou and Hastile, 2005). The elastic net algorithm has a sparsity
property and favors grouping effects so that strongly correlated
predictors tend to be in or out of the model together. These
properties let the method specifically fit our study because gene
expression is highly interrelated, and our prediction model relies
on only a small number of genes. The age-prediction process is
formulated as follows:

ω̂ = arg min
︸︷︷︸

ω

{

∑M

i=1

(

Agei − ω0 −
∑N

j=1
xijωj

)2

+ λ

(

α

∑N

j=1
|ωj| +

1− α

2

∑N

j=1
ω
2
j

) }

,

where Agei is the chronological age of the donor of sample i with
1 ≤ i ≤ M, M is the number of samples in a particular tissue,
xij is the log2-transformed expression of gene jwith 1 ≤ j ≤ N for
sample i, N is the number of preselected genes in the tissue, ω0 is
the intercept, ωj is the weight of gene j, ω̂ is the predicted value
of ω, 0≤ α ≤ 1 is a parameter to balance the L1 (e.g., lasso) and
L2 (e.g., ridge regression) penalty, and λ is the lasso parameter.
The two parameters α and λ are optimized by a 10-fold CV. After
ω0 and ωj

(

1 ≤ j ≤ N
)

are determined, the following equation is
used to predict age for a new sample y with an expression level
known for selected genes:

Age = ω0 +
∑N

j=1
yjωj.

It is worth noting that the main purpose of this study is to
compare the predictive capability of a single tissue with double
tissues. Because the main focus is not to identify the “best”
predictive models, we do not compare the performance of elastic
net with other machine learning methods. However, given the
wide application of elastic net in age prediction (Hannum et al.,
2013), we consider it to be an appropriate choice to serve the
main purpose of this work.
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Parameter Tuning and Model Selection
To identify the best age-prediction model, we applied the 10-fold
CV strategy to the analysis. In addition, we bootstrapped the CV
process 100 times and averaged the validation RMSE and Pearson
correlation coefficient (PCC) to reduce the potential bias that
originated from random sampling when splitting the sample into
training and testing sets.

As stated above, there are three model parameters, namely
the preselection threshold N, parameter α to balance the lasso
and ridge regression penalties, and lasso parameter λ. These
parameters are tuned by 10-fold CV. Specifically, we let N
increase from 50 to 6400 by multiples of 2, α increase from 0 to
1 with a step-wise addition of 0.01, and λ increase from 2−10 to
210 with multiples of 2. The set of parameters yielding the lowest
averaged validation RMSE in the 100 bootstrapped, 10-fold, CV
runs were chosen as the optimal parameters for single and double
tissue. It is of note that we reranked and selected genes (based on
the 9 fold training data) in each CV to avoid overfitting.

Prediction Using Gene Expression Data of
Two Tissues
Because the number of overlapping samples among three tissues
are often less than 70, we only analyzed samples that came from
two tissues. To balance the contribution of individual tissue, an
equal number of top gene expression profiles from each tissue
were combined as features in the prediction model. A similar
analysis was then applied to tune the model parameters. The
performance of each tissue and double tissues were evaluated by
RMSE from both validation and testing data.

DAVID Analysis
The DAVID (6.7) (Huang et al., 2009) (https://david.ncifcrf.gov/
tools.jsp) bioinformatics resource consists of an integrated
biological knowledge base and analytic tools aimed at
systematically extracting biological meaning from large
gene/protein lists. We can use DAVID, a high-throughput and
integrated data-mining environment, to analyze gene functional
classification, functional annotation charts, or clustering and
functional annotation tables through gene lists derived from our
age-prediction models. By following this protocol, investigators
are able to gain an in-depth understanding of the aging themes
in lists of genes that are enriched in genome-scale studies.

RESULTS

Using GTEx Gene Expression Profile as
Data Input
We develop a computational framework to predict donor age
depending on the gene expression profile of one single or
two tissues generated from GTEx (Version 6). GTEx contains
expression profiles of more than 41,298 genes in 46 human
tissues. There are 34,443 genes and 8,375 samples that passed the
quality control and data processing procedure that was used as
the benchmark data in this study. Detailed information on the
samples for 46 tissues is provided in Table 1. As can be seen from
Table 1, the ages of donors range from 20 to 70, and the number
of samples varies from 71 to 430 for each tissue.

FIGURE 1 | Overview of elastic net method for building age-prediction model.

