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Recent advances in genomics and proteomics generated a large amount of trans
regulatory data such as those mediated by RNA binding proteins (RBPs) and
microRNAs. Since many trans regulators target 3′ UTR of mRNA transcripts, it is likely
that there would be interactions, i.e., competitive or cooperative effect, among these
trans factors. We compiled the available RBP and microRNA binding sites, mapped
them to the mRNA transcripts, and correlated the binding data with mRNA expression
data generated by The Cancer Genome Atlas (TCGA). We separated pairs of RBPs
and microRNAs into three scenarios: those that have overlapping target sites on the
same mRNA transcript (overlapping), those that have target sites on the same mRNA
transcript but non-overlapping (neighboring), and those that do not target the same
mRNA transcript (independent). Through a regression analysis on expression profiles,
we indeed observed interaction effect between RBPs and microRNAs in the majority of
the cancer expression data sets. We further discussed implication of such widespread
interactions in the context of cancer and diseases.
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INTRODUCTION

Post-transcriptional regulation is an important yet complex system that modulates expression
level of genes inside cells. The commonly studied post-transcriptional regulatory mechanisms
include alternative splicing, mRNA modification, regulation by RNA binding proteins (RBP) or
by microRNAs. Dysregulation in post-transcriptional regulation has been implicated in many
human diseases, especially those mediated by RBPs (Lukong et al., 2008) and by microRNAs
(Calin and Croce, 2006). Since many RBPs and microRNAs target the 3′ UTR of the same mRNA
transcripts, it is likely that there exist competitive or cooperative interactions among these trans
regulators. For example, these trans regulators could compete for the same binding sites on the 3′

UTR; alternatively, binding by one trans regulator could affect the local mRNA conformation and
influence binding by other trans regulators. Indeed, a number of earlier studies have investigated
interactions between these regulators. Perhaps the most widely studied is the competition between
microRNAs, either via competing for the same AGO protein complex or via indirectly modulating
the abundance of mRNAs. Califano, Pandolfi, and colleagues proposed the idea that different types
of RNAs, either mRNAs or non-coding RNAs, can compete for the same microRNAs, and changes
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in RNA abundance can modulate the regulatory effect of
other microRNAs, hence the concept of ceRNA (competing
endogenous RNAs) (Salmena et al., 2011; Sumazin et al., 2011;
Li et al., 2014; Tay et al., 2014). Marks and colleagues observed
that overexpression of one type of microRNA can overload the
AGO proteins thus reduce the possibility of other microRNAs
being loaded onto the RISC complex (Khan et al., 2009). In
addition to these computational analyses, there are experimental
evidence supporting such competitive effects among microRNAs
(Hua et al., 2006; Castanotto et al., 2007; Ebert et al., 2007).

Doyle and Tenenbaum (2014) presented a general framework
on competition among RBPs; however, there have not been any
large-scale experimental survey in this area except for a few cases
involving HuR. It was shown that, HuR and AUF1, two RBPs
that cause opposing effect on their targets (the binding of HuR
stabilizes mRNA while binding of AUF1 promotes degradation),
compete for common target sequences and can modulate each
other’s effect (Barker et al., 2012). Competition between HuR
and wild-type TTP for binding to the HuR transcript has been
implicated in HuR regulation and its cytoplasmic localization
(Al-Ahmadi et al., 2009). HuR is a widely studied RBP and binds
to many target mRNAs, so it is not surprising that many of the
reported competition events involved HuR. Zarnack et al. (2013)
conducted genome-wide iCLIP experiments and discovered
that HNRNP (Heterogeneous Nuclear Ribonucleoprotein C)
competes with the splicing factor U2AF65 at many splice sites,
which prevents the exonization of Alu elements and protects the
integrity of human transcriptome. In another example, it was
found that two families of splicing factors, CELF and RBFOX,
can antagonize each other in the regulation of global splicing
events (Gazzara et al., 2017). Regarding interactions between
RBPs and microRNAs, Srikantan et al. (2012) presented an
overview of potential competition and cooperation between HuR
and microRNAs. For example, it was shown that HuR can
recruit miR-19 and the associated RISC complex to the mRNA
transcript of small GTPase RhoB and repress protein translation;
the interaction between HuR and miR-19 can be decoupled by
UV exposure, which prevents the down-regulation of RhoB by
miR-19 (Glorian et al., 2011). Such regulatory role of HuR has
later been reported for let-7, miR-17-92 and other microRNAs as
well (Kim et al., 2009; Kundu et al., 2012; Gunzburg et al., 2015;
Mihailovich et al., 2015).

Despite these published studies, to the best of our knowledge,
there still lacks a general analysis of global regulatory interactions
between RBPs and microRNAs beyond the well-studied proteins
such as HuR. In this study, we limited our list of RBPs only to
those that target 3′ UTR of mRNAs and excluded those binding
events at the 5′ UTR or coding regions (CDS). We also did not
include splicing factors that bind to intron and exon junctions,
which warrants a separate study. For RBP binding sites, we
collected and mapped the binding sites derived from published
experimental studies, specifically the POSTAR database (Hu
et al., 2017). These RBP binding sites were further refined by
considering RNA accessibility to include only those deemed
of high confidence. The microRNA target sites were derived
from computational predicted databases. Based on the binding
sites of RBPs and microRNAs, Figure 1A shows three possible

scenarios, which we refer to as “Overlapping,” “Neighboring,” and
“Independent,” respectively.

