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Identification of de novo copy number variations (CNVs) across the genome in single
cells requires single-cell whole-genome amplification (WGA) and sequencing. Although
many experimental protocols of amplification methods have been developed, all suffer
from uneven distribution of read depth across the genome after sequencing of DNA
amplicons, which constrains the usage of conventional CNV calling methodologies.
Here, we present SCCNV, a software tool for detecting CNVs from whole genome-
amplified single cells. SCCNV is a read-depth based approach with adjustment for
the WGA bias. We demonstrate its performance by analyzing data obtained with
most of the single-cell amplification methods that have been employed for CNV
analysis, including DOP-PCR, MDA, MALBAC, and LIANTI. SCCNV is freely available
at https://github.com/biosinodx/SCCNV.

Keywords: single-cell whole-genome sequencing, single-cell whole-genome amplification, amplification bias,
copy number variation, software development

INTRODUCTION

Each single cell in a tissue or cell population has its own unique genome due to accumulating
de novo mutations, such as single-nucleotide variations (SNVs), structural variations (SVs), copy
number variations (CNVs) and aneuploidies. The frequency and spectrum of the mutations reflect
the loss of genome integrity of a cell population, critically important to cancer and aging (Vijg and
Dong, 2020). To detect the mutations unique to a single cell, single-cell whole-genome sequencing
(SCWGS) is necessary. SCWGS requires whole-genome amplification (WGA), which is often
biased, leading to uneven distribution of DNA content across the genome or differences between
alleles. This essentially constrain the usage of variant callers designed for non-amplified bulk DNA.
We recently developed a new software tool, SCcaller, that uses heterozygous SNPs to correct for the
allelic bias hampering SNV calling (Dong et al., 2017).

CNV calling is typically based on variation of sequencing depth across the genome. However,
for a single cell amplicon, variation of sequencing depth increases dramatically due to the
locus-specific amplification bias (Navin et al., 2011; Zong et al., 2012; Chen et al., 2017).
To solve this issue computationally, we developed SCCNV, a software tool to identify CNVs
from SCWGS. SCCNV is also based on a read-depth approach: it controls not only bias
during sequencing and alignment, e.g., bias associated with mappability and GC content,
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but also the locus-specific amplification bias. We demonstrate
the performance of SCCNV using SCWGS data of multiple
experimental protocols, i.e., DOP-PCR (degenerative-
oligonucleotide PCR), MDA (multiple displacement
amplification), MALBAC (multiple annealing and looping–
based amplification cycles), and LIANTI (linear amplification
via transposon insertion) (Navin et al., 2011; Gundry et al., 2012;
Zong et al., 2012; Chen et al., 2017; Dong et al., 2017).

MATERIALS AND METHODS

SCCNV
Our software tool for analyzing single-cell copy number variation
(SCCNV) was written in Python. Its source code is freely available
with a usage description and an example at Github1 under the
GNU Affero General Public License v3.0. It uses SCWGS data
after alignment as input (i.e., a bam file per single cell). Of note,
SCCNV cannot take sequencing data of a pool of single cells (a
bam file composed of thousands of single cells data), e.g., the 10×
Genomics single-cell copy number data, as input.

First, SCCNV divides the genome into bins of equal size
(500 kb as default), and counts the numbers of reads per bin
of a cell. This step is relatively time-consuming, and we suggest
users to use samtools on a high-performance computer cluster
in parallel for all samples to be time-efficient (see instructions
on Github). The remaining major steps of SCCNV do not
require much computational resources – most modern desktop
computers should work well.

SCCNV then normalizes mappability, which indicates the
efficiency of the alignment to a genomic region. For a bin b of a
cell, SCCNV adjusts the raw number of reads, denoted by NRraw,
by dividing over the mappability M,

NRmap,b =
NRraw,b

/
Mb

(1)

where mappability M is a value ranging from 0 to 1. SCCNV uses
Encode Align100mer mappability score, downloaded from the
UCSC genome browser, and calculates the mappability of each
bin by using their weighted average.

Then, SCCNV normalizes for GC content. For a cell, SCCNV
calculates the percentile of GC content of each bin. For a bin
b of the cell, its number of aligned reads after normalizing GC
content, NRGC,b, is,

NRGC,b = NRmap,b ×
NRmap,genome

/
NRmap,b,percentile

(2)

where NRmap,genome is the average NRmap per bin of all bins from
the cell; NRmap,b,percentile is the average NRmap per bin of bins in
the same GC percentile as bin b.

