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The study of expression quantitative trait loci (eQTL) using natural variation in inbred
populations has yielded detailed information about the transcriptional regulation of
complex traits. Studies on eQTL using recombinant inbred lines (RILs) led to insights
on cis and trans regulatory loci of transcript abundance. However, determining the
underlying causal polymorphic genes or variants is difficult, but ultimately essential
for the understanding of regulatory networks of complex traits. This requires insight
into whether associated loci are single eQTL or a combination of closely linked eQTL,
and how this QTL micro-architecture depends on the environment. We addressed
these questions by testing for independent replication of previously mapped eQTL in
Caenorhabditis elegans using new data from introgression lines (ILs). Both populations
indicate that the overall heritability of gene expression, number, and position of eQTL
differed among environments. Across environments we were able to replicate 70% of
the cis- and 40% of the trans-eQTL using the ILs. Testing eight different simulation
models, we suggest that additive effects explain up to 60–93% of RIL/IL heritability for
all three environments. Closely linked eQTL explained up to 40% of RIL/IL heritability in
the control environment whereas only 7% in the heat-stress and recovery environments.
In conclusion, we show that reproducibility of eQTL was higher for cis vs. trans eQTL
and that the environment affects the eQTL micro-architecture.

Keywords: genetic architecture, eQTL, Caenorhabditis elegans, introgression line, recombinant inbred line

INTRODUCTION

The genetic architecture of quantitative traits in genetically segregated populations such as
recombinant inbred lines (RILs) differs within and across species and strongly depends on the
environment and type of trait (Fournier and Schacherer, 2017). In some cases, quantitative
traits are (nearly) monogenic and display Mendelian characteristics. For instance the Kallman
syndrome in humans is caused by a knockout of FGFR1 (which encodes fibroblast growth factor
receptor 1) (Muenke et al., 1994), industrial melanism in British peppered moths is caused
by a single gene mutation (van’t Hof et al., 2011), and natural variation in the npr-1 gene
in the nematode Caenorhabditis elegans is a major determinant of multiple life-history traits
(Andersen et al., 2014; Sterken et al., 2015). These monogenic traits are relatively easy to detect
but rather exceptions than the rule. Most quantitative traits display a complex polygenic genetic
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architecture, regulated by multiple QTLs, where each
locus explains a proportion of the trait variation
(Albert and Kruglyak, 2015).

Studying quantitative genetics of the transcriptome has proven
useful in understanding the architecture of complex traits.
The transcriptional architecture can be defined as polymorphic
regulators affecting the expression of genes throughout the
genome. These polymorphic regulators can affect gene expression
in direct ways [e.g., kinase cascades (Terpstra et al., 2010)],
or indirectly [e.g., by affecting behavior (Andersen et al., 2014;
Sterken et al., 2015)]. Expression quantitative trait loci (eQTL)
can be measured reliably in a high-throughput fashion in
many organisms like: yeast, Arabidopsis thaliana, tomato, maize,
C. elegans, mice, and humans (Schadt et al., 2003; Brem and
Kruglyak, 2005; Li et al., 2006; Keurentjes et al., 2007; Ranjan
et al., 2016). The advantage of the eQTL-approach lies in the
assessment of thousands of traits simultaneously for which the
genetic architectures can be compared (Jansen and Nap, 2001;
Gilad et al., 2008). First, the variance explained per underlying
QTL will cover the whole range from essentially monogenic
(Mendelian) to nearly undetectable. Second, correlating gene
expression to loci can reveal the biological processes and
phenotypes that lay downstream of (e)QTL (e.g., Jimenez-Gomez
et al., 2010, 2011; Terpstra et al., 2010; Andersen et al., 2014;
Schmid et al., 2015; Sterken et al., 2017; Albert et al., 2018).
In general, two types of eQTL can be defined: (i) trans-eQTL
where a single locus affects the expression of many genes across
the genome and (ii) cis-eQTL where the locus is located on
or near the gene of which it affects the expression (Nica and
Dermitzakis, 2013; Albert et al., 2018). Cis-eQTL can occur due
to polymorphisms affecting the transcription of the gene under
study, e.g., deletions or non-functional promotor regions. eQTL
hotspots are loci that regulate a high abundance of transcripts.
These hotspots are also called trans-bands. The occurrence
of trans-bands was found to be specific for environmental
conditions linked to genetic effects. Together, the cis-eQTL and
trans-bands typically cover ∼75% of the mapped eQTL in any
study (e.g., Snoek et al., 2017; Albert et al., 2018).

The detection of (e)QTL depends on many different factors
like developmental stage, background mutations, and the
ambient environment, to name a few (Li et al., 2006; Vinuela
et al., 2010; Duveau and Felix, 2012; Snoek et al., 2012; Andersen
et al., 2014; Francesconi and Lehner, 2014). Importantly, QTL
detection is mainly determined by the number of genetically
segregating RILs and the density and structure of the genetic
marker map. Further characterization of QTLs often involves
the identification of the underlying causal polymorphic genes in
order to understand molecular mechanisms affecting complex
traits and/or to facilitate breeding for selected traits. An
important hallmark of QTL mapping has been the fine mapping
and identification of polymorphic regulators or quantitative trait
nucleotides (QTN) (Radwan and Babik, 2012; Rockman, 2012).

Fine mapping of causal variants requires determining if
associated loci are single QTL or combinations of closely linked
QTL, here coined the QTL micro-architecture, and how this
micro-architecture depends on the environment. Apparent single
QTL may be truly single QTL or a combination of closely linked

QTL not segregating in the studied population. These are often
hard to characterize because of a lack of resolution of the genetic
map or shortage of a sufficient number of recombination events.
Here, we set out to investigate the QTL micro-architecture of
eQTL in the nematode C. elegans in a segregated population
of RILs derived from a cross between wild-types Bristol N2
and CB4856 (Li et al., 2006; Thompson et al., 2015). Briefly,
Bristol N2 and CB4856 wild types were allowed to mate after
which the recombinant offspring were selfed (C. elegans is a
hermaphrodite but males do occur and can be used for making
crosses between strains). This yields homozygous RILs that were
analyzed for their transcriptomes (Li et al., 2006). Subsequent
association of polymorphic SNPs with transcriptional variation
yielded eQTL. We use a set of previously detected eQTL and
study their replication in a separate, independent, population
of introgression lines (ILs) in this study (Doroszuk et al., 2009;
Thompson et al., 2015; Snoek et al., 2017). Compared to the
RILs, which are genetic mosaics of loci derived from both
parents, ILs contain a single genomic segment of one parent in
a genetic background of another parent. Typically, introgression
lines are used to verify the existence of QTL, or to narrow
down the location of a QTL in order to find the underlying
causal polymorphism (e.g., see Gao et al., 2018). The RIL
and IL populations are exposed to three environments: heat-
shock, recovery from heat-shock, and a control environment
at a standard rearing temperature. We investigate three aspects
of eQTL mapped in RILs: (i) we address how well eQTL are
replicated in ILs, (ii) we test if the predicted numbers of eQTL
agree with the observed number of differentially expressed genes
in ILs, and (iii) we simulate QTL architectures explaining the
relative heritability in RILs and ILs and match our data to these
models. Finally, we show that the eQTL microarchitecture under
ambient conditions mainly consists of closely linked eQTL.