MATERIALS AND METHODS

Mapping MicroRNA and RBP Target Sites
The microRNA targeting information was downloaded from
TargetScan database (version 7.2) (Agarwal et al., 2015), which
as of January 2019 contained 321 human microRNAs and 11,354
target genes. We chose to use TargetScan since it was more
frequently updated (last updated in March 2018). The default
parameters for target prediction were used. We did not limit
our study to only experimentally validated targets such as those
curated by TarBase (Karagkouni et al., 2018), since we aimed
to finding global competitive effect between trans factors, rather
than investigating individual factors. The RBP binding sites were
downloaded from POSTAR21 (Hu et al., 2017), the coordinates
of these binding sites were based on GENCODE Human release
27. The coordinates of microRNA and RBP binding sites were
mapped from hg19 to hg38 by using the LiftOver tool. The
definition of 3′ UTR from GENCODE was used. Details on
the further mapping and processing of these target sites are
described in Results.

Randomization of RBP and MicroRNA
Target Sites
We conducted randomization on the overlapping RBP (or
microRNA) target sites to calculate the baseline probability for
two RBPs to have overlapping target sites on an mRNA transcript,
provided that they already have target sites on the same mRNA
transcript. For a given mRNA, we randomly re-distributed
RBP target sites on the 3′ UTR region and compared the
number of overlapping RBP target sites with the real data. We
conducted randomization 10 times and took the average number
of overlapping target sites.

TCGA Datasets
The mRNA and microRNA expression data were downloaded
from Broad Institute Firehose website2. Genes that have missing
value among over 30% of the samples were not considered. We
used the knn.impute package to fill in the missing value. The
final summary of The Cancer Genome Atlas (TCGA) data is
shown in Supplementary Table S1.

Statistical Analysis
We conducted regression analysis as formulated in Eq. 1 to
measure the significance of interactions among trans regulators.
We used the R package p.adjust to calculate the p-values adjusted
by Benjamini–Hochberg method (q-value < 0.05). The p-value
for each term tests the null hypothesis that the coefficient is
equal to zero (no effect). A low p-value (<0.05) indicates that
there is a larger interaction probability between the two trans
regulators. We used the R function ks.test (x, y, “greater”) to

1http://lulab.life.tsinghua.edu.cn/
2https://gdac.broadinstitute.org
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FIGURE 1 | (A) Three different scenarios between two trans regulators. In scenario 1 (Overlapping), both trans regulators target the same mRNA transcript with
overlapping binding sites. In scenario 2 (Neighboring), both trans regulators target the same mRNA transcripts but the binding sites do not overlap. In scenario 3
(Independent), the two trans regulators do not bind to the same transcript. (B) A flowchart on determining RBP binding sites.

carry out the Kolmogorov–Smirnov test; x and y represent the
p-values calculated from Eq. 1 from Overlapping, Neighboring,
and Independent regulator pairs. The “greater” option tests the
null hypothesis that x is stochastically smaller than y.

RESULTS

Mapping RBP Targets
The analysis flowchart is shown in Figure 1B and details on how
we derived RBP and microRNA binding sites can be found in
the section “Materials and Methods.” Supplementary Table S2
summarizes the downloaded RBP binding data. The POSTAR2
database had collected global binding data for 171 RBPs (as of
January 2019), mostly were determined by CLIP-Seq or similar
approaches and analyzed by software such as PARalyzer or CIMS
(Corcoran et al., 2011; Zhang and Darnell, 2011). We noticed
that there was often more than one study on a unique RBP; we
pooled the binding sites determined from these separate studies.
For those genes with multiple alternative mRNA transcripts, we

used GENCODE as a reference and selected the transcript with
the longest 3′ UTR. Many of these RBP binding sites are likely
only bound by RBP in specific cell types due to cell type specific
abundance of the RBPs and the target mRNAs, or the competitive
or cooperative interaction between RBPs. At this step in our
study, we simply mapped all the potential RBP binding sites
and their spatial relationship in preparation for the subsequent
regression analysis on expression levels.

We noticed that many of the RBP binding sites reported by
the PARalyzer or eCLIP were very long and spanned over 50
nucleotides, which was characteristic of the broad peaks called by
peak calling software (Van Nostrand et al., 2016) or was the result
of multiple overlapping binding sites being merged together
(Corcoran et al., 2011). We manually examined the annotation
of these RBPs and the RNA binding domains (RBD) within these
proteins; the majority of these RBPs or RBDs had evidence to
bind to single stranded RNAs (ssRNA) instead of double stranded
RNAs (dsRNA). Therefore, we further refined these RBP binding
sites by calculating the local RNA structure accessibility and only
retained those that were considered to be accessible to RBPs.
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We used the RNAplfold program in the Vienna Package and
used recommended parameters (W = 80 and L = 40) (Lorenz
et al., 2011). It was previously shown that inclusion of local RNA
accessibly could help improve the identification of RBP binding
events (Tafer et al., 2008).

After these filtering steps, we derived a final RBP target set,
which included 171 distinct RBPs, 14,520 mRNA transcripts,
and 2,865,656 target sites. On average, after considering RNA
accessibility, a typical RBP was found to bind 2,077 genes (median
502 genes), and on average each gene was targeted by 24.5 RBPs
(median 23 RBPs) (Table 1). We found that a few proteins such as
HNRNPC and DDX3X had the most targets (11 RBPs had more
than 8000 targets each). These RBPs are among the most studied
proteins and have the greatest number of CLIP-Seq experiments
done on them. On the other hand, a gene can be targeted by up to
92 RBPs (e.g., HNRNPA2B1 and MAFG, Table 2). The detailed
data can be found in Supplementary Tables S3, S4.