1. Normalize the original gene expression data from GTEx via quantile

normalization. 2. Select the top 50, 100, 200, 400, 600, 800, 1,600, 3,200,

and 6,400 genes, obtained via the Pearson correlation of the age and

corresponding gene expression, and build the age-prediction model for each

of 46 tissues. 3. Construct age-prediction model for multiple tissues as was

done for single tissues. Because overlapping samples among three tissues are

often less than 70, only two-tissue studies are contained in the current study.

4. Use the selected genes for DAVID analysis.

Age Prediction Based on Single Tissue
As shown in Figure 1, our prediction framework has multiple
steps. First, we rank the genes in each tissue based on the PCC
of donor age and the corresponding gene expression. Top age-
associated genes in one single or two tissues were then used to
construct features in an elastic net regularization model, which
is a sparse learning model capable of handling data with small
sample sizes but numerous features (Zhou and Hastile, 2005).
The parameters of the models were tuned through 10-fold CV
according to the RMSE. Functions of genes were annotated by
the DAVID Tools (see “Methods” for detailed information).

Our method was first applied to 46 single tissues, respectively.
The performance of each tissue is listed in Table 2. As mentioned
above, the number of top age-associated genes was taken as
a parameter to our model. We selected the top 50, 100, 200,
400, 600, 800, 1,600, 3,200, and 6,400 genes and tested their
performances by the 10-fold CV. It turns out that the number
of top genes has some influence on prediction accuracy. The
lowest RMSE (i.e., 3.8 years) was achieved for pituitary while
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TABLE 1 | Sample Information of 46 tissues in GTEX.

Tissue Number Minimum Maximum Median Mean NumMen NumWomen Proportion

Adipose_subcutaneous 350 21 70 55 52 219 131 1.672

Adipose_visceral_(omentum) 227 21 70 54 52 145 82 1.768

Adrenal_gland 145 21 70 51 51 81 64 1.266

Artery_aorta 224 21 69 54 51 138 86 1.605

Artery_coronary 133 21 69 54 52 77 56 1.375

Artery_tibial 332 20 70 53 51 213 119 1.79

Brain_amygdala 72 20 70 60 58 50 22 2.273

Brain_anterior_cingulate_cortex_(BA24) 84 20 70 60 58 61 23 2.652

Brain_caudate_(basal_ganglia) 117 20 70 60 58 85 32 2.656

Brain_cerebellar_hemisphere 105 20 70 59 56 74 31 2.387

Brain_cerebellum 125 20 70 59 57 84 41 2.049

Brain_cortex 114 20 70 59 57 77 37 2.081

Brain_frontal_cortex_(BA9) 108 23 70 60 58 77 31 2.484

Brain_hippocampus 94 20 70 60 57 65 29 2.241

Brain_hypothalamus 96 20 70 60 58 71 25 2.84

Brain_nucleus_accumbens_

(basal_ganglia)

113 20 70 60 57 79 34 2.324

Brain_putamen_(basal_ganglia) 97 20 70 59 57 69 28 2.464

Brain_spinal_cord_(cervical_c-1) 71 22 70 59 57 43 28 1.536

Breast_mammary_tissue 214 21 70 53 51 124 90 1.378

Cells_EBV-

transformed_lymphocytes

118 21 70 50 48 75 43 1.744

Cells_transformed_fibroblasts 284 21 70 53.5 51 181 103 1.757

Colon_sigmoid 149 21 70 56 54 88 61 1.443

Colon_transverse 196 21 70 50 48 115 81 1.42

Esophagus_gastroesophageal_junction 153 21 70 53 51 94 59 1.593

Esophagus_mucosa 286 21 70 52.5 50 179 107 1.673

Esophagus_muscularis 247 21 70 50 49 157 90 1.744

Heart_atrial_appendage 194 20 70 55 54 126 68 1.853

Heart_left_ventricle 218 20 70 53 51 142 76 1.868

Liver 119 21 69 55 54 78 41 1.902

Lung 320 21 70 54 52 213 107 1.991

Muscle_skeletal 430 20 70 54.5 52 274 156 1.756

nerve_tibial 304 20 70 54 52 199 105 1.895

Ovary 97 21 69 51 50 97 NA NA

Pancreas 171 21 70 51 50 102 69 1.478

Pituitary 103 20 70 59 57 74 29 2.552

Prostate 106 21 70 50.5 49 106 NA NA

Skin_not_sun_exposed_(suprapubic) 250 20 70 55 53 164 86 1.907

Skin_sun_exposed_(lower_leg) 357 21 70 55 52 226 131 1.725

Small_intestine_terminal_ileum 88 21 70 49.5 48 51 37 1.378

Spleen 104 21 68 50 48 60 44 1.364

Stomach 193 21 70 51 48 111 82 1.354

Testis 172 21 70 52 50 172 NA NA

Thyroid 323 20 70 55 53 211 112 1.884

Uterus 83 21 69 50 48 83 NA NA

Vagina 96 21 69 51 50 96 NA NA

Whole_blood 393 20 70 54 52 249 144 1.729
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TABLE 2 | Prediction accuracy by using single tissue.