After normalization for mappability and GC content, a pattern
of sequencing read depth emerges that is consistent across
different cells amplified using the same experimental protocol,
i.e., the locus-specific amplification bias. Therefore, the bias is
normalized across all cells in a particular batch and experiment.
First, to make the NRGC,b comparable across cells, SCCNV

1https://github.com/biosinodx/SCCNV

converts it to a raw copy number estimate, denoted by CNraw,b
for bin b of cell c, as follows,

CNraw,b,c =
NRGC,b,c

/
NRGC,genome,c × ploidy (3)

where NRGC,genome,c is the median NRGC,c per bin in the genome
of cell c; ploidy is 2 by default. Second, the adjusted copy number
is estimated as,

CNadjusted,b,c =
CNraw,b,c

/
CNraw,b,−c

× ploidy (4)

where CNraw,b,−c denotes the average CNraw for bin b across all
cells except cell c. Of note, with this step SCCNV aims to discover
the difference between the cell c and the other cells. When
analyzing CNVs of multiple tumor cells, it is not appropriate to
use all tumor cells as input of SCCNV; instead, one should use
one tumor cell with two or more normal diploid cells as the input.

Then SCCNV uses a sliding window approach to further
minimize amplification noise. By default, a window includes
11,500-kb bins, i.e., 5.5 Mb of DNA sequence in total, with a
500-kb step size between two neighboring windows,

CNsmoothed,b,c =
1

11

b+5∑
i=b−5

CNadjusted,i,c (5)

SCCNV then models the distribution of CNsmoothed,b,c of all bins
in autosomes of a cell c as a normal distribution N(µ, σc

2). The
µ = 2, and σ is estimated as,

σc = |CNsmoothed,30.9%,c − µ| + |CNsmoothed,69.1%,c − µ| (6)

where CNsmoothed,30.9%,c and CNsmoothed,69.1%,c are the 30.9
and 69.1% percentiles of the CNsmoothed,b,c of all bins in the
autosomes, corresponding to the µ – 0.5σ and µ + 0.5σ

percentiles, respectively. Here, we did not use the observed s.d. of
CNsmoothed,b,c of all the bins because the normal distribution was
to estimate amplification noise, not real variation in copy number
across the genome. When a cell has several large CNVs, the s.d.
will be high, even if its amplification noise remains low.

Assuming equally likely priors, for a bin b and a given possible
copy number k ∈ {0, 1, 2, 3, 4}, its posterior probability is,

P(Hk|x) = fk(x)
/∑4

i=0 fk(x) (7)

where x is the CNsmoothed,b,c, and fi(x) is the probability density
function of a normal distribution,

fi(x) =
1

σc
√

2π
exp(−

(x− k)2

2σ2
c

) (8)

where the variance σc
2 is calculated according to Eq. (5). We only

used k ∈ {0, 1, 2, 3, 4} because the final copy number call was after
multiple testing correction, i.e., Eq. (9) below, and we wished to
minimize the number of hypotheses tested, i.e., five for a copy
number of 0–4. However, this will result in an underestimation
if the real copy number exceeds four. To resolve this issue, for
bins with copy numbers≥4 and≤100, SCCNV reports the closest
integer to the CNsmoothed,b,c.
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SCCNV allows <1 false positive per cell. Therefore, it
determines bin b as a copy number variant when,

P(Hk|x) ≥ 1−
1

GenomeSize(3.2GB)/
= 0.998

WindowSize(5 Mb) (9)

Sensitivity and False Positive Rate
To determine copy number, SCCNV is based on a statistical
test described in equations (8) and (9) for a normal distribution
and multiple testing correction separately. With a given value
of coefficient of variation (CV) of CNsmoothed,b,c, sensitivity and
FPR can be estimated as follows. Sensitivity equals the difference
between two cumulative distribution functions (CDFs) of Eq. (8)
at the upper and lower boundaries, which SCCNV provides the
correct CNV call after the correction in Eq. (9). The percentage
of FP out of all bins is equal to the sum of (a) CDF at the lower
boundary of SCCNV providing an incorrect CN gain call; and (b)
1 – CDF at the upper boundary of SCCNV providing an incorrect

CN loss call. Then FPR was estimated as the ratio of % of FP to
the sum of % of FP and % of TN.