Overlap Among RBP Binding Sites
As shown in Figure 1A, we separated pairs of trans factors into
three scenarios: Overlapping, Neighboring, and Independent. As
described above, in this study we did not consider alternative
splicing or alternative 3′ UTRs; instead we choose the longest
3′ UTR for each human gene. We define two trans regulators

TABLE 1 | Top 10 RBPs that have the highest number of target genes and target
binding sites as annotated by POSTAR2, sorted by the number of target genes (A)
and number of total binding sites (B), after considering RNA accessibility.

RBP name Number of target
genes (pooled
over multiple

studies)

Number of
binding sites
(pooled over

multiple studies)

Average number
of binding sites
per target gene

(A) Sorted by number of target genes

AXTN2 11,286 229,709 20.4

ELAVL1 (HuR) 9,746 193,408 19.8

HNRNPC 8,644 190,668 22.1

TARDBP (TDP-43) 10,526 154,190 14.6

LIN28B 10,185 112,430 11.0

MOV10 7,963 111,789 14.0

DDX3X 9,426 101,424 10.8

UPF1 8,077 99,391 12.3

ZC3H7B 6,807 98,351 14.4

CPSF7 8,154 97,348 11.9

(B) Sorted by number of total binding sites

ATXN2 11,286 229,709 20.4

TARDBP (TDP-43) 10,526 154,190 14.6

LIN28B 10,185 112,430 11.0

ELAVL1 (HuR) 9,746 193,408 19.8

DDX3X 9,426 101,424 10.8

FIP1L1 8,929 59,958 6.7

CSTF2T 8,919 86,762 9.7

NUDT21 8,913 49,380 5.5

HNRNPC 8,644 190,668 22.0

CPSF7 8,154 97,348 11.9

TABLE 2 | Human genes that have the highest number of RBP regulators.

Gene name Number of
unique RBP
regulators

Number of
pooled RBP
binding sites

Number of binding sites
that overlap with another

RBP binding site,
another miRNA binding
site, or another RBP or

miRNA binding site

(A) Sorted by the number of total RBP binding sites

CBX5 75 4827 4789/329/4794

NUCKS1 88 4324 4311/365/4311

NUFIP2 74 4015 3974/559/3976

PANK3 79 3720 3674/201/3678

ZNF207 80 3564 3484/267/3487

C16orf72 72 3381 3333/NA/3333

AGO2 85 3354 3277/62/3279

G3BP1 77 3225 3174/209/3180

CDK6 78 2903 2840/172/2844

SCD 80 2722 2711/86/2713

(B) Sorted by the number of unique RBP regulators

HNRNPA2B1 92 1687 1679/163/1679

MAFG 92 1166 1137/74/1141

NUCKS1 88 4324 4311/365/4311

SRSF1 88 2199 2197/360/2197

MAZ 86 1028 1024/69/1024

AGO2 85 3354 3277/62/3279

PDXK 85 1307 1257/32/1257

DNAJC5 84 1049 1016/63/1016

LENG8 84 1559 1549/30/1549

FOXK1 83 2068 2002/63/2003

(A) Sorted by the number of total RBP binding sites, (B) sorted by the number of
unique RBP regulators.

having overlapping target sites if their target sites, either
experimentally determined or predicted, overlap by at least 1
nucleotide. We experimented with alternative definition such
as defining overlapping as distance on the mRNA being less
than 5 nucleotides, such alterations had no effect on the
final conclusions.

Figure 2A shows the distribution of the number of RBP
binding sites per gene, after pooling binding sites from different
RBPs for the same gene. On average, a human mRNA transcript
has 197 RBP binding sites (median 85 binding sites). Figure 2B
shows the number of distinct RBPs that target each mRNA. On
average, a human mRNA transcript is targeted by 24.5 distinct
RBPs (median 23 RBPs). We note that these statistics are based
only on the 171 RBPs for which there are in vivo binding data; the
number of RBPs that target each mRNA is likely higher.

For the 171 RBPs, our analysis show that they have a total
of 2,865,656 potential binding sites against the entire human
transcriptome. Among these binding sites, 2,579,262 (90%)
overlap with another RBP binding site. In contrast, in our random
simulations, approximately 2,236,200 (78.1%) of the binding
sites overlap with another binding site. We next tested whether
such high degree of overlap was caused by the very few RBPs
that have many binding sites throughout the transcriptome. To
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FIGURE 2 | Summary of RBP binding sites. (A) Number of RBP binding sites per gene, binding sites from different RBPs are pooled together. X-axis represents the
number of RBP binding sites per gene and the last column represents the number of genes with total binding sites greater than 1000, Y-axis indicates the number of
genes that have that number of RBP binding sites. (B) Number of unique RBPs that bind to a human gene. X-axis indicate the number of unique RBPs bound to one
mRNA, Y-axis indicates the number of genes.

test such possibility, we sequentially removed the RBPs that
had the highest number of binding sites and re-calculated the
frequency of overlap (Figure 3). The results showed that, even
after removing the top 5 RBPs that have the most abundant target
sites, on average, 86.3% of the RBPs still have overlapping sites
with another RBP (70.1% in random simulations). This indicates

FIGURE 3 | Overlap among RBP binding sites after sequentially removing
RBPs with the highest number of binding sites. The red circles represent real
observed data while the black circles represent averaged results over 10
rounds of random simulation.

that indeed many RBPs share potential overlapping binding
sites, at least as determined by pull-down experiments. Similar
observation had been made by other authors from the study of
in vitro determined binding affinities of RBPs (Van Nostrand
et al., 2016). There are two potential explanations for the observed
significant overlap between the potential RBP binding sites.
A mechanistic explanation is that RBPs preferably recognize
RNA regions that have unique nucleotide composition, favorable
structural conformation and accessibility. Many of these RBPs
share homologous RNA binding domains (RBD), thus it is likely
that they bind to similar target sequence motifs. Alternatively,
such overlap could be the result of millions of years of adaptive
evolution and selection.