Tissue Validation RMSE

50 100 200 400 600 800 1,600 3,200 6,400

Adipose_subcutaneous 7.76 7.35 7.28 7.17 6.97 7.03 6.97 7.05 7.2

Adipose_visceral_(omentum) 8.49 8.35 8.02 7.86 7.69 7.78 7.67 7.95 7.6

Adrenal_gland 7.82 7.3 6.97 6.06 5.66 5.46 5.25 5.38 5.53

Artery_aorta 6.84 6.68 6.43 6.14 5.93 5.98 5.77 5.76 5.9

Artery_coronary 8.28 8.02 7.32 7 5.89 6.12 5.78 5.84 6.06

Artery_tibial 7.44 6.41 6.09 5.99 5.79 5.88 5.71 5.81 6.07

Brain_amygdala 7.11 6.52 6.31 5.62 5.11 5.27 5.23 5.41 5.39

Brain_anterior_cingulate_cortex_(BA24) 6.3 5.89 6.5 5.82 5.68 6 6.16 6.32 6.51

Brain_caudate_(basal_ganglia) 6.64 6.62 6.26 5.61 5.46 5.63 5.07 4.65 4.65

Brain_cerebellar_hemisphere 7.23 7.53 7.46 7.52 6.97 6.9 6.52 6.09 6.14

Brain_cerebellum 7.13 6.73 6.21 5.82 5.51 5.25 5.01 4.69 4.63

Brain_cortex 7.45 6.98 7.47 6.57 6.87 6.81 5.81 5.92 5.67

Brain_frontal_cortex_(BA9) 7.2 7.39 6.56 6.25 5.97 5.9 5.9 5.32 5.34

Brain_hippocampus 8.04 8.08 8.21 6.77 6.73 6.87 6.9 6.41 5.54

Brain_hypothalamus 6.91 7.05 6.91 6.59 6.6 6.43 6.29 6.19 6.59

Brain_nucleus_accumbens_

(basal_ganglia)