For example, under the assumption that the true copy number
is 2, if SCCNV calls CN = 2 when CNsmoothed,b,c is between 1.8
and 2.2, sensitivity = CDF(x = 2.2, µ = 2) – CDF(x = 1.8, µ = 2),
in which CDF is the cumulative distribution function of Eq. (8). If
SCCNV calls (a) CN = 1 when CNsmoothed,b,c is between 0.8 and
1.2, and (b) CN = 3 when CNsmoothed,b,c is between 2.8 and 3.2,
then%FP = CDF(x = 1,2, µ = 2)+ 1 – CDF(2.8, µ = 2).

Testing Datasets and Preprocessing of
Data
Four SCWGS datasets were obtained for demonstrating and
validating the performance of SCCNV (Zong et al., 2012; Lodato
et al., 2015; Chen et al., 2017; Dong et al., 2017). The datasets
included 8.2 TB SCWGS of 63 single human fibroblasts, neurons
and cells of a tumor cell line amplified using eight different
protocols, i.e., DOP-PCR (Sigma), Rubicon, MALBAC, LIANTI,
and MDA (including Qiagen, GE, Lodato et al’s MDA and

FIGURE 1 | Major steps in SCCNV. A example of copy number estimates of (A) Raw sequencing depth; (B) after normalizing mappability and GC content; (C) after
normalizing amplification bias; and (D) final results is presented. The example is a normal neuronal nucleus amplified with MDA (SRA id: SRR2141574). Each dot
presents a 500 kb bin in the genome. Red and blue colors indicate bins of different chromosomes in Red and blue colors present bins of different chromosomes in
their lexicographic order.
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SCMDA). Supplementary Table 1 lists all the single-cell data
used in this study.

Sequence alignment was performed using BWA and GATK
as follows (Li and Durbin, 2009; McKenna et al., 2010). Raw
sequencing data of each sample (single cell and bulk DNA) were
obtained from the SRA database and subjected to quality control
using FastQC (version 0.11.4;2) and trimming using Trim Galore
(version 0.4.1;3) with default parameters. Then they were aligned
to the human reference genome (version hg19) using BWA
MEM (version 0.7.12; option: -t number of CPUs -M reference
genome fasta file) (Li and Durbin, 2009). PCR duplications were
removed using picard tools (version 1.119;4). The alignments
were subjected to indel realignment and basepair recalibration
using GATK (version 3.5; using options, RealignerTargetCreator,
IndelRealigner, BaseRecalibrator, and PrintReads) (McKenna
et al., 2010). The step above was used for generating an analysis-
ready bam file for other types of variants, e.g., single nucleotide
variants, small insertions and deletions, and this step is optional
for large CNVs or aneuploidies using SCCNV. Reads with
mapQ < 30 were discarded. The number of reads per bin of
each sample was calculated using samtools (version 1.3; option:
bedcov) (Li et al., 2009). SCCNV (version 1.0) was used to
estimate CNV of each cell.

RESULTS

Major Steps in SCCNV
As illustrated in Figure 1, SCCNV is composed of four major
steps. It first calculates sequencing depth of the genome in bins
of equal size (500-kb by default). Second, it normalizes the
depth based on two features of the reference genome, including
mappability and GC content. These two features are usually
also considered by conventional CNV callers for bulk DNA
sequencing. Next, it does further normalization across single cells
of a same experimental batch. This step minimizes locus-specific
bias due to WGA. Finally, it smooths the data (5 Mb by default)
and infers copy number of each bin. Intermediate results between
any two connecting steps can be generated by SCCNV for users
to monitor its performance. We provide an example about the
intermediate results of a normal neuronal nucleus amplified with
MDA (SRA id: SRR2141574) in Supplementary Figures 1–4.

Performance on Real Datasets
To evaluate the performance of SCCNV, we obtained four
SCWGS datasets from the SRA database, which includes 8.2 TB
high-depth WGS data of 63 single human fibroblasts, neurons
and cells of a tumor cell line amplified using eight different
protocols, i.e., DOP-PCR (Sigma), Rubicon, MALBAC, LIANTI,
and MDA (including four MDA protocols, Qiagen, GE, Lodato
et al’s MDA and SCMDA) (Supplementary Table 1; Zong et al.,
2012; Lodato et al., 2015; Chen et al., 2017; Dong et al., 2017). The
data were processed as described in the Materials and Methods.