MATERIALS AND METHODS

Strains Used
The wild-type strains N2 and CB4856 were used and 57
introgression lines (ILs) with segments of CB4856 in an N2
genetic background (Doroszuk et al., 2009). Most of the ILs have
been sequenced, and the genetic map was based on the sequenced
genotypes (Thompson et al., 2015), a file with the strains and
the map has been included in Supplementary Table 1. The data
used for the recombinant inbred lines (RILs) is accessible in
(Snoek et al., 2017).

Nematode Culturing
The strains were cultured as described previously (Snoek et al.,
2017). In short, strains were kept in maintenance at 12◦C on
6-cm Nematode Growth Medium (NGM) Petri dishes seeded
with the Escherichia coli strain OP50 as food source (Brenner,
1974). Before starting the experiment, single hermaphrodites
of each strain in the L2 stage were sub-cultured in 12-wells
plates and grown at 20◦C. The offspring was screened for
the occurrence of males by microscopy and only populations
consisting solely of hermaphrodites were transferred to 9-cm
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NGM Petri dishes containing E. coli OP50 and grown until the
bacterial food was depleted.

Treatments for the Transcriptomic
Experiment
The experiment described in our previous paper was repeated on
the IL population and the parental strains (Snoek et al., 2017).
We started the experiment by transferring a starved population
to a new 9-cm NGM Petri dish seeded with E. coli OP50. After
60 h at 20◦C, the populations consisting of egg-laying adults were
bleached to obtain the eggs, which were transferred to a new 9-cm
NGM Petri dish (Brenner, 1974). Around 46 h the developmental
stage of the population was assessed by microscopy, verifying
that the population consisted mainly of L4 larvae. Populations
not consisting of L4 larvae were not used. The strains were
exposed to one of three environments: (i) a control environment;
grown for 48 h at 20◦C, (ii) a heat-stress environment; grown
for 46 h at 20◦C and subsequently exposed to 35◦C for 2 h,
and (iii) a recovery environment; grown for 46 h at 20◦C,
exposed to 35◦C for 2 h, and thereafter returned to 20◦C for
2 h. Directly after the treatment the animals were washed off the
Petri dish using M9 buffer and collected in a 1.5 mL Eppendorf
tube, which was centrifuged and the pellet was flash frozen in
liquid nitrogen.

RNA Isolation, cDNA Synthesis, Labeling
and Hybridization
The procedure was followed as described before (Snoek et al.,
2017). The RNA of the samples was isolated using the RNEasy
Micro Kit from Qiagen (Hilden, Germany) following the
‘Purification of Total RNA from Animal and Human Tissues.’
The lysis step was modified, pellets were lysed in 150 µl RLT
buffer, 295 µl RNAse-free water, 800 µg/ml proteinase K and 1%
β-mercaptoethanol, which was incubated at 55◦C and 1,000 rpm
in a Thermomixer (Eppendorf, Hamburg, Germany) for 30 min,
where after the manufacturer’s protocol was followed.

Before starting cDNA synthesis, the quality and quantity of
the RNA was measured by NanoDrop-1000 spectrophotometer
(Thermo Scientific, Wilmington DE, United States). The integrity
of the RNA was assessed by loading 3 µL per sample on a 1%
agarose gel. Samples with good quality RNA were processed
following the ‘Two-Color Microarray-Based Gene Expression
Analysis; Low Input Quick Amp Labeling’ -protocol, version
6.0 from Agilent (Agilent Technologies, Santa Clara, CA,
United States). The microarrays used were AgilentC. elegans (V2)
Gene Expression Microarray 4× 44K slides. After quality control
of the RNA isolation, we obtained 56/57 ILs for the control
and heat-stress environment, and 55/57 ILs for the recovery
environment. The parental strains were ran in four replicates,
except for the CB4856 recovery experiment, which was ran in
five replicates. For the parental strain N2: four control samples,
four heat stress samples and three recovery samples passed
quality control. For the parental strain CB4856: three control
samples, three heat stress samples and five recovery samples
passed quality control.

Array Scanning, Data Extraction, and
Normalization
After washing, the microarrays were scanned using an Agilent
High Resolution C Scanner following the recommended settings.
For data extraction, Agilent Feature Extraction Software (version
10.7.1.1) was used, following manufacturer’s guidelines. The
extracted data was normalized together with the previously
published RIL data (Snoek et al., 2017) using the limma package
in “R” (version 3.4.2, x64) (Ritchie et al., 2015). As recommended,
the data was not background corrected before normalization
(Zahurak et al., 2007), the within-array normalization used
the ‘Loess’ method and between-array normalization used the
Quantile method (Smyth and Speed, 2003).

Data Analysis
Data was analyzed using “R” (version 3.4.2, x64) with custom
written scripts (R Core Team, 2017), accessible via https:
//git.wur.nl/published_papers/sterken_2019_closely_linked_qtl.
For analysis, the dplyr and tidyr packages were used for data
organization (Wickham, 2018; Wickham et al., 2018), and plots
were generated using ggplot2 (Wickham, 2009), except for plots
displaying simulation results. The transcriptome data analyzed
was deposited at ArrayExpress under E-MTAB-5779 (RIL data)
(Snoek et al., 2017), and E-MTAB-7424 (IL and parental data,
described in this paper).

eQTL Data
The eQTL data from the RILs were obtained from a previous
publication (Snoek et al., 2017) and can be explored at
www.bioinformatics.nl/wormqtl2 (Snoek et al., 2020). In short,
previously eQTL were mapped using a single marker model,
which was conducted separately for each environment. The
threshold for each of the three environments was set at
−log10(p) > 3.9 (false discovery rate, FDR = 0.05) (see Snoek
et al., 2017 for details). The cis-eQTL were defined as the gene
being inside a 1 Mb window of the QTL peak or within the
confidence interval of the QTL peak. The confidence interval was
defined as a 1.5 drop in LOD-score from the peak.

Data Transformation
The expression data was transformed to a z-score based on
the standard deviation and mean of the N2-replicates per
environment, using

ZN2,i,j =
Ii,j − µi,N2

σi,N2

where ZN2 is the Z-score of spot i (1, 2, . . ., 45220) of strain j
(one of the RILs or ILs) and I is the normalized intensity. The
µ is the mean of the intensity over the N2 strains for spot i and
the σ is the standard deviation over the N2 strains for spot i. This
transformation shows the effect of the CB4856 introgressions in
the ILs. It should be noted that these values cannot be directly
interpreted as significances.
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Additionally, the expression data was transformed to a z-score
based on the standard deviation and mean of the CB4856-
replicates per environment, using

ZCB4856, i,j =
Ii,j − µi,CB4856

σi,CB4856

where ZCB4856 is the Z-score of spot i (1, 2,. . ., 45220) of strain j
(one of the RILs or ILs) and I is the normalized intensity. The µ

is the mean of the intensity over the CB4856 strains for spot i and
the σ is the standard deviation over the CB4856 strains for spot
i. This transformation shows the effect of the genetic background
in the ILs. As for ZN2, it should be noted that these values cannot
be directly interpreted as significances.