7.22 6.56 6.15 6.53 5.98 5.51 5.73 5.33 5.43

Brain_putamen_(basal_ganglia) 7.22 7.09 6.3 5.56 5.16 5.19 5.55 5.52 5.8

Brain_spinal_cord_(cervical_c-1) 6.9 6.86 5.26 5.32 5.12 4.91 4.83 5 5.51

Breast_mammary_tissue 10.38 10 9.5 9.06 8.77 7.98 6.86 6.28 6.4

Cells_EBV-

transformed_lymphocytes

8.86 8.18 7.56 6.29 6.04 5.68 5.64 5.87 6.78

Cells_transformed_fibroblasts 10.38 9.91 9.14 9.25 8.83 8.74 8.26 7.76 7.74

Colon_sigmoid 9.42 8.96 8.8 8.9 8.36 8.25 8.36 7.14 7.5

Colon_transverse 9.58 9.37 9.04 8.83 8.6 8.6 8.42 8.37 7.98

Esophagus_gastroesophageal_junction 8.94 9 8.91 8.61 8.44 8.35 7.56 7.18 6.86

Esophagus_mucosa 8.49 8.37 8.28 7.95 7.85 7.58 7.56 7.69 7.58

Esophagus_muscularis 7.78 7.65 7.81 7.69 7.06 6.91 6.55 6.04 6.38

Heart_atrial_appendage 8.66 8.57 7.55 7.44 7.17 7.12 6.65 5.93 5.96

Heart_left_ventricle 9.4 9.15 9.5 9.15 9.02 8.91 8.06 7.25 6.87

Liver 7.49 6.76 6.13 5.92 6.03 5.69 5.48 5.77 6.08

Lung 8.71 8.46 8.59 8.13 7.7 7.7 7.69 6.92 7.12

Muscle_skeletal 8.45 7.83 7.43 7.28 7.4 7.52 7.37 6.96 6.86

Nerve_tibial 6.81 6.54 6.19 5.88 6.05 6.22 5.96 5.71 5.74

Ovary 6.09 6.14 5.89 5.78 5.81 5.46 5.39 5.22 5.41

Pancreas 5.85 5.97 5.63 5.15 5.3 4.93 4.27 4.51 5.06

Pituitary 5.53 5.11 4.57 4.23 3.8 3.98 3.92 4.11 4.55

Prostate 8.86 8.91 8.68 8.04 7.45 7.4 6.88 6.87 6.57

Skin_not_sun_exposed_(suprapubic) 9.04 8.58 8.24 8 7.49 7.35 7.24 6.19 6.24

Skin_sun_exposed_(lower_leg) 7.73 7.35 7.11 6.79 6.74 6.8 6.52 6.25 6.11

Small_intestine_terminal_ileum 7.57 7.07 5.54 4.24 4.16 4.03 4.16 4.59 5.49

Spleen 6.83 6.16 6.22 5.18 4.77 4.52 4.71 5.1 5.3

Stomach 9.7 8.6 8.01 7.38 7.01 6.82 6.15 6.2 6.71

Testis 6.5 6.03 5.81 5.5 5.41 5.31 4.83 4.92 4.95

Thyroid 7.91 7.56 6.91 6.77 6.51 6.54 6.22 6.39 6.1

Uterus 6.64 6.86 7.59 7.67 7.91 7.76 7.53 7.24 7.23

Vagina 8.55 8.42 8.06 7.29 7.03 6.66 6.94 6.64 6.99

Whole_blood 10.67 10.6 10.68 10.53 10.58 10.48 10.19 10.03 10.08

In this table the age-prediction model established with 46 tissues using the top 50, 100, 200, 400, 600, 800, 1,600, 3,200, and 6,400 genes with the highest age-related degree,

respectively. Validation RMSE of 46 single tissues by 10-fold CV.
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FIGURE 2 | The accuracy of 46 single tissues and five double tissues in age prediction. (A) The RMSE of single tissue age predictors for the top 600 genes. We select

the top 50, 100, 200, 400, 600, 800, 1,600, 3,200, and 6,400 genes, which are obtained via Pearson correlation of age and gene expression, and then build the

age-prediction model across the 46 single tissues. Because the best predictive model appears in the top 600 genes, here we show the RMSE of the top 600 gene

model. As can be seen from the figure, the minimum RMSE is 3.8, which corresponds to the age-prediction model of pituitary tissue. (B) Blue represents the RMSE of

the top 600 genes of pituitary and the top 50 genes of muscle, adipose subcutaneous, brain cerebellum, skin sun exposed, and whole blood, and brown represents

RMSE of the first 50 genes of muscle, adipose subcutaneous, brain cerebellum, skin sun exposed, and whole blood.

TABLE 3 | Prediction accuracy by combining double tissues.

Tissues Validation RMSE

600 + 50 600 + 100 600 + 200 600 + 400

Pituitary&muscle

skeletal

3.6 3.61 3.67 3.78

Pituitary&adipose

subcutaneous

4.16 4.23 4.36 4.36

Pituitary&brain

cerebellum

4.14 4.15 4.21 4.19

Pituitary&skin

sun exposed

4.01 4 4.03 4.08

Pituitary&whole

blood

4.32 4.31 4.45 4.64

In this table a double age-predicting model composed of pituitary and muscle, adipose,

brain, skin, and whole blood; 600 is the most age-related gene in pituitary and 50, 100,

200, and 400 are the most age-related gene in other five tissues. Validation RMSE of

pituitary and five tissue models by 10-fold CV.

selecting 600 genes. Pituitary is one of the most studied tissues
and is highly associated with human aging (Seeman and Robbins,
1994). Other good tissues for age prediction include small
intestine terminal ileum, spleen and testis, and brain/spinal
cord. The most accessible tissue, whole blood, seems to be
unsuitable for this task. Hannum et al. (2013) applied a blood
gene expression profile to predict age based on a much larger
sample size (488 in total). However, the RMSE is 7.22 years,
which is comparable to our result. We also plotted the RMSEs
for all other tissues (using the top 600 genes) in Figure 2A for a
better view.