2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
4http://broadinstitute.github.io/picard/index.html

We used the CV of sequencing depth across all genomic bins
on autosomes as an indicator of performance, because it directly
determines sensitivity and FPR of copy number calling step in
SCCNV. We show sensitivity and FPR of the copy number calling
in Figures 2A,B, respectively. As the CV decreased from 0.135
to 0.041, the sensitivity increased from 0 to 100% and the FPR
decreased from 3.8× 10−3 to 3.9× 10−11.

For the real datasets, we calculated the CV of raw data and
normalized data after each step to demonstrate the performance
of normalization in SCCNV (Figure 3). Almost all raw data (CV:
0.475 ± 0.135, avg. ± s.d.) are beyond the detection threshold,
i.e., CV = 0.135. Each step of normalization decreased the CV
by a significant fraction: on average, mappability normalization
by 5%, GC content normalization by 33% percent, across-cell
normalization by 22%, and smoothing by 55%. This shows the
contributions of each normalization step to performance increase
in the final variant calling. After all the normalization steps,
the CVs are 0.107 ± 0.076 (avg. ± s.d.), corresponding to a

FIGURE 2 | Sensitivity (A) and False positive rate (B) of SCCNV. Y-axis value
represents the coefficient of variation of the sequencing read depth (or
normalized read depth) of all 500 kb bins across a single-cell genome (see
section “Materials and Methods”).
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FIGURE 3 | Decreased coefficient of variation by normalization steps in SCCNV. Each line presents the average CV of normalized sequencing depths of multiple
single cells amplified using the same experimental procedures. See Supplementary Table 1 for citations and SRA ids of each experimental batch.

sensitivity of 68.6% and an FPR of 3.6 × 10−4 on average. Of
note, different amplification protocols have significantly different
performance when using SCCNV, likely due to differences in
DNA amplification linearity among the protocols. As expected,
LIANTI outperformed all the others (Chen et al., 2017). Protocols
that included PCR steps, i.e., DOP-PCR, MALBAC and Rubicon,
ranked in the middle. Although known as suffering from the
least artifactual SNVs (Dong et al., 2017; Zhang et al., 2019),
MDA-based protocols were ended last (Figure 3).

DISCUSSION

Identification of copy number variation and aneuploidy has
been one of the major areas of genomics methods development.
Several statistical models have been developed for analyzing
initially microarray data and later sequencing data of bulk DNA,
for example, Circular Binary Segmentation (CBS), Mean Shift-
Based (MSB) model, Shifting Level Model (SLM), Expectation
Maximization (EM) model, and Hidden Markov Model (HMM)
as discussed in Zhao et al. (2013). Based on these models, multiple
computational software tools have been developed, e.g., CBS,
Copynumber, CNVnator, and HMMcopy (Olshen et al., 2004;
Abyzov et al., 2011; Ha et al., 2012; Nilsen et al., 2012). To call
CNVs, most of the methods rely on assessing either sequencing
read depth or alternate allele fraction at heterozygous SNPs across
the genome of one sample, i.e., across-genome normalization.
Some of the methods have been applied directly for analyzing
single-cell sequencing data with specific filtering for cells with too
much bias after WGA.

A few new tools for single cell data were also developed
recently under the same rationale (assessing one sample at a
time, or across-genome normalization), such as AneuFinder,
baseqCNV, Ginkgo and SCOPE (Garvin et al., 2015; Bakker
et al., 2016; Fu et al., 2019; Wang et al., 2019). SCCNV was
developed based on our observation that the locus-specific
amplification bias is often the same in different cells within one
experimental batch and amplified using the same protocol (e.g.,
Supplementary Figure 3); and we showed that normalization
across multiple samples (cells) significantly contributed to
the increase in variant calling performance for single cells
amplified using most WGA protocols (Figure 3). Following the
same across-sample normalization rationale, another software
tool, SCNV, was developed (Wang et al., 2018). It differs
from SCCNV that SCCNV performs normalization based on
empirical data directly (Eq. 4) without any assumption on its
distribution. Of note, with across-sample normalization, SCCNV
essentially aims to identify differences among different cells
in one input batch and, therefore, it is important to input
cells of interest (e.g., tumor cells) together with cells with a
standard diploid genome.