In order to compare IL gene expression with eQTL effect
sizes, another data transformation was used, as there the
number of standard deviations difference with the mean is less
informative than the effect in log2-ratio with the mean. Hence,
we transformed the data by

RN2,i,j = log2
Ii,j

µi,N2

where RN2 is the log2-ratio with the mean of spot i of strain
j, I is the normalized intensity, and µ is the mean intensity
over the N2 samples.

Confirmation of IL Genotype
Before mapping, we assured that samples were labeled correctly
by applying a cis-eQTL based analysis of gene expression
compared to the genetic map of the IL population, for details and
explanation, see (Zych et al., 2017). Samples of three strains were
removed (WN263, WN264, and WN284), as the strains did not
match the genotypes in the IL population (Doroszuk et al., 2009;
Thompson et al., 2015).

Confirmation of eQTL in Introgression
Lines
The differential expression per IL was calculated based on
the Z-score calculated using the N2 parental strains (ZN2).
As each IL was measured once, we estimated the significance
assuming a normal distribution based on the genetic-background
parent. These significances were corrected for multiple testing
by the Benjamini–Hochberg method, as applied by the p.adjust
function in R (Benjamini and Hochberg, 1995). As a control and
benchmark, the same procedure was applied to the individual
RILs. The number of differentially expressed genes with an
expected eQTL per CB4856 locus were counted for both the
ILs and the RILs. These were expressed as a percentage of the
expected eQTL in that locus (separately for cis- and trans-eQTL).

Another method of confirming eQTL is by correlating the
differential expression per inbred line compared to the genetic
background-parent (RN2) with the QTL effect. By calculating
the Pearson correlation of RN2 with the eQTL effect per IL or
RIL separately for the cis- and trans-eQTL, it can be assessed
how well the overall QTL patterns were recapitulated per
strain. These correlations were calculated using the cor function

and the significances of correlation were calculated using the
cor.test function.

Confirmation of Trans-bands Using ILs
In the eQTL study on the RILs (Snoek et al., 2017), 19 trans-
bands were identified (Supplementary Table 3). For each trans-
band 2 to 6 ILs covering or flanking the locus were tested by
correlating the trans-eQTL effect with the RN2 in the individual
ILs. Significance was determined based on the correlation values
in the N2 samples. Only if the correlation was stronger than
the highest-correlating N2 sample, it was called as significant.
Only significant positive correlations (effect direction matches
the eQTL model) were scored as confirming the trans-band.

To determine the overall false-positive rate of this analysis,
we determined the correlation of the ILs that were not in or
near the trans-band region. These correlations were compared
to the correlation value at which the trans-band was called
confirmed. This resulted in an overall false positive rate of 0.11. It
should be noted that this approach assumes that trans-bands stem
from a single location and that these locations were accurately
pinpointed in the RIL mapping. Hence, the derived threshold can
be considered strict.

Expectation of Differential Expressed
Genes Based on eQTL
First, the number of differentially expressed genes in each RIL and
IL was calculated using the contrast with either of the ancestral
strains, ZN2 and ZCB4856, at an estimated significance of p < 1 ×
10−5 to apply a strickt threshold for declaring significance as the
Z-scores were based on the variance of a few samples. Second, the
expected number of differentially expressed genes was estimated
for each RIL and IL based on the eQTL architecture in the
RIL population [eQTL threshold, −log10(p) > 3.9; FDR = 0.05]
(Snoek et al., 2017). These values were normalized to the RIL
population (the RIL population average was set to 1), to compare
the relative number of differentially expressed genes expected
versus observed in the ILs.

Differential Gene-Expression in N2 and
CB4856
Differential gene expression between the two parental strains was
independently calculated for each environment using a linear
model

log2(Ii,j) ∼ Gj + ei

where I is the normalized intensity of spot i (1, 2,. . ., 45220)
of strain j (CB4956 or N2) is explained over genotype G and
residual variance e. For the parental strain N2: n = 4 in control
and heat-stress environments, n = 3 in recovery environment.
For the parental strain CB4856: n = 3 in control and heat stress
environments and n = 5 recovery in recovery environment. The
obtained significances were corrected for multiple testing using
the Benjamini–Hochberg method implemented in the p.adjust
function in R (Benjamini and Hochberg, 1995). A threshold of
FDR = 0.1 was taken as requirement for differential expression.
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Estimation of Trait Genetic Architecture
Two approaches were taken to determine trait architectures using
both RIL and IL population: heritability calculations and directly
testing the amount of variance between both populations. Both
approaches are based on the notion that the trait variance in the
populations scale with trait complexity, where

σ2
trait ∝ σ2

QTL 1 + σ2
QTL 2 + . . .+ σ2

QTL n + σ2
e

here σ2 is the trait variance, proportional to the variance captured
by n QTL (which can be multiple loci interacting; epistasis) and
the measurement error. The contrast between the RIL and the
IL population is that the QTL segregating in the IL population
will affect fewer strains per QTL, whereas in the RIL population
each QTL will segregate on average in 50% of the strains. In other
words, the IL population shares most QTL effects because the
genetic background is the same, whereas in the RIL population
most QTL segregate.

Heritability was calculated as in (Brem and Kruglyak, 2005;
Keurentjes et al., 2007), where

H2
i,F =

σ2
i,F − σ2

i,P

σ2
i,F

where H2 was the heritability of spot i (1, 2,. . ., 45220) of
population F (either RIL or IL) within one of the three
environments. The σ2 indicated the trait variance of spot i. Here
the pooled trait variance of the parental lines N2 and CB4856
(denoted with P) was used as an estimate of the measurement
error, which was subtracted from the trait variance of either
the RIL or IL population. We used a permutation approach
to determine the threshold for significant heritability (Brem
and Kruglyak, 2005; Vinuela et al., 2012). Thereto, the gene
expression values per spot per environment were randomized
over the strains (RIL and IL separately, but together with the
same parental lines) and recalculated the heritability as described
above. This was repeated 1,000 times, and the 5% highest value
for each spot was taken as the FDR = 0.05 threshold. Negative
heritabilities (variance in the parental strains larger than in the
RIL or IL populations were not taken along in the analysis).

The second measure was by determining the ratio of trait
variance between the IL and the RIL population. The assumption
was that the variance contributed by random sources (σ2

e) was
equal in both populations. Hence, this is a measure of relative
heritability and was calculated as

RH,i = log2(
σ2
i,IL

σ2
i,RIL

)

where RH was the heritability ratio of spot i (1, 2,. . ., 45220), and
σ2 was the trait variance in either the IL or the RIL population
within one of the tree environments. We took the log2 ratio,
meaning that traits with a higher heritability in the IL population
resulted in a positive number, and traits with a higher heritability
in the RIL population with a negative number. We performed two
tests to place the relative heritability in perspective. First, we took
the spots showing significant heritability (FDR = 0.05). Second, to

test whether variance was significantly different between the two
populations, we used the non-parametric Fligner–Killeen test for
homogeneity of variances, this we corrected for multiple testing
using the Benjamini–Hochberg method (FDR = 0.05) (Conover
et al., 1981; Benjamini and Hochberg, 1995).