Age Prediction Using Multiple Tissues
Because aging is a process associated with multiple tissues
(Kujoth et al., 2005), it is reasonable to assume that combining
multiple tissues can improve age-prediction accuracy. Because
there are at least 71 samples in a single tissue, we selected
people with at least 70 samples in two tissues for a relatively
fair comparison, which derives 382 combinations in total. The
combinations were used to train 382 elastic net models (Zhou
and Hastile, 2005), whose performances were also evaluated by
the 10-fold CV. The results show that it is possible to improve
age prediction by combining two tissues. As we mentioned
above, the best prediction RMSE for single tissue (3.8 years)
was achieved at pituitary with 600 genes. We added 50, 100,
200, and 400 selected genes from one other tissue, including
muscle skeletal, adipose subcutaneous, brain cerebellum, skin
sun exposed, and whole blood, whose performances are listed
in Table 3 and shown in Figure 2B. As can be seen, the
validation RMSE decreases to 3.6 by combining 50 genes from
muscle skeletal (see also Figures 3A,B). However, the prediction
accuracy is worse when adding other tissues, indicating that
different tissues might undergo aging at different rates or
mechanisms. Generally speaking, the age-prediction accuracy
is elevated with the increase of tissue number, which supports
that aging is a concordant process involving multiple tissues
(Kujoth et al., 2005).

Effect of Model Parameters on Prediction
Accuracy
In our model, we prefilter genes and only allow the top N
genes as features to be selected by the elastic net model. There
are two elastic net parameters, namely α, which controls the
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FIGURE 3 | Scatterplot of age prediction and gene functional analysis. (A) Scatterplot of the pituitary age-prediction model for the top 600 genes in 46 single tissues.

The RMSE is 3.8, and the PCC of real and predicted age is 0.93. (B) Scatterplot of pituitary for 600 genes and muscle skeletal for 50 genes age-prediction model. The

RMSE is 3.6, and the PCC of real and predicted age is 0.95. (C) DAVID analysis of the age-prediction model in pituitary. (D) DAVID analysis of the age-prediction

model in pituitary and muscle skeletal.

balance between lasso and ridge regression, and λ, the lasso
parameter. Because the effects of α and λ have been extensively
studied (Zhou and Hastile, 2005), we tested the effect of N
on validation error in this study. For most prediction models
with a small validation error, the number of genes involved
in the model ranges from 300 to 1600. As an indication,
only a small or moderate portion of genes are necessary to
predict age. This finding is also supported by other studies

(Bocklandt et al., 2011; Hannum et al., 2013), in which
200 methylation markers are used to predict the biological
age of individuals. The parameters of the best model (e.g.,
“pituitary&muscle”) are α = 0, λ = 0.5, w0 = 49.1, that
is, age = 49.1 − 0.5534609×RF00019 + 0.4345046×RASSF8 +

0.4238481×ALOX15B+ . . .
The model has an intercept of 49.1 years, which is quite close

to the mean age of the samples 50.81.
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TABLE 4 | Best models for age prediction using pituitary & muscle skeletal tissue.