CONCLUSION

We developed SCCNV to identify copy number variations from
whole-genome amplified single cells. We demonstrated its step-
wise performance using most of the recent SCWGS datasets
generated with 8 different amplification protocols.

Frontiers in Genetics | www.frontiersin.org 5 November 2020 | Volume 11 | Article 505441

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-505441 November 10, 2020 Time: 16:0 # 6

Dong et al. SCCNV

DATA AVAILABILITY STATEMENT

Raw sequencing data of each sample were obtained from SRA
database (SRA SRP067062, SRA SRA060929, SRA SRP102259,
SRA SRP041470, and SRA SRP061939).

AUTHOR CONTRIBUTIONS

XD, LZ, and JV conceived the study. XD and TW developed the
method. XD and XH analyzed the data. XD, LZ, and JV wrote the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work has been supported by the NIH grants P01 AG017242,
P01 AG047200, P30 AG038072, K99 AG056656, U01 HL145560,

and U01 ES029519, and the Paul F. Glenn Center for the
Biology of Human Aging.

ACKNOWLEDGMENTS

This manuscript has been released as a Pre-Print at https:// www.
biorxiv.org/ content/ 10.1101/ 535807v1 (Dong et al., 2019).

CODE AVAILABILITY STATEMENT

The source code of SCCNV can be found in the https://github.
com/biosinodx/SCCNV.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.505441/full#supplementary-material

REFERENCES
Abyzov, A., Urban, A. E., Snyder, M., and Gerstein, M. (2011). CNVnator: an

approach to discover, genotype, and characterize typical and atypical CNVs
from family and population genome sequencing. Genome Res. 21, 974–984.
doi: 10.1101/gr.114876.110

Bakker, B., Taudt, A., Belderbos, M. E., Porubsky, D., Spierings, D. C., De Jong,
T. V., et al. (2016). Single-cell sequencing reveals karyotype heterogeneity in
murine and human malignancies. Genome Biol. 17:115.

Chen, C., Xing, D., Tan, L., Li, H., Zhou, G., Huang, L., et al. (2017). Single-
cell whole-genome analyses by linear amplification via transposon insertion
(LIANTI). Science 356, 189–194. doi: 10.1126/science.aak9787

Dong, X., Zhang, L., Hao, X., Wang, T., and Vijg, J. (2019). SCCNV: a software
tool for identifying copy number variation from single-cell whole-genome
sequencing. bioRxiv [Preprint], doi: 10.1101/535807

Dong, X., Zhang, L., Milholland, B., Lee, M., Maslov, A. Y., Wang, T., et al.
(2017). Accurate identification of single-nucleotide variants in whole-genome-
amplified single cells. Nat. Methods 14, 491–493. doi: 10.1038/nmeth.4227

Fu, Y., Zhang, F., Zhang, X., Yin, J., Du, M., Jiang, M., et al. (2019).
High-throughput single-cell whole-genome amplification through centrifugal
emulsification and eMDA. Commun. Biol. 2:147.

Garvin, T., Aboukhalil, R., Kendall, J., Baslan, T., Atwal, G. S., Hicks, J., et al. (2015).
Interactive analysis and assessment of single-cell copy-number variations. Nat.
Methods 12, 1058–1060. doi: 10.1038/nmeth.3578

Gundry, M., Li, W., Maqbool, S. B., and Vijg, J. (2012). Direct, genome-wide
assessment of DNA mutations in single cells. Nucleic Acids Res. 40, 2032–2040.
doi: 10.1093/nar/gkr949

Ha, G., Roth, A., Lai, D., Bashashati, A., Ding, J., Goya, R., et al. (2012). Integrative
analysis of genome-wide loss of heterozygosity and monoallelic expression
at nucleotide resolution reveals disrupted pathways in triple-negative breast
cancer. Genome Res. 22, 1995–2007. doi: 10.1101/gr.137570.112

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics 25, 1754–1760. doi: 10.1093/bioinformatics/
btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–
2079. doi: 10.1093/bioinformatics/btp352