Table 2 shows some of the genes that are bound by the greatest
number of RBPs, also shown are the number of binding sites, and
the number of binding sites that overlap with another binding
site. The complete list of such data is shown in Supplementary
Table S5. Table 3 lists the RBP pairs that have the highest
number of overlapping binding sites. HNRNPC, ELAVL1 (HuR),
TARDBP (TDP-43), and ATXN2 are among the RBPs that have
the highest number of binding sites and target genes (see Table 1);
they also have the highest number of overlapping binding sites
and overlapping mRNA targets. Figure 4 shows the network of
overlapping and neighboring RBPs, represented as a heatmap,
detailed data are in Supplementary Table S6.

Figure S1 show that, at least as suggested by sequence data,
there exists prevalent potential overlap among RBP binding sites.
For any RBP-RBP pair, there is 80.1% chance (74% in randomized
simulation) that they have overlapping binding sites on at least
one mRNA target; and 94.6% chance that they have neighboring
binding sites on at least one mRNA. There is 19% chance (15.2%
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TABLE 3 | List of RBP-RBP pairs that have the highest number of overlapping and neighboring binding sites.

RBP 1 RBP 2 Number of
overlapping
binding sites

Number of target
genes with
overlapping
binding sites

Number of target
genes with
neighboring
binding sites

HNRNPC ELAVL1 (HuR) 73,554 5346 2379

TARDBP (TDP-43) ATXN2 72,801 6938 2707

ELAVL1 (HuR) ATXN2 70,707 5955 2851

HNRNPC ATXN2 67,260 5759 2372

TARDBP (TDP-43) HNRNPC 53,022 5371 2509

ZC3H7B ELAVL1 (HuR) 49,607 4801 1709

TARDBP (TDP-43) ELAVL1 (HuR) 49,519 5299 3270

CPSF7 ATXN2 48,239 5641 2194

MOV10 ATXN2 48,026 5049 2610

LIN28B ELAVL1 (HuR) 47,457 6521 2028

The first two columns are the names of the RBPs, the 3rd column is the number of overlapping binding sites between these two RBPs, the 4th column is the number of
genes on which these two RBPs have overlapping binding sites, the 5th column is the number of genes on which these two RBPs have neighboring binding sites.

FIGURE 4 | RBPs that have overlapping or neighboring binding sites. Color in each cell indicates the number of mRNAs on which the two RBPs have overlapping or
neighboring binding sites. RBPs are listed in the same order on both X- and Y-axis. The top overlapping pairs in the top left corer are magnified in the inset.

in randomized simulation) that any pair of RBPs have overlapping
binding sites on at least 100 mRNAs, and 38% chance that they
have neighboring binding sites on at least 100 mRNAs.

Mapping MicroRNA Target Sites
On average, each microRNA is predicted to regulate 557 genes
(median 433 genes), and each gene is predicted to be targeted
by 16 microRNAs (median 9 microRNAs). Figure 5 shows the
distribution of microRNA binding sites among the genes; more
detailed information can be found in Supplementary Tables S7,
S8. Among the total of 201,235 microRNA binding sites, 157,245
(78%) overlap with another microRNA binding site. There are
several previously published studies on overlap and interaction

between microRNA regulations including those from our own
group (Li et al., 2014), therefore, we focused on interactions
between RBPs and microRNAs in this study. Figure S2 shows
the overlap between microRNA regulations, represented as a
heatmap. Supplementary Table S9 lists the microRNA pairs that
have the highest number of overlapping binding sites. Since these
top microRNA pairs often belong to the same family and are
highly similar in sequence, their binding sites are almost always
deemed as overlapping, i.e., no neighboring binding sites between
these pairs. The complete list is shown in Supplementary Table
S10. It should be noted that human microRNAs consist of
many families of homologous microRNAs that share similar seed
sequences, e.g., hsa-miR-15a and has-miR-15b; these microRNAs
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FIGURE 5 | Summary of microRNA binding sites. (A) Total number of microRNA binding sites per gene, binding sites of different microRNAs are pooled together.
X-axis represents the number of microRNA binding sites per gene and the last column represents the number of genes with binding sites greater than 100, Y-axis
indicates the number of genes that have that number of microRNA binding sites. (B) Number of unique microRNAs that bind to a human gene. X-axis represents the
number of microRNA binding sites per gene and the last column represents the number of genes with binding sites greater than 100, Y-axis indicates the number of
genes.

would naturally have overlapping binding sites. We treated these
homologous microRNAs as independent regulatory elements
since they do not always have similar expression levels
across cell types.

Overlap Between RBP and MicroRNA
Binding Sites
We next investigated overlap between RBP and microRNA
binding sites. As described above, our final dataset included a
total of 2,865,656 RBP binding sites mediated by 171 RBPs, and
201,235 microRNA binding sites mediated by 321 microRNAs.
On average, each mRNA transcript had 197 RBP binding sites
(median 85) and 18 microRNA binding sites (median 9). Among
the 2,865,656 RBP binding sites, 181,690 (6.3%) (average 243,260,
or 8.5% in randomized simulations) overlapped with another
microRNA binding site, while 2,361,587 (82.4%) had neighboring
microRNA binding sites on the same mRNA transcript. It is
surprising that in the randomized simulations more RBP binding
sites overlap with another microRNA binding site; one possible
explanation is that the real RBP binding sites tend to cluster
together in the 3′ UTR thus the randomized RBP binding
sites had more chance to overlap with randomized microRNA
binding sites. Among the total of 201,235 microRNA binding
sites, 111,300 (55.3%) (average 109,503, 54% in randomized
simulations) overlapped with an RBP binding site, 11,371 (5.7%)
had a neighboring RBP binding site. These results including
the simulation results suggests potential prevalent interactions
between RBPs and microRNAs.