Simulating Trait Architecture Impact on
Relative Heritability
To determine how the trait variance behaves proportionally
in each population, we simulated different trait architectures
in both the IL and RIL population. First, all QTL effect sizes
were simulated by random drawing from a standard normal
distribution (µ = 0, σ = 1). These QTL were simulated in trait
architectures containing 1 to 100 QTL (or 1 to 100 clusters
of closely linked QTL, each 33331 times). To recapitulate the
observed QTL distribution in C. elegans, we distributed these
QTL along the informative markers in our IL and RIL population.
This assured an enrichment of QTL on the chromosome arms
compared to the chromosome tips and centers (Rockman et al.,
2010; Snoek et al., 2017). To approach the residual variance (σ2

e )
in our data, we added random variation based on a normal
distribution (rnorm) such that the average heritability of each
simulated trait was 0.85

The following eight architectures were simulated: (i) randomly
distributed additive QTL, (ii) randomly distributed additive QTL
that only show their effect in one genotype, (iii) clusters of closely
linked QTL with random effects, (iv) clusters of closely linked
QTL that only show their effect in one genotype, (v) clusters
of closely linked QTL that are balanced within the ancestral
genotypes, (vi) clusters of closely linked QTL that are balanced
within the ancestral genotypes and only show their effect in
one genotype, (vii) randomly distributed interacting QTL, (viii)
clusters of closely linked interacting QTL. The number of closely
linked QTL per cluster was simulated from two to five. The
additive and closely-linked model were similar in essence, but
differ in the architecture, where we modeled the closely-linked
QTL such that these were not segregated in the population used.
The simulation functions can be found at the git archive: https:
//git.wur.nl/published_papers/sterken_2019_closely_linked_qtl.

The distribution of traits over a balanced closely-linked
architecture and additive architecture was done by measuring the
number of heritable traits with a heritability ratio between−3 and
−2 (peak) and between 0.5 and 1.5 (intersect). These intervals
were chosen as they represent areas where the distributions of
these models differ. The number of expected traits per interval
were counted as the median of all simulated architectures (so 1
to 100 QTL, and 2 to 5 QTL per closely-linked locus) in order to
get an estimation that is less dependent on the chosen simulation
parameters. The predicted number of traits at the peak and the
intersect for the additive model (a) and the balanced closely-
linked model (b) were used to solve the true distribution based
on the real number of heritable traits in these heritability ratio
intervals (c). This was done by solving the equations

apeak × x1 + bpeak × x2 = cpeak and

aintercept × x1 + bintercept × x2 = cintercept
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for x1 and x2 using the solve function in R. This led to the
estimated number of additive traits (x1) and balanced closely
linked traits (x2).

RESULTS

Genome-Wide Confirmation of eQTL
Effects and Location Using Introgression
Lines
Analysis of differential expression showed that introgression
lines (ILs) could confirm both cis- and trans-eQTL that were
previously mapped in the recombinant inbred line (RIL)
population (Snoek et al., 2017). A population of 48 RILs, 56
ILs (Doroszuk et al., 2009; Supplementary Table 1), and at
least three replicates of the ancestral strains N2 and CB4856
were exposed to the three environments (Figure 1A). Based
on the number of eQTL expected in the CB4856 locus of
each IL, we found that on average 69.5% (FDR = 0.05)
of the cis-eQTL found using the RILs could be confirmed
using the ILs over all three environments (FDR = 0.05). The
trans-eQTL found in the RILs, were confirmed on average
42.2% (FDR = 0.05) in the ILs (Figure 1 and Supplementary
Table 2). Note that the tiling structure of the ILs meant that
each QTL location was covered by 0–5 (5–95% quantiles) ILs
(Supplementary Figure 1). The percentage of confirmed eQTL
was positively correlated with the RIL significance threshold
(Supplementary Figure 2A). Furthermore, correlation analysis
of the log2 ratio with the N2 ancestor in the ILs versus the
eQTL effect measured by RILs showed that eQTL effects in
the CB4856 locus of each strain were well approximated in the
ILs (average Pearson correlation, rho = 0.661; Supplementary
Figure 2B and Supplementary Table 2). Together, over all three
environments, the analyses confirmed eQTL occurrence and
effect sizes in the RIL population in independent experiments
using an IL population.

Next, we investigated the trans-bands identified in the RIL
population more closely. The trans-bands were described in a
previous study (Snoek et al., 2017). For each trans-band, we
took 2 to 6 ILs covering and flanking the locus and tested if
the trans-eQTL effects correlated significantly with differentially
expressed genes in the ILs compared to N2. We found supporting
evidence for 14 out of 19 trans-bands at an overall false-
positive rate of 0.11; see Section “Materials and Methods.”
Furthermore, we narrowed down the location for some of these
trans-bands (Supplementary File 1 and Supplementary Table 3).
In particular the trans-bands in the control and heat-stress
environment were well supported (5/5 and 6/7, respectively),
whereas those in the recovery environment were less (3/7). The
poor support in the recovery environment is likely due to the few
trans-eQTL per trans-band in that environment (median of 25
genes in recovery versus 51 in control and 125 in heat stress).
Altogether, we conclude that trans-bands were highly replicable,
to a higher extent than individual trans-eQTL.

Next, we asked if the number of differentially expressed
genes in the IL population could be predicted from the RIL

population. Therefore we compared the gene expression in both
populations to the CB4856 ancestor to measure the effect of the
N2 loci and to the N2 ancestor to measure the effect of the
CB4856 loci. The effect of CB4856 introgressions in an N2 genetic
background on gene expression was negatively correlated with
the expectations based on the RIL population. In other words, in
the RIL population the number of genes differentially expressed
due to the introgression was under-estimated and the number
of genes differentially expressed due to the genetic background
was over-estimated (Figure 2). In the ILs we found that the
relative number of differentially expressed genes compared to
N2 was 6.7-fold higher than expected based on the differentially
expressed genes found in the RILs (paired t-test, p < 1 ×
10−54). Furthermore, when compared to CB4856, the number
of differentially expressed genes in the ILs was 3.3-fold lower
than expected from the RILs (paired t-test, p < 1 × 10−128). The
differences between RILs and ILs were consistent when changing
both the threshold for differential expression and the threshold
for eQTL-based expectations (Supplementary Figure 3). These
results show that the expectations from a single marker model
are a poor predictor for differentially expressed genes in ILs.
Importantly, a single marker model under-estimates the impact
of small introgressions and over-estimates the impact of the
genetic background.

Micro-Architecture of eQTL
The distribution and differences of genetic recombination over
ILs and RILs allowed studying the architecture of eQTL in
C. elegans. We hypothesized that different underlying trait
architectures would leave different trait-variance distributions
in the IL and RIL population. For example, a simple trait
architecture dominated by one major QTL would only lead
to an effect on trait levels in a single or a few ILs, but in
∼50% of the RILs. Hence, resulting in a low trait variance
over the genome-wide IL population compared to the RIL
population. As heritability was a straightforward way to interpret
trait variance, we estimated the broad-sense heritability (H2)
in both populations (Supplementary Table 4). In general,
heritability was higher in the RIL population. In total, over all
conditions, we found 10673 unique genes that showed significant
heritability in the RIL population, whereas we found 2,952 unique
genes that showed significant heritability in the IL population
(permutation, FDR = 0.05; Supplementary Figure 4A). Only
929 genes in the RILs and 8 genes in the ILs showed
heritable gene expression variation over all three environments
(Supplementary Figures 4B,C). The reason for the difference
between populations was partly due to 534 out of 929 genes
having an eQTL in the RILs (of which 354 had a cis-eQTL), which
captured little heritable variation in the whole IL population.
From the heritability analysis, we conclude that, as expected,
heritability was higher in the RIL population, and that heritability
is highly environment dependent.