Lodato, M. A., Woodworth, M. B., Lee, S., Evrony, G. D., Mehta, B. K., Lee, E., et al.
(2015). Somatic mutation in single human neurons tracks developmental and
transcriptional history. Science 350, 94–98. doi: 10.1126/science.aab1785

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,
A., et al. (2010). The genome analysis toolkit: a MapReduce framework for

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303.
doi: 10.1101/gr.107524.110

Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., Mcindoo, J., et al. (2011).
Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94. doi:
10.1038/nature09807

Nilsen, G., Liestol, K., Van Loo, P., Moen Vollan, H. K., Eide, M. B., Rueda, O. M.,
et al. (2012). Copynumber: efficient algorithms for single- and multi-track copy
number segmentation. BMC Genom. 13:591. doi: 10.1186/1471-2164-13-591

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular
binary segmentation for the analysis of array-based DNA copy number data.
Biostatistics 5, 557–572. doi: 10.1093/biostatistics/kxh008

Vijg, J., and Dong, X. (2020). Pathogenic mechanisms of somatic mutation and
genome mosaicism in aging. Cell 182, 12–23. doi: 10.1016/j.cell.2020.06.024

Wang, R., Lin, D.-Y., and Jiang, Y. (2019). SCOPE: a normalization and copy
number estimation method for single-cell DNA sequencing. bioRxiv [Preprint],
doi: 10.1101/594267

Wang, X., Chen, H., and Zhang, N. R. (2018). DNA copy number profiling using
single-cell sequencing. Brief Bioinform. 19, 731–736. doi: 10.1093/bib/bbx004

Zhang, L., Dong, X., Lee, M., Maslov, A. Y., Wang, T., and Vijg, J. (2019). Single-
cell whole-genome sequencing reveals the functional landscape of somatic
mutations in B lymphocytes across the human lifespan. Proc. Natl. Acad. Sci.
U.S.A. 116, 9014–9019. doi: 10.1073/pnas.1902510116

Zhao, M., Wang, Q., Wang, Q., Jia, P., and Zhao, Z. (2013). Computational tools
for copy number variation (CNV) detection using next-generation sequencing
data: features and perspectives. BMC Bioinform. 14(Suppl. 11):S1. doi: 10.1186/
1471-2105-14-S11-S1

Zong, C., Lu, S., Chapman, A. R., and Xie, X. S. (2012). Genome-wide detection
of single-nucleotide and copy-number variations of a single human cell. Science
338, 1622–1626. doi: 10.1126/science.1229164

Conflict of Interest: XD, LZ, and JV are co-founders of SingulOmics Corp.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Dong, Zhang, Hao, Wang and Vijg. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 6 November 2020 | Volume 11 | Article 505441

https://www.biorxiv.org/content/10.1101/535807v1
https://www.biorxiv.org/content/10.1101/535807v1
https://github.com/biosinodx/SCCNV
https://github.com/biosinodx/SCCNV
https://www.frontiersin.org/articles/10.3389/fgene.2020.505441/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.505441/full#supplementary-material
https://doi.org/10.1101/gr.114876.110
https://doi.org/10.1126/science.aak9787
https://doi.org/10.1101/535807
https://doi.org/10.1038/nmeth.4227
https://doi.org/10.1038/nmeth.3578
https://doi.org/10.1093/nar/gkr949
https://doi.org/10.1101/gr.137570.112
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1126/science.aab1785
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1038/nature09807
https://doi.org/10.1038/nature09807
https://doi.org/10.1186/1471-2164-13-591
https://doi.org/10.1093/biostatistics/kxh008
https://doi.org/10.1016/j.cell.2020.06.024
https://doi.org/10.1101/594267
https://doi.org/10.1093/bib/bbx004
https://doi.org/10.1073/pnas.1902510116
https://doi.org/10.1186/1471-2105-14-S11-S1
https://doi.org/10.1186/1471-2105-14-S11-S1
https://doi.org/10.1126/science.1229164
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	SCCNV: A Software Tool for Identifying Copy Number Variation From Single-Cell Whole-Genome Sequencing
	Introduction
	Materials and Methods
	SCCNV
	Sensitivity and False Positive Rate
	Testing Datasets and Preprocessing of Data

	Results
	Major Steps in SCCNV
	Performance on Real Datasets

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Code Availability Statement
	Supplementary Material
	References