Figure 6A shows the RBPs and microRNAs that have
overlapping binding sites, while Figure 6B shows the RBPs and

microRNAs that have neighboring binding sites. Table 4 lists the
details of the RBP-microRNA pairs that have the highest number
of overlapping or neighboring binding sites. The complete list is
in the Supplementary Table S11.

For any pair of RBP and microRNA, there is 46.3% chance
(average 42.2% in randomized simulation) that they have
overlapping binding sites on at least one mRNA transcript, and
93.3% chance that they have neighboring binding sites on at
least one mRNA. From Figure 6A and Table 4, we can see
that several RBPs such as TARDBP (TDP-43), ATXN2, ELAVL1
(HuR) dominated among the RBP-miRNA pairs that had high
number of overlapping binding sites. One potential reason is that
these RBPs tend to have high number of binding sites and mRNA
targets; indeed, the RBPs that have the highest number of binding
sites also tend to have higher number of overlapping microRNA
target sites (Pearson correlation 0.97, p-value = 1.36-E116). Also,
since many microRNAs belong to the same family, they also
have the same number of overlapping or neighboring binding
sites with RBPs, e.g., hsa-miR-181a, hsa-miR-181b, hsa-miR-181c,
hsa-miR-181d in Table 4.

TARDBP (TDP-43), the top RBP listed in Table 4, is known
to bind to both DNA and RNA and can regulate RNA editing as
well (Quinones-Valdez et al., 2019); it also interacts with Drosha
and Dicer complexes and directly regulates the biogenesis of a
subset of microRNAs (Kawahara and Mieda-Sato, 2012; Chen
et al., 2018). A recent study has shown that TARDBP can bind
to the 3′ UTR of pluripotency factors including Sox 2 and protect
these transcripts from degradation mediated by microRNAs such
as miR-21 (Modic et al., 2019). Interestingly, both TARDBP
and ATXN2 are implicated in neurological disorders such as
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FIGURE 6 | RBPs and microRNAs that have overlapping or neighboring binding sites. RBPs are listed on the Y-axis and microRNAs are listed on the X-axis. Color in
each cell represents the number of genes on which the RBP and the microRNA have overlapping (A) or neighboring (B) binding sites. As the result of clustering, the
order of RBPs or microRNAs are different between left and right panels.

TABLE 4 | List of RBP-microRNA pairs that have the highest number of overlapping and neighboring binding sites.

RBP miRNA Number of
overlapping
binding sites

Number of target genes
with overlapping binding

sites

Number of target genes
with neighboring binding

sites

TARDBP (TDP-43) hsa-miR-181a-5p 499 499 613

TARDBP (TDP-43) hsa-miR-181b-5p 499 499 613

TARDBP (TDP-43) hsa-miR-181c-5p 499 499 613

TARDBP (TDP-43) hsa-miR-181d-5p 499 499 613

ATXN2 hsa-miR-124-3p 455 455 1012

ATXN2 hsa-miR-325-3p 426 426 1019

CPSF7 hsa-miR-101-3p.2 340 340 435

ELAVL1 hsa-miR-340-5p 338 338 724

ATXN2 hsa-miR-340-5p 319 319 760

ATXN2 hsa-miR-181a-5p 318 318 767

The first two columns are the names of the RBP and microRNA, the 3rd column is the number of overlapping binding sites between these two trans regulators, the 4th
column is the number of mRNAs on which these regulators have overlapping binding sites, the 5th column is the number of mRNAs on which these two regulators have
neighboring binding sites.

amyotrophic lateral sclerosis (ALS) (Sreedharan et al., 2008;
Elden et al., 2010; Prasad et al., 2019; Yang et al., 2019); in
addition, Ataxin-2 has been implicated in microRNA regulation
(McCann et al., 2011; Ostrowski et al., 2017).

We next searched the ATtRACT database (Giudice
et al., 2016), which has curated RBP binding motifs and
positional weight matrices (PWM) determined from pull-down
experiments or in vitro methods such as RNAcompete (Ray
et al., 2013). For the RBPs shown in Table 4, we only found
curated binding motifs for TARDBP (TDP-43) and ELAVL1
(HuR) in this database. TARDBP (TDP-43) has a canonical
RNA Recognition Motif (RRM) and it has consensus binding

motifs of 5′GAAUGG3′ or 5′GAAUGU3′ as determined
by RNAcompete. Hsa-MiR-181 has a mature sequence of
5′AACAUUCAACGCUGUCGGUGAGU3′, which gives rise
to seed region of 5′ACAUUCA3′. The complementary target
site on the mRNA is 5′UGAAUGU3′, which strongly resembles
the curated binding motifs of TARDBP. ELAVL1 (HuR) has
consensus U-rich binding motifs. Hsa-miR-340-5p has a
mature sequence of 5′UUAUAAAGCAAUGAGACUGAUU3′,
which gives rise to seed region of 5′UAUAAAG3′. The
complementary target site on the mRNA is 5′CUUUAUA′′,
which bears resemblance of the U-rich binding motifs of
ELAVL1 (HuR). Therefore, the high prevalence of overlap
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between RBP-microRNA pairs can be explained by the similarity
of their binding preferences.