Gene symbol Coefficient Tissue Gene symbol Coefficient Tissue

Intercept 49.1

RF00019 −0.5534609 Pituitary HMGN2P46 −0.265154 Pituitary

RASSF8 0.43450456 Pituitary AIPL1 −0.262319 Pituitary

ALOX15B 0.42384809 Pituitary AC079922.1 −0.2613869 Pituitary

IGSF1 −0.3815586 Pituitary CYP3A5 0.25593725 Pituitary

MAOA 0.3779751 Pituitary MIR3186 −0.248713 Pituitary

PIGP −0.3643882 Pituitary FA2H −0.2478653 Pituitary

AC138904.1 −0.3590232 Pituitary LZTS1 −0.2453074 Pituitary

ITGA10 0.34749327 Pituitary FKBP5 −0.2403517 Pituitary

CYP51A1P2 −0.3468059 Pituitary HTN3 0.23757784 Pituitary

FABP6 0.33526575 Pituitary VNN3 0.23713188 Pituitary

AC007938.1 −0.3287363 Pituitary MMP11 −0.2370928 Pituitary

LINC01315 −0.3252791 Pituitary PADI2 0.23575174 Pituitary

AL596325.2 0.32297086 Pituitary NANOGNBP3 0.23556292 Pituitary

LINC00662 0.3151238 Muscle ST6GALNAC5 −0.2348075 Pituitary

CATSPERB 0.31335041 Pituitary C7 −0.2308648 Pituitary

MUC1 0.31188538 Pituitary KCNMB2-AS1 0.22953261 Pituitary

NBEAP3 0.29659649 Pituitary DQX1 −0.2276446 Pituitary

SNAI3 −0.2943786 Pituitary GSTM4 0.22188874 Pituitary

HIST1H1C 0.29287356 Pituitary AC021016.1 0.22063205 Pituitary

LINC02232 0.28356117 Pituitary FER1L4 0.2180329 Pituitary

S100A1 0.28252535 Pituitary LY6G5B 0.21750613 Pituitary

KMO 0.27801131 Pituitary ZBTB16 −0.2170829 Pituitary

HLA-DOB 0.27540573 Pituitary FCF1P1 −0.2147114 Pituitary

AC124947.1 0.26677666 Pituitary CHRNA1 0.21457823 Pituitary

KCNK4 −0.2667203 Pituitary MGAT5 −0.2125122 Pituitary

In this Table the coefficient of the pituitary and muscle combination model in Table 3. Here, we list the top 50 genes in the model. Coefficient indicates the weight of the gene in the

age-prediction model.

Optimal Gene Set of Predicted Age and
Functional Analysis
For the best prediction model, we listed the top 50 genes
(according to the absolute value of coefficients) and their
coefficients in Table 4. Among the top 50 genes, 49 are from
pituitary, and only 1 is from muscle (ranked at 15). Interestingly,
most of the top genes are age-associated. For example, RASSF8
(ras association domain-containing protein 8), ranks second in
the list. RASSF8 encodes a protein that is a member of the
transmembrane 4 superfamily and is a lung tumor–suppressor
gene candidate. It plays important roles in the regulation
of localization, methylation, cell–cell adhesion, cell migration,
cell death, response to hypoxia, mitosis, cell growth, wound
healing, contact inhibition, and epithelial cell migration (Falvella
et al., 2006; Wang et al., 2017; Karthik et al., 2018; Shi L.
et al., 2018). Accumulated evidence suggests that RASSF8 is
associated with aging (Geigl et al., 2004; Shi Z. et al., 2018;
Pagliai et al., 2019). Similarly, ALOX15B (Arachidonate 15-
Lipoxygenase Type B), which ranks third on the list, is a
protein-coding gene. Diseases associated with ALOX15B include
autosomal recessive congenital ichthyosis and prostate cancer
(Bhatia et al., 2005; Ginsburg et al., 2016; GeneCards, 2020).

This gene is a senescent gene, which can also affect human
aging with its expression increasing when prostate epithelial cells
become senescent (Bhatia et al., 2005; Alfardan et al., 2019). In
addition to age-associated genes, there are alsomany genes whose
association with aging is unknown. For example, no association
with aging could be identified in the literature for the top gene
RF00019 on the list. In the future, further studies might be
needed to elucidate the mechanism for age-dependent functions
of RF00019.

Functional Annotation Clustering of Top
Genes
To identify the biological processes associated with genes in the
prediction model, we performed functional annotation analysis
using the DAVID tools (Huang et al., 2009), a web-accessible set
of tools that allow researchers to infer the biological meaning
behind large lists of genes. Because our focus is on enriched
functional categories rather than on individual genes, we selected
the functional clustering with adjusted P < 0.05. The top cluster
is related to glycoprotein (P = 1.79 × 10−8). Histidine-rich
glycoprotein (HRG) is present at high levels in plasma, and it
is synthesized by parenchymal liver cells and transported as a
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free protein as well as being stored in α-granules of platelets
and released after thrombin stimulation (Blank and Shoenfeld,
2008). Levels of HRG variants in human blood are associated
with chronological age and predict mortality (Hong et al., 2019).
Also noteworthy were clusters related to age, for instance,
GO:0045926∼negative regulation of growth (P = 1.08 × 10−4)
(Figures 3C,D).

DISCUSSION

Each human individual has two “ages.” One is the chronological
age defined by the time that has passed since birth, and
the other is biological age, which describes a shortfall
between a population cohort average life expectancy and the
perceived life expectancy of an individual of the same age
(Jackson et al., 2003). An accurate estimation of biological
age is helpful in studying aging, and several approaches have
been proposed so far (Borkan and Norris, 1980; Dubina
et al., 1983; Hannum et al., 2013). The aging prediction
strategy in this study reflects the donor’s biological age,
effectively providing a possible way to identify key genetics or
environmental factors that lead to younger biological age than the
chronological age.