To gain insight in the impact of different trait architectures,
we simulated eight distinct architectures, including additive and
epistatic architectures (see section “Materials and Methods,”
Supplementary Figures 5, 6) and measured trait variance
ratios between the IL and RIL population. Subsequently, we
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FIGURE 1 | Experimental setup and eQTL confirmation. (A) The four types of populations used in the experiment: recombinant inbred lines (RILs), the ancestral
strain CB4856, the ancestral strain N2, and introgression lines (ILs). These were exposed to three separate treatments: control (48 h at 20◦C), heat-stress (46 h at
20◦C followed by 2 h at 35◦C), and recovery (as heat-stress, followed by an additional 2 h at 20◦C). After the experiment, populations of the strains were harvested
and used for transcriptome measurement by microarray. (B) the percentage of eQTL confirmed based on differentially expressed genes per IL and per RIL
(FDR = 0.05). The percentages are split-out over the three environments, and the two eQTL type (cis or trans). The eQTL were mapped using the RIL population,
hence that population is expected to confirm the eQTL to a high degree. (C) An example of one cis-eQTL (for gene F26E4.1) and one trans-eQTL (for gene K06H6.1)
in the IL population. On the x-axis the genotype at the QTL locus is plotted, and on the y-axis the expression (RN2).

assumed that the measurement error (σ2
e ) was similar for both

populations and calculated the heritability ratio between both
populations (Figure 3A). Based on the additive simulation,
we expected 95% of the variance ratios to fall between −3.6
and −1.7, whereas under a model with closely-linked QTL
that cancel each other out in the same genetic background
(balanced), the 95% interval falls between −24.9 and 4.9.
The balanced closely-linked QTL architecture was modeled
such that QTL within such a cluster would only separate
occasionally by a recombination in the RIL and IL population.
The shape of the distribution of genes with significant heritability
seems to form a combination of additive and balanced
closely linked QTL (Figure 3A). To get an estimate of the
contribution of the two models, we used the difference in
the additive and balanced closely linked distributions from the
simulation to estimate how the traits are divided over the two

QTL models (Figure 3B). Analysis of the two distributions
revealed that in all three environments additivity was the
most likely QTL model (60–93% of genes with significant H2).
Balanced closely linked QTL explained up to 40% of relative
heritability in the control environment, but only 7% in the
heat stress and recovery environments (Supplementary Table 5).
Therefore, we hypothesize that the balanced closely linked QTL
model is an important eQTL architecture in the nematode
C. elegans.

Two Predictions From the Balanced
Closely Linked eQTL Microarchitecture
The balanced closely linked QTL model comes with two testable
predictions: (i) the genes with heritable variation in gene
expression were not differentially expressed in the parental
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FIGURE 2 | Number of differentially expressed genes (DEG) expected (exp.) from eQTL mapping and observed experimentally (obs.). On the x-axis, the population
type is shown and on the y-axis, the expected and observed ratio of differentially expressed genes is shown, both normalized for the expectation in the RILs [eQTL
threshold, –log10(p) > 3.9; DEG threshold, –log10(p) > 5]. In the left panel the effect compared to N2 is shown (effect of the CB4856 loci; introgressions in the IL
panel) and in the right panel the effect compared to CB4856 is shown (effect of the N2 loci; genetic background in the IL panel).

FIGURE 3 | Balanced closely linked QTL can explain heritability ratios between the RIL and IL populations. (A) Histogram of the heritability ratio in the IL versus the
RIL population of genes with significant gene expression heritability (permutation, FDR = 0.05). The light orange surface indicates microarray spots of genes with
heritable variation in gene expression only in the RIL population (3,262 in control, 7,545 in heat-stress, and 12,176 in recovery), the pink surface microarray spots of
genes with only heritable variation in gene expression in the IL population (145, 59, and 71, respectively) and the orange color microarray spots of genes with
heritable variation in gene expression in both populations (1,216, 1,588, and 1,507 respectively). (B) The density distribution of the heritability ratios of genes with
heritable gene expression variation over the balanced closely linked (green) and the additive (purple) QTL model. Trait models consist only of additive or balanced
closely linked QTL. (C) Overlap in differentially expressed genes between ILs [threshold –log10(p) > 5]. The comparisons are grouped per chromosome (x-axis): the
intra-chromosomal comparisons and all other chromosomes versus chromosome I, II, III, IV, V, or X. On the y-axis the fraction overlap is shown. The dots represent
one IL versus IL comparison the size corresponds to the number of overlapping differentially expressed genes.

strains, (ii) differential expression of genes was not only linked
to one location in ILs but to clusters of ILs perturbing distant loci
(multiple balanced clusters).

First, we calculated the number of genes with significant
heritabilities. For the RILs, 4,478 spots (2,910 genes) displayed
significant heritability (FDR = 0.05) in control environment

Frontiers in Genetics | www.frontiersin.org 8 November 2020 | Volume 11 | Article 501376

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-501376 October 28, 2020 Time: 18:7 # 9

Sterken et al. C. elegans eQTL Micro-Architecture

FIGURE 4 | Three genes with high heritability in gene expression variation in the IL population compared to the RIL population. (A) Comparison in expression
between IL and RIL population for clec-62, mtl-2, and npp-1. On the x-axis, the population type and on the y-axis, the z-score with the N2 parental lines. The
dashed horizontal lines indicate the significance threshold [z-score, –log10(p) > 5]. (B) The expression per introgression. On the x-axis, the introgression location is
shown per chromosome. On the y-axis, the z-score with the N2 parental line is shown. The dashed horizontal lines indicate the significance threshold [z-score,
–log10(p) > 5]. The colors indicate the environments (blue for control, red for heat-stress, and green for recovery).

(H2
≥ 0.68), 9,133 spots (5,072 genes) in heat-shock environment

(H2
≥ 0.70), and 13,683 spots (7,537 genes) in recovery

environment (H2
≥ 0.62). For the ILs, 1,361 spots (1,012

genes) displayed significant heritability (FDR = 0.05) in control
environment (H2

≥ 0.70), 1,647 spots (1,123 genes) in heat-
shock environment (H2

≥ 0.71), and 1,578 spots (1,092 genes)
in recovery environment (H2

≥ 0.64). Then, we compared these
with differential expression in the parental strains. Indeed, only
9.1–15.4% of the genes with heritable variation in gene expression
were differentially expressed when comparing the two parental
strains (FDR = 0.1; Supplementary Table 6). Also, the second
prediction was found to be correct, on average 21.9% of the
differentially expressed genes were shared between IL strains
covering loci on different chromosomes, which was only slightly
less than the average of 25.1% between ILs covering the same
chromosome (Figure 3C and Supplementary Figure 7, and
for examples Figure 4). Therefore, we concluded that localized
genetic complexity was a major part of the eQTL architecture.