Regression Analysis Between Trans
Regulators Based on TCGA Gene
Expression Data
The above sections only investigated the potential of interactions
between trans factors based on the location of their binding
sites on the 3′ UTR of mRNAs. Next, we set out to analyze
gene expression data to determine whether there are indeed
interactions between these overlapping or neighboring trans
regulators. The most definitive evidence to validate interactions
between two trans factors is to experimentally remove one trans
factor or its target site, then ascertain whether the regulatory
effect of the other trans factor is elevated (competition) or
diminished (cooperation). Such approaches were previously
taken in the study of competitive effect between microRNAs (van
Dongen et al., 2008; Khan et al., 2009), and between selected
microRNA and RBPs (Kim et al., 2009; Glorian et al., 2011).
Since the goal of our study is to conduct a global analysis and
identify potential interactions between trans factors, we need an
effective statistical method for this purpose. Toward this goal,
we adopted a simplified statistical approach (Eq. 1), in which
x1 and x2 represent the expression level of two trans regulators
(RBPs or miRNAs), a1 represents the “regulatory strength” that
y is regulated by x1, a2 represents the regulatory strength that y
is regulated by x2, a3 is the interaction effect between x1 and x2,
and a4 is the random error term, representing regulatory effect by
other factors. If indeed there are interactions between two trans
factors, either competitive or cooperative in a specific cancer type,
we are likely to see statistically significant interactions between
these two trans factors.

Equation 1:

y = a1x1 + a2x2 + a3x1x2 + a4 (1)

We downloaded the TCGA gene expression data from the Broad
Institute FIREHOSE website (version 2016_01_28), and tested
Eq. 1 on the following cancer types that have the greatest number
of expression datasets: BRCA, THCA, LIHC, LUSC, LUAD,
PRAD, KIRC. The number of gene expression datasets for these
cancer types is listed in Supplementary Table S1.

For each cancer type, TCGA contains matched data for both
cancer patients and normal controls. We conducted separate
studies on three different gene expression datasets: tumor
samples only, normal control samples only, and a union of
tumor and normal control samples (results are summarized
in Tables 5A–C, respectively). We first conducted regression
analysis on RBP-microRNA pairs, i.e., x1 represents expression
of an RBP, x2 represents expression level of a microRNA
in Eq. 1. For each dataset and for each cancer type, we
enumerated all the Overlapping, Neighboring, and Independent
RBP-microRNA pairs, and conducted regression analysis on
their expression profiles to identify interacting pairs. We used
the R package p.adjust to calculate the p-values adjusted by
Benjamini–Hochberg method (q-value < 0.05). If our hypothesis
is correct, we expect to see more RBP-microRNA pairs that

TABLE 5 | Summary of regression analysis on RBP-microRNA pairs.

Cancer type Comparing
overlapping and

neighboring pairs

Comparing
overlapping and

independent
pairs

Comparing
neighboring and

independent
pairs

(A) Kolmogorov–Smirnov test in tumor samples

BRCA 0.97 0.96 0.62

KIRC 1.88E-19 1.94E-15 0.48

LIHC 7.71E-14 1.68E-15 0.42

LUAD 3.04E-08 3.15E-108 0

LUSC 0.27 8.49E-34 0

PRAD 0.10 8.30E-231 0

THCA 0.92 4.20E-13 8.91E-254

(B) Kolmogorov–Smirnov test in normal samples

BRCA 6.75E-04 7.28E-41 9.80E-253

KIRC 0.90 0.99 1

LIHC 2.73E-13 2.21E-34 3.87E-57

LUAD 7.39E-03 1 0.99

LUSC 1.27E-02 0.86 0.99

PRAD 7.01E-11 3.61E-09 0.32

THCA 1.32E-03 5.33E-27 1.22E-148

(C) Kolmogorov–Smirnov test in pooled tumor and normal samples

BRCA 0.80 0.94 1.00

KIRC 0.24 0.06 1.95E-02

LIHC 9.01E-28 1.43E-61 6.52E-72

LUAD 6.42E-06 4.05E-108 0

LUSC 7.79E-05 6.38E-89 0

PRAD 0.28 4.34E-195 0

THCA 0.22 6.83E-26 1.85E-249

p-value cutoff is chosen as 0.0008 after Bonferroni correction (0.05/63, since 63
tests are simultaneously conducted), significant p-values are shown in bold.

have statistically significant p-value on a3 term; in other words,
more interacting pairs among Overlapping factors, fewer among
Neighboring factors and the fewest among Independent factors.
To test such hypothesis, we used Kolmogorov–Smirnov (K–S)
test to compare between these three groups, i.e., the Overlapping
pairs, the Neighboring pairs and the Independent pairs, to see
which group has collectively lower p-values, i.e., which group has
more pairs of interacting trans factors.