By constructing elastic net models, we can predict human
age as well as identifying genes strongly associated with
human aging. For example, RASSF8 and ALOX15B have
been studied to be associated with human aging and age-
associated diseases. The function enrichment analysis revealed
some common functions, such as glycoprotein and signal
peptide in prediction models of multiple tissues, suggesting
their general association with aging. In the future, we
will identify tissue-common and tissue-specific aging genes
and functions.

Our results suggest that the expression level of a small number
of genes can reliably predict human age. In the single-tissue
model, the predicted age showed a higher deviation from the
true chronological age compared to predictions based on two
tissues. This reveals that tissues within the same individual
have heterogeneous aging rates. The tissue specificity of aging
is reported by studies performed in model organisms (Herndon
et al., 2002; Libina et al., 2003; Niedernhofer, 2008). On the
other hand, aging is a concordant process involving multiple
tissues. Different tissues have different potentials for revealing the
chronological age of the host, jointly considering that multiple
tissues can reduce the variation derived from a single tissue. For
instance, our results indicate that blood is a poor choice for age
prediction although it is one of themost accessible tissues. In both
validation and test data sets, predicted age is more easily deviated
from chorological age in blood compared with other tissues.
The poor prediction performance of blood is also supported by
the other study using the human whole blood transcriptome
(Hannum et al., 2013), suggesting that the blood transcriptome
fluctuates more due to its frequent interactions with other tissues
and environmental factors through circulation (Benetos et al.,
1993; Franklin et al., 1997).

Some improvements can be expected to increase the
prediction accuracy. First, only two tissues were considered
in this study due to sample size limitation. In the future,
we may include more tissues. Second, we only use gene
expression to predict age. Many other molecular biomarkers
have also been reported successfully in predicting human age,
for example, methylation (Hannum et al., 2013) and telomere
length (Harley et al., 1990; Benetos et al., 2001). Last, there
are many choices of machine learning technologies that can
be adopted, for example, support vector machine (Cortes
and Vapnik, 1995) and neural network (Mcculloch and Pitts,
1990). Combining multiple types of genomics data and data
analysis methods will certainly facilitate the prediction efficiency
greatly (Dobin et al., 2013).

CONCLUSIONS

We have developed a computational framework to predict
individual age through age-associated gene expression of
single and two tissues. The predicted age is an indicator of
biological age reflecting the life span and true functionality of
a human body. Although gene expression from a single tissue
could be used to estimate individual chronological age, the
prediction accuracy is improved by properly combining those
with other tissues. Different tissues provide different potential
in predicting age, more reliable gene expression–based age
markers are obtained in pituitary and skeletal muscle compared
with blood.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

ZT, LC, JY, and GT conceived, designed, and managed the study.
FW and JY performed the experiments. HL, QLi, ZY, QLu, and
GT provided computational support and technical assistance. All
authors approved the final manuscript.

FUNDING

This study was partially supported by the Natural Science
Foundation of Hunan, China (Grant No. 2018JJ2461) and Talent
introduction fund of Zhejiang University Ningbo Institute of
Technology (20200709).

ACKNOWLEDGMENTS

The authors appreciate those contributors who make
the Genotype-Tissue Expression (GTEx). They would
also like to thank reviewers for their careful reading and
valuable suggestions.

Frontiers in Genetics | www.frontiersin.org 9 September 2020 | Volume 11 | Article 1025

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Expression Profiles Predicate Human-Age

REFERENCES

Alfardan, R., Guo, C., Toth, L. A., and Nie, D. (2019). Impaired recovery from

influenza a/x-31(H3N2) infection in mice with 8-lipoxygenase deficiency.Med.

Sci. 7:60. doi: 10.3390/medsci7040060

Baker, G. T, III., and Sprott, R. L. (1988). Biomarkers of aging. Exp. Gerontol. 23,

223–239. doi: 10.1016/0531-5565(88)90025-3

Benetos, A., Laurent, S., Hoeks, A. P., Boutouyrie, P. H., and Safar, M. E.

(1993). Arterial alterations with aging and high blood pressure. A noninvasive

study of carotid and femoral arteries. Arterioscler. Thromb. 13, 90–97.

doi: 10.1161/01.ATV.13.1.90

Benetos, A., Okuda, K., Lajemi, M., Kimura, M., Thomas, F., Skurnick, J., et al.

(2001). Telomere length as an indicator of biological aging: the gender effect

and relation with pulse pressure and pulse wave velocity. Hypertension 37,

381–385. doi: 10.1161/01.HYP.37.2.381

Bhatia, B., Tang, S., Yang, P., Doll, A., Aumueller, G., Newman, R. A., et al.