Furthermore, differences in heritability between the RIL and
IL populations over environments indicated that the control
environment was different from heat-shock and recovery. The
balanced closely linked architecture, which predicted a broad
range of relative heritability, seemed to be most prominent in the
control environment. It could be that these complex architectures
were more important for the developmental process. This
environmental effect could be illustrated by the expression
variation of the genes: mtl-2, npp-1, and clec-62. Of which
mtl-2 and npp-1 showed an interaction with the environment.
The gene npp-1 only showed this interaction in the control
environments, environment where ILs on multiple chromosomes
showed differential expression of this gene, yet for mtl-2 ILs with
differential expression on different chromosomes were found
during recovery conditions, whereas clec-62 shows ILs with
differential expression on different chromosomes in control and
heat stress conditions (Figure 4). The nuclear core complex
protein NPP-1 is involved in spindle formation and important
for oogenesis, a process that was interrupted during heat-shock

(Schetter et al., 2006; Jovic et al., 2017). MTL-2, one of two
metallothioneins in C. elegans, was expressed in the intestine
and was induced after heat-shock (Freedman et al., 1993).
The pattern observed for clec-62 was exceptional as it showed
a consistent response over all three environments where IL
strains with an introgression on chromosome I, chromosome IV,
and chromosome X showed much lower expression compared
to the N2 ancestor. Furthermore, also an IL strain with an
introgression on chromosome II and one with an introgression
on chromosome V displayed this phenotype. C-type lectin 62 is
a gene belonging to the extensive clec-family, which is thought
to be involved in C. elegans immunity (Schulenburg et al., 2008)
although its exact function is not known.

DISCUSSION

Most eQTL Mapped in RILs Are
Replicable in ILs
Here, we show that eQTL mapped in a RIL population can
be confirmed in an IL population. We found that the majority
of cis-eQTL are replicable in the IL population (on average
69.5% per IL), whereas trans-eQTL are less replicable in ILs (on
average 42.2% per IL). This likely reflects the mainly monogenic
architecture of cis-eQTL, versus the more polygenic and
environment-dependent trans-eQTL (Li et al., 2006; Keurentjes
et al., 2007; Rockman et al., 2010; Snoek et al., 2017; Albert et al.,
2018). Especially the confirmation of trans-bands by ILs shows
that these regulatory hot-spots are robust regardless of genetic
background. It should be noted that this study does have limited
power per introgression line as each line was only measured once
per condition. Hence we avoid conclusions based on a single
ILs throughout this paper. However, the tiling nature of the
population does mean that each locus is covered by multiple ILs
(Doroszuk et al., 2009). Furthermore, the RIL and IL experiment
were separated in time, which could lead to unexpected effects
influencing the replication.

Frontiers in Genetics | www.frontiersin.org 9 November 2020 | Volume 11 | Article 501376

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-501376 October 28, 2020 Time: 18:7 # 10

Sterken et al. C. elegans eQTL Micro-Architecture

This study helps the search for candidate genes underlying
these trans-bands, by narrowing-down the regions. However,
additional experiments and replicates are recommendable and
currently being pursued for the heat-stress trans-band on
chromosome IV. Furthermore, it shows how ILs can be used to
narrow-down these eQTL hotspots (Snoek et al., 2012), using
correlation analysis previously used to link trans-bands to genes
and biological processes (Andersen et al., 2014; Sterken et al.,
2017). These findings show on a large scale that QTL mapped
using a single marker model in a moderately sized RIL population
are reliably replicable in a population with a different genetic
structure, which confirms findings for single traits reported in
C. elegans and beyond [for example, see (Snoek et al., 2012;
Andersen et al., 2014; Gao et al., 2018)].

Introgression Lines Indicate the
Presence of Parental-Balanced,
Polygenic, Traits
The difference in genetic complexity between RILs and ILs can be
leveraged to understand trait architectures. Despite confirming
many QTL, it has been noted that ILs often tell a different
story than RILs, implying abundant genetic interactions, not
uncovered by RILs [as reviewed by Mackay (2014)]. In this study,
we also show that the number of differentially expressed genes
in the N2 genetic background of the ILs is lower than expected
compared to RIL-based estimations. Furthermore, eQTL mapped
in the RIL population also led to an underestimation of the
number of differentially expressed genes due to the introgressions
in the ILs. To summarize, the introgressions display more-than-
additive effects, whereas the genetic background shows less-than-
additive effects.

Our findings are in line with observations in introgression
lines in C. elegans, showing that for some traits more and different
QTL than expected from RILs can be found (e.g., Gaertner
et al., 2012; Glater et al., 2014; Snoek et al., 2014a). Additionally,
our findings are also in line with findings in other organisms,
where such effects have been reported for different types of
traits (Shao et al., 2008; Gale et al., 2009; Spiezio et al., 2012).
In this study, we show this effect in general, over many gene
expression traits. Moreover, a direct comparison of trait mapping
in a genome-wide IL population versus a RIL population has
only been conducted in a few studies, as far as we are aware
(Glater et al., 2014; Snoek et al., 2014a). It has been argued that
ILs showing more- or less-than-additive effects compared to the
parental strains is a hallmark of epistasis [as reviewed by Mackay
(2014)]. However, recent studies in yeast show that additivity
underlies most of the heritable trait variation among inbred lines,
where epistasis accounts for phenotypic extremes (Bloom et al.,
2015; Forsberg et al., 2017; Albert et al., 2018). Thus remains the
question, what kind of trait architecture drives our observations:
pervasive epistasis or widespread additivity?

The Developmental Trait Architecture
Consists of Balanced Closely Linked QTL
Trait architectures underlying natural variation in C. elegans
differ strongly over traits. For example, currently 25 quantitative

trait nucleotides (QTNs) are known in C. elegans, capturing a
majority of the heritable variation for particular traits [reviewed
by Gaertner and Phillips (2010) and Rockman (2012) and studies
by Andersen et al. (2014); Noble et al. (2015), Schmid et al.
(2015); Cook et al. (2016), Greene et al. (2016a; 2016b), Large
et al. (2016); Ben-David et al. (2017), Sterken et al. (2017);
Zdraljevic et al. (2017, 2019), Hahnel et al. (2018)]. However,
there are also examples of traits that are highly heritable but
have only yielded complex or few QTL (let alone QTNs). For
example, a study on bacterial preference of C. elegans noted a
relatively high heritability (0.46) for Serratia marcescens over
E. coli, yet uncovered only a single QTL in the RILs used for
mapping whereas multiple were expected (Glater et al., 2014).
Furthermore, recent work from our group, studying metabolite
abundances showed high heritability (from 0.32 up to 0.82)
corresponding to a few uncovered QTL (Gao et al., 2018).
Intriguingly, several studies imply trait architectures consisting
of closely linked QTL that are balanced in the parental strains
(Gaertner et al., 2012; Glater et al., 2014; Bernstein et al., 2019).
By simulation, we obtained evidence that some trait architectures
can be differentiated by relative heritability between IL and RIL
populations which is a property we can reliably measure in our
two populations, as it only relies on determining trait variance. In
this way, we found that for genes without an eQTL, but showing
high heritability, the most parsimonious explanation lies in an
architecture comprised of (multiple) closely linked QTL clusters.
This type of architecture seems especially prominent during
normal development where it could affect approximately 40%
of genes with heritable expression variation. It should be noted
that only strictly balanced closely linked and strictly additive QTL
distributions were modeled. Furthermore, a study containing
more replication to take in account intra-strain variance should
be conducted to confirm this hypothesis. This would also benefit
from a better knowledge on the trait architecture based on RILs,
as in Bernstein et al. (2019). We think the observed distribution
suggests that a combination of (both or multiple) types of QTL
make up the complete genetic architecture of a trait.