Table 5A lists the analysis results from the tumor samples
of the TCGA dataset. We found that, in most of the tumor
types except for BRCA, collectively, the “Overlapping” pairs
of RBP and microRNA had significantly lower p-values than
“Independent” pairs (Column 3). It is likely that the breast
cancer samples consist of subtypes and larger differences between
tumor samples, which makes it less efficient in the regression
analysis as outlined in Eq. 1. When comparing between
“Neighboring” and “Independent” pairs (Column 4), in four
cancer types (LUAD, LUSC, PRAD, THCA), Neighboring pairs
have collectively lower p-values than Independent pairs, which is
consistent with our expectations. In contrast, Column 2 shows
that the Overlapping RBP-microRNA pairs have collectively lower
p-values than Neighboring pairs only in three cancer types
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(KIRC, LIHC, LUAD). In our model (Figure 1A), both the
Overlapping and Neighboring pairs can interact with each other,
although in different mode. The Overlapping factors directly
compete for the same target sequence in the mRNA transcript,
while the Neighboring factors interact with each other in an
indirect manner. Taken this altogether, the results in Table 5A is
consistent with our hypothesis that Overlapping and Neighboring
pairs of RBP and microRNA can interact with each other on
regulating common gene targets.

Table 5B lists a similar comparison on the normal control
samples from TCGA, while Table 5C lists the results from
the pooled tumor and control samples, on pairs of RBPs and
microRNAs. The results in Table 5C is mostly consistent with the
results in Table 5A, while the results from normal control samples
(Table 5B) reveals fewer interacting RBP-microRNA pairs as
indicated by the modest p-values between Overlapping and
Independent pairs, and between Neighboring and Independent
pairs. It is not clear why the normal control samples are
not as effective as cancer samples in revealing interacting
RBP-microRNA pairs. One potential reason could be the relative
homogeneity in gene expression among the normal control
samples, which reduces the statistical power in the regression
analysis (Eq. 1). We also note that such widespread interactions
between RBPs and microRNAs are observed in some cancer types
but not in others. It could be because the gene expression data
from certain cancer types have limited statistical power, due to
study design, or the homogeneity of the cohort. Regardless, as
shown in Table 5A, we indeed see the definitive evidence of
interacting trans acting pairs in the tumor samples.

Table 5 shows the results of regression between RBPs and
microRNAs, we next conducted regression analysis between
RBP-RBP pairs (Table 6) and between microRNA-microRNA
pairs (Table 7). Consistent with our hypothesis, Table 6
shows that, collectively, there are significantly more regulatory
interactions among Overlapping and Neighboring pairs of RBPs
than Independent pairs (Column 3 and 4); the prevalence of
interactions between Overlapping pairs and Neighboring pairs of
RBPs are statistically indistinguishable (Column 2). Regression
analysis of microRNA pairs from TCGA tumor samples are
shown in Table 7, which shows Overlapping pairs collectively
have more interactions than Neighboring and Independent pairs,
and Neighboring pairs have more prevalent interactions than
Independent pair.

In the following we focus our analysis to the interactions
between RBP-microRNA pairs. We ask whether the
statistically significant RBP-microRNA pairs and significant
RBP-microRNA-mRNA trios that we observe in one cancer type
are also found in other cancer types. If indeed this is the case,
then it would be considered as additional evidence for the validity
of such interactions. Indeed, many of such interacting pairs or
trios are found in more than one cancer type. However, we
need to remove one confounding factor, as many of these RBP-
microRNA pairs are present more frequently than other pairs in
the input data (Eq. 1). We conducted a hypergeometric Fisher’s
exact test and calculated the p-value of these frequently occurring
RBP-microRNA pairs in each cancer types. Supplementary
Table S12 lists the top occurring RBP-microRNA pairs and their

TABLE 6 | Summary of regression analysis on RBP-RBP pairs:
Kolmogorov–Smirnov test in tumor samples.

Cancer type Comparing
overlapping

and
neighboring

pairs

Comparing
overlapping

and
independent

pairs

Comparing
neighboring

and
independent

pairs

BRCA 1 0.06 0

KIRC 1 1 0

LIHC 1 4.71E-151 0

LUAD 0.96 0 0

LUSC 1 0 0

PRAD 1 0 0

THCA 1 1 0

p-value cutoff is chosen as 0.002 after Bonferroni correction (0.05/21, since 213
tests are simultaneously conducted), significant p-values are shown in bold.

TABLE 7 | Summary of regression analysis on microRNA-microRNA pairs:
Kolmogorov–Smirnov test in tumor samples.

Cancer type Comparing
overlapping

and
neighboring

pairs

Comparing
overlapping

and
independent

pairs

Comparing
neighboring

and
independent

pairs

BRCA 1.24E-58 0 0

KIRC 0.99 0.98 0

LIHC 8.77E-37 9.32E-307 0.42

LUAD 3.13E-156 0 0

LUSC 2.30E-33 0 0

PRAD 1 4.19E-83 0

THCA 9.62E-292 0 0

p-value cutoff is chosen as 0.002 after Bonferroni correction (0.05/21, since 213
tests are simultaneously conducted), significant p-values are shown in bold.

p-values (Fisher’s exact test), and Supplementary Table S13
lists the top significant RBP-microRNA-mRNA trios and their
p-values and q-values after Benjamini–Hochberg correction.
The complete list of significant RBP-microRNA pairs and
RBP-microRNA-mRNA trios from each cancer type can be
found in the Supplementary Tables S14, S15 (also see the
Venn diagrams in Figure S3). The detail of RBP-RBP pairs and
RBP-RBP-mRNA trios are in Supplementary Tables S16–S19
(also see the Venn diagram in Figure S4), and the detail of
microRNA-microRNA pairs and microRNA-microRNA-mRNA
trios are in Supplementary Tables S20–S23 (also see the Venn
diagram in Supplementary Figure S5).