(2005). Cell-autonomous induction of functional tumor suppressor 15-

lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human

prostate progenitor cells. Oncogene 24, 3583–3595. doi: 10.1038/sj.onc.12

08406

Blank, M., and Shoenfeld, Y. (2008). Histidine-rich glycoprotein modulation of

immune/autoimmune, vascular, and coagulation systems. Clin. Rev. Allerg.

Immunol. 34, 307–312. doi: 10.1007/s12016-007-8058-6

Bocklandt, S., Lin, W., Sehl, M. E., Sanchez, F. J., Sinsheimer, J. S.,

Horvath, S., et al. (2011). Epigenetic predictor of age. PLoS ONE 6:e14821.

doi: 10.1371/journal.pone.0014821

Borkan, G. A., andNorris, A. H. (1980). Assessment of biological age using a profile

of physical parameters. J. Gerontol. 35, 177–184. doi: 10.1093/geronj/35.2.177

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,

273–297. doi: 10.1007/BF00994018

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.

(2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

doi: 10.1093/bioinformatics/bts635

Dubina, T. L., Dyundikova, V. A., and Zhuk, E. V. (1983). Biological age and

its estimation. II. Assessment of biological age of albino rats by multiple

regression analysis. Exp. Gerontol. 18, 5–18. doi: 10.1016/0531-5565(83)

90046-3

Falvella, F. S., Manenti, G., Spinola, M., Pignatiello, C., Conti, B., Pastorino, U.,

et al. (2006). Identification of RASSF8 as a candidate lung tumor suppressor

gene. Oncogene 25, 3934–3938. doi: 10.1038/sj.onc.1209422

Feldman, H. A., Goldstein, I., Hatzichristou, D. G., Krane, R. J., and

McKinlay, J. B. (1994). Impotence and its medical and psychosocial

correlates: results of the massachusetts male aging study. J. Urol. 151, 54–61.

doi: 10.1016/S0022-5347(17)34871-1

Fraga, M. F., and Esteller, M. (2007). Epigenetics and aging: the targets and the

marks. Trends Genet. 23, 413–418. doi: 10.1016/j.tig.2007.05.008

Franklin, S. S., Gustin, W. T, Wong, N. D., Larson, M. G., Weber, M. A.,

Kannel, W. B., et al. (1997). Hemodynamic patterns of age-related changes

in blood pressure. The framingham heart study. Circulation 96, 308–315.

doi: 10.1161/01.CIR.96.1.308

Fraser, H. B., Khaitovich, P., Plotkin, J. B., Paabo, S., and Eisen, M. B.

(2005). Aging and gene expression in the primate brain. PLoS Biol. 3:e274.

doi: 10.1371/journal.pbio.0030274

Furukawa, T., Inoue, M., Kajiya, F., Inada, H., and Takasugi, S. (1975). Assessment

of biological age by multiple regression analysis. J. Gerontol. 30, 422–434.

doi: 10.1093/geronj/30.4.422

Geigl, J. B., Langer, S., Barwisch, S., Pfleghaar, K., Lederer, G., and

Speicher, M. R. (2004). Analysis of gene expression patterns and

chromosomal changes associated with aging. Cancer Res. 64, 8550–8557.

doi: 10.1158/0008-5472.CAN-04-2151

GeneCards (2020). The Human Gene Database. Available online at: https://www.

genecards.org/cgi-bin/carddisp.pl?gene=ALOX15B&search=linoleic%20acid

%20metabolic%20process

Ginsburg, K., Dyson, G., Bollig-Fischer, A., and Powell, I. (2016). Elevated

expression of 15-lipoxygenase-2 (Alox15b) is associated with nonaggressive

prostate cancer and confers a survival benefits. J. Urology. 195, E1096–E1097.

doi: 10.1016/j.juro.2016.02.2243

Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S.,

et al. (2013). Genome-wide methylation profiles reveal quantitative views

of human aging rates. Mol. Cell 49, 359–367. doi: 10.1016/j.molcel.2012.

10.016

Harley, C. B., Futcher, A. B., and Greider, C. W. (1990). Telomeres shorten

during ageing of human fibroblasts. Nature 345, 458–460. doi: 10.1038/345

458a0

Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, P. A., Listner, K.

M., Sakano, Y., et al. (2002). Stochastic and genetic factors influence tissue-

specific decline in ageing C. elegans. Nature 419, 808–814. doi: 10.1038/nature

01135
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