In recent years, the number of parameters known to affect
gene expression variation in the context of natural variation has
steadily grown. It is currently clear that environment (Li et al.,
2006; Snoek et al., 2017), age (Vinuela et al., 2010), development
(Francesconi and Lehner, 2014), and background mutations
(Sterken et al., 2017) affect gene expression variation and eQTL
distribution in C. elegans. These factors could also contribute to
the observed heritability differences between ILs and RILs. For
environment, we can confirm that it plays an important role: the
heritability ratio is strongly dependent on environment. This is in
line with effects observed for trans-eQTL, which are also strongly
environment dependent, implying heritability is as well (Li et al.,
2006; Snoek et al., 2017). Developmental differences between the
strains in each population could also drive some of the observed
heritability ratios. For example, ILs could be developmentally
more homogenous than RILs, which could result in lower levels
of trait variance in ILs. It is clear that age affects trans-eQTL and
heritability (Vinuela et al., 2010, 2012). However, it is unclear how
that would affect the heritability ratios we measure in general;
it seems unlikely that developmental differences result in a
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specific variance signature as changes occur in both populations.
More specific, in this experiment strains are tightly synchronized
and developmental stage is observed to be L4 before isolation,
therefore we expect that these potential sources of increased
variance are controlled. Hence, the relative heritabilities under
normal development imply clusters of closely linked QTL.

The Role of Cryptic Genetic Variation on
Trait Complexity
We used the contrast in genetic complexity of the RIL and
IL population to investigate trait complexity. The relative
heritabilities between these populations differed over the three
environments. In our previous study on the RILs, we show
that the trans-eQTL architecture is different over the three
environments, showing that trans-eQTL contribute most to
cryptic genetic variation. Here, we find that the micro-
architectures is more complex in an ambient environment.

Development of an organism is a tightly regulated process
and completion of development into a reproducing adult is
essential for reproduction, hence fitness. The nematode C. elegans
experiences outbreeding depression (Dolgin et al., 2007), given
the strains N2 and CB4856 are genetically distinct, it is likely
that inbred lines constructed from these two strains disrupt some
linked loci involved in this process (Seidel et al., 2008; Snoek et al.,
2014a). We hypothesize that especially the ambient environment
stimulating normal development is prone to accentuate the
effects of genetic ‘mismatches’ resulting in trait variation. First,
local sites are expected to co-segregate over many generations in
C. elegans, making it likely that they are filled with compensatory
mutations (Rockman et al., 2010). Second, development is
a polygenic, tightly regulated, process. On the level of gene
expression, there are strong changes over the entire development
from egg to adult, and during the last juvenile stage (L4) especially
(Francesconi and Lehner, 2014; Hendriks et al., 2014; Snoek et al.,
2014b; Jovic et al., 2019b). Together, these two effects may cause
the C. elegans populations in ambient environments to show
micro-architectures that are more complex.

On the other hand, stress responses are also tightly regulated,
but initially aimed at reaching a stress-survival mode, which
is a process that involves fewer genes than development. The
heat-shock response in C. elegans starts by de-phosphorylation
of HSF-1 and DAF-16 and entry of these transcription factors
into the nucleus [as reviewed by Rodriguez et al. (2013)].
Once there, they regulate the expression of chaperones that
function to minimize cellular damage. The physiological effects
of heat-shock exposure are duration dependent, where a 2-
h exposure in our setup does not result in severe phenotypic
effects (Jovic et al., 2017). However, longer exposures lead to less
movement, delayed egg-laying, and early death. Between N2 and
CB4856, there are x temperature related traits mapped: thermal
preference (mapping to the left of chromosome X) (Gaertner
et al., 2012), recovery from heat-stress (mapping to the center-
right of chromosome II) (Rodriguez et al., 2012), reproduction
after heat-stress (mapping to the center-right of chromosome
II and the left of chromosome IV) (Rodriguez et al., 2012),
and temperature-related size differences (mapping to tra-3 on

chromosome IV) (Kammenga et al., 2007). The chromosome II
region associated with recovery from heat-stress was confirmed
by ILs WN225 and WN226 in the original paper, and falls under
a heat-stress trans-band (Snoek et al., 2017). Here, we find that
both ILs confirm the existence of the trans-band. Hence, the gene
expression affected by a polymorphic gene on chromosome II
could be linked to recovery from heat-stress.

Overall, our results show that populations in both the heat-
shock and recovery from heat-shock environments show fewer
QTL with complex micro-architectures. We hypothesize that
this is due to the effect of the strong transcriptional response
induced by heat shock (Brunquell et al., 2016; Jovic et al., 2017).
It is possible that this abrupt disturbance emphasizes regulatory
variation in only a few key response pathways compared to the
more subtle and complex process of development.

Implications for Understanding
Life-History Adaptations
Our data facilitate exploring the functional implications of
gene transcriptional changes following heat-shock and recovery.
The gene transcriptional landscape consists of multiple gene
networks underlying different traits, including life-history traits
(Valba et al., 2015). Gene transcriptional response to stress
and subsequent recovery are likely to shape life-histories given
that many of the involved polymorphic genes may have clear
functionalities. For instance, polymorphic regulators in genes
affecting thermo-sensation may be important for controlling
locomotor behavior induced by thermal stress via control
neural decision-making (Stegeman et al., 2019). C. elegans is
ectothermal and inhabits ecological niches that are prone to rapid
temperature fluctuations in Europa (N2), but stable temperatures
in Hawaii (CB4856) (Crombie et al., 2019). Hence, in Europe
it needs to cope with these sudden temperature changes. Jiang
et al. (2018) studied the genetics of cold-warm changes in
C. elegans and detected ISY-1 and ZIP-10 as major gate keepers
of temperature change responses (Jiang et al., 2018). It would
be interesting to investigate if polymorphic gene expression
regulators in this warm-cold switch are likely to underlie these
temperature switches. Moreover, more variable alleles affecting
gene expression could be detected using the recently developed
multi parental RIL populations as they show variation in life
history traits (Noble et al., 2017; Snoek et al., 2019). We recently
showed that thermotolerance in C. elegans could be predicted
from the gene expression resilience patterns in worms exposed
to heat stress (Jovic et al., 2019a,b). It was found that the
predictive outcomes also hold up across different genotypes,
suggesting that polymorphic regulators play an important role in
thermotolerance.

CONCLUSION

We present an eQTL experiment conducted with ILs in three
environments covering the same conditions as a RIL experiment
published previously (Snoek et al., 2017). We show that ILs
can replicate both cis- and trans-eQTL; furthermore, we present
evidence supporting 14 eQTL hot spots (trans-bands). Yet, eQTL
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mapped in the RIL population systematically under-estimate
the impact of a single introgression on the transcriptome and
over-estimate the impact of the genetic background, suggesting
additional genetic complexity. We present evidence that during
normal growth multiple clusters of closely linked QTL could
underly additional genetic complexity.