DISCUSSION

In this study, we analyzed 171 RBPs for which there are high
quality CLIP-Seq experimental data available. This represents
only a small fraction of the human RBP repertoire (424 known
and predicted RBPs (Ray et al., 2013) or 1,542 manually curated
RBPs (Gerstberger et al., 2014). We also used the predicted
microRNA target sites instead of experimentally validated
microRNA target sites, which is still scarce at the moment.
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Despite such limitations, we think our combined two-prong
analysis on both gene expression and sequence data is still robust
to discover regulatory interactions between these trans regulators.
There are two lines of evidence to support this. Many of the trans
interactions we discovered based on regression analysis were
previously reported in the literature, such as ELAVL1 (HuR) and
miR-19 (Kim et al., 2009; Glorian et al., 2011), F6 and YTHDC1
(Kasowitz et al., 2018). In addition, many of these interactions
between trans factors are discovered in multiple cancer types,
after controlling for false discovery rate.

Many of the identified trans regulators such as HuR have a
large number of targets in the cell, so there is a possibility that
some of these predicted or observed interactions between trans
regulators are indirect effects instead of direct effects manifested
on the same mRNA. The only definitive way to validate these
trans regulatory effects is to quantify the individual regulatory
effect of these trans factors and ascertain whether the combined
regulatory effect is additive or not, similar to the study of epistasis
or genetic interaction between regulatory elements. With the
accumulation of genetic variation and individual gene expression
data from projects such as GTEx, it may be feasible in the near
future to achieve such a goal.

We showed evidence that some of these RBPs and microRNAs
have cooperative or competitive effect in gene regulation; some
of these trans regulators or target genes are involved in cancer
or neurological disorders. A potentially intriguing and useful
application of such trans co-regulation effect is to manipulate
one trans regulator to enhance or attenuate the effect of another
trans regulator. Several intriguing examples had been reported
in the literature, for example knocking down a microRNA to
sensitize cancer cell’s response to drugs that target RBPs (Gabra
and Salmena, 2017). We hope our systematic analysis will provide
some insight on understanding the interaction and mechanism
of trans factors in human diseases and on designing on effective
therapeutic approaches.
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The Supplementary Material for this article can be found online
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515094/full#supplementary-material

FIGURE S1 | Percentage of RBP-RBP pair that have neighboring or overlapping
target sites. Red circles represent the percentage of RBP-RBP pair with
neighboring target sites, blue circles represent the percentage of RBP-RBP pair
with overlapping target sites.

FIGURE S2 | MicroRNA pairs that have overlapping or neighboring target sites.
Color in each cell represents the number of genes on which the two microRNAs
have overlapping (left) or neighboring (right) binding sites. microRNAs are listed in
the same order on both X- and Y-axis.

FIGURE S3 | Intersection of RBP-RBP-mRNA trios in seven types of tumors. (A)
Intersection of overlapping trios among cancer types before filtering by regression
analysis on expression profiles. (B) Intersection of overlapping trios after
regression analysis as outlined in Eq. 1.

FIGURE S4 | Intersection of microRNA-microRNA-mRNA trios in seven types of
tumors. (A) Intersection of overlapping trios among cancer types before filtering by
regression analysis on expression profiles. (B) Intersection of overlapping trios
after regression analysis as outlined in Eq. 1.

FIGURE S5 | Intersection of RBP-microRNA-mRNA trios in seven types of
tumors. (A) Intersection of overlapping trios among cancer types before filtering by
regression analysis on expression profiles. (B) Intersection of overlapping trios
after regression analysis as outlined in Eq. 1.

Some of these data tables are too big to upload, they can be found at the
website: http://sites.utoronto.ca/zhanglab/papers/RBP_miR/.

TABLE S1 | Summary of TCGA data. Number of patients for each cancer type.
Each row represents a type of cancer. Column 3 and 4 represent the number of
miRNA and mRNA after we remove the miRNA and mRNA with more than 30%
missing value. Column 5 and 6 represent the number of normal samples
and tumor samples.

TABLE S2 | Summary of RBP binding data as collected by POSTAR2 database
and filtered after considering structure accessibility.

TABLE S3 | Binding sites of all the RBPs. (Please see website:
http://sites.utoronto.ca/zhanglab/papers/RBP_miR/) Each row represents an RBP.
The first column is the name of the RBP, the next block of five columns represents
the chromosome number, coordinates, strand and the name of the target gene.

TABLE S4 | RBP binding sites on genes. (Please see website:
http://sites.utoronto.ca/zhanglab/papers/RBP_miR/). This table represents
essentially the same information as Supplementary Table S3, but from the
perspective of target genes. Each row represents a target gene. The first column
is the name of the target gene; the next block of five columns represent the
chromosome number, coordinates, name of RBP and the chromosomal strand.

TABLE S5 | The number of RBP regulators per gene. This is the complete version
of Table 2. Each row represents a gene; the rows are sorted in descending order
according to the number of bound RBPs.
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TABLE S6 | Complete list of overlapping RBP binding sites. This is a complete
version of Table 3. Each row represents an RBP-RBP pair, rows are sorted in
descending order according to the number of overlapping binding sites.

TABLE S7 | Binding sites of all the microRNAs sorted by microRNAs. (Please see
website: http://sites.utoronto.ca/zhanglab/papers/RBP_miR/). Each row
represents a microRNA; the chromosomal coordinates of the binding sites and the
name of the gene targeted by the microRNA are listed as well.

TABLE S8 | Binding sites of all the microRNAs sorted by target genes. (Please see
website: http://sites.utoronto.ca/zhanglab/papers/RBP_miR/). Each row
represents a target gene; the chromosomal coordinates of the binding sites and
the name of the microRNA regulator are listed as well.

TABLE S9 | List of microRNA-microRNA pairs that have the highest number of
overlapping and neighboring