Further understanding of this phenomenon requires
systematic dissection of many QTL – a process that in this study
was only undertaken for trans-bands – using introgression lines.
It remains to be determined what kind of role epistasis plays in
trait variation. Currently, RIL populations in most species are
typically of insufficient size to detect any epistasis beyond two
loci interactions. Careful crosses with ILs to generate double-loci
ILs might be a way forward to further our understanding of trait
regulation in the context of natural genetic variation.
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Supplementary Figure 1 | Coverage per locus and per QTL. (A) The coverage in
CB4856 loci per location on the genome, split out for ILs and RILs. The 56 ILs
together have a higher coverage over the chromosome arms, where also most
QTL map. The 48 RILs have a more homogenous distribution, only at the
peel-1/zeel-1 locus on chromosome I there is low coverage (Seidel et al., 2008).
(B). A histogram of the number of CB4856 loci covering an eQTL. Typically, an
eQTL is covered by CB4856 loci of 2 ILs and 23 RILs (median).

Supplementary Figure 2 | Confirmation of eQTL by significance thresholds and
correlation analysis. (A) The percentage of confirmed eQTL per population per
eQTL-type. On the x-axis, the −log10(p) significance threshold in the RILs is
shown (binned per 0.5 in the analysis) and on the y-axis the percentage of
confirmed eQTL per bin per strain is shown (at least five confirmable eQTL
required per bin). For example, for the RIL WN98 under recovery conditions there
were 115 cis-eQTL with a significance between 4.0 and 4.5 in its CB4856 regions,
91 of these were confirmed based on the z-score (79.1%). This example results in
a dot where the size corresponds to the number of eQTL and the color indicates
the environments. The line shown is a linear regression curve, where the
surrounding gray area is the confidence interval. (B) The Pearson correlation of
eQTL effects with gene expression in the ILs and the RILs. On the x-axis the
population type is plotted and on the y-axis the Pearson correlation. The
correlations are split-out over the three environments (control, heat stress, and
recovery) and over eQTL type (cis or trans).

Supplementary Figure 3 | Differentially expressed genes in RILs and ILs. (A)
Number of differentially expressed genes (DEG) expected from eQTL mapping and
observed experimentally, split out per environment. On the x-axis the population
and on the y-axis the expected and observed ratio of differentially expressed
genes is shown, both normalized for the expectation in the RILs [eQTL threshold,
−log10(p) > 3.9; DEG threshold, −log10(p) > 5]. In the top panel the effect
compared to N2 is shown (effect of the CB4856 loci; introgressions in the IL panel)
and in the bottom panel the effect compared to CB4856 is shown (effect of the N2
loci; genetic background in the IL panel). (B) The effect of different thresholds for
eQTL significance (x-axis) and DEG calling (y-axis) on the ratio between
observed and expected.

Supplementary Figure 4 | Genes with heritable variation in gene expression in
the RIL and IL populations. (A) A histogram of the measured heritabilities for the IL
and RIL populations, negative values have been discarded. Colors indicate
whether the heritability was significant (FDR = 0.05) in the control (blue),
heat-stress (red), or recovery (green) environment. (B) The overlap in genes with
significant heritability in gene expression variation over the environments for the
RIL population (FDR = 0.05). (C) The overlap in genes with significant heritable
variation in gene expression over the environments for the IL
population (FDR = 0.05).

Supplementary Figure 5 | A graphical overview of the modeled trait
architectures. The arrows indicate QTL effect sizes as found in the N2 genotype
(orange) and the CB4856 genotype (blue). Perfectly opposed arrows, one of
which orange and the other blue, indicate that the same QTL has an opposite
effect in the two genotypes (e.g., as seen for Additive random distribution). When
an arrow lacks a perfectly opposed arrow of another color, it means that the QTL
is only found in that particular genotype. Epistatic interactions are indicated as a
line connecting two rectangles.

Supplementary Figure 6 | Variance ratios between IL and RIL population for the
simulated trait architectures (Supplementary Figure 5). The density of
occurrence of variance ratios per simulation is given. The color scale indicates
how many QTL for a trait were simulated.

Supplementary Figure 7 | Overlap in differentially expressed genes between ILs
[threshold −log10(p) > 5]. The ILs are ordered based on introgression on the x-
and y-axis. The location of the CB4856 segment is indicated behind the IL
strain-code. The fraction overlap shown is calculated as the percentage of unique
differentially expressed genes in the two compared ILs. The overlap is shown for
the control environment (A), the heat-stress environment (B), and the recovery
environment (C).

Supplementary Table 1 | The genotypes of the strains used in this study, −1
denotes a CB4856 genotype, a 1 denotes an N2 genotype. The genotypes are
given per chromosome and per position (based on WormBase version WS258).
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Supplementary Table 2 | Table of the eQTL with gene expression comparisons
per strain per environment. The table lists the strain name, strain type and the
comparisons are split out for the cis- and trans-eQTL. The correlation reported is
the Pearson correlation and its significance. The number of eQTL present in the
CB4856 loci is given, as is the percentage that is also differentially
expressed (FDR = 0.05).

Supplementary Table 3 | Summary of the comparison of gene expression in the
ILs with the trans-bands identified previously (Snoek et al., 2017). The location of
the trans-band and the number of genes and microarray spots affected are listed.
The genotypes of the ILs with an introgression adjacent to – or covering the
trans-band are listed. The genotypes of the ILs that confirm the trans-band and
the trans-band locus that these ILs imply are also given.

Supplementary Table 4 | Table with the heritabilities per spot per environment
per population. The estimated genetic variance (Vg) and the technical variance
(measured from the replicated parental lines –measurement error – Ve) are given,
as is the heritability (H2). The FDR0.05 column indicates the threshold of
significance based on permutation.

Supplementary Table 5 | A table with the estimated fraction and amount
of traits for an additive QTL architecture and a balanced closely-linked QTL
architecture. The numbers are calculated based on only a single type of QTL
occurring for a particular architecture. For example, additive means n QTL that
display an additive effect, without any other type of effect for that simulated
trait.

Supplementary Table 6 | Differentially expressed genes between N2 and
CB4856 for the three environments: control, heat-stress, and recovery from heat
stress. The columns in the table: SpotID, the Agilent spot identifier, the information
on the gene expression detected by that spot is given [chromosome, location
(start/stop), strand, and three identifiers]. Two columns show if genes are
significantly heritable; general (in any population) and specific (which population, or
both). The significance and effect columns give the output of the linear model
when comparing CB4856 versus N2 (positive effect indicates the gene is higher
expressed in N2). The last column gives the significance as corrected for
multiple testing (FDR).

Supplementary File 1 | Comparison of gene expression in ILs with eQTL in
trans-bands identified in the RIL population. Per trans-band, a figure was
constructed. In (A) the name of the trans-band is given at the top of the panel
(e.g., chromosome I, 3.5–4 million bases) the correlation of the relative gene
expression (RN2) was correlated with the eQTL effect for the ILs covering or
nearby the trans-band. Significance was determined based on the highest
correlation in the N2 strains, only strains with a stronger correlation than N2 were
scored as significant. In (B) the genetic map of the ILs of the trans-band
chromosome is shown. On the x-axis the genomic location (in million bases) is
shown and on the y-axis the ILs. In (C) the actual correlation between expression
in the ILs and eQTL effect in the RILs is shown. With on the x-axis the eQTL effect
and on the y-axis RN2. Each dot represents a spot on the microarray with an eQTL
in the trans-band investigated. The line indicates the estimated slope and the pale
blue area around the line indicates the confidence interval of the fit.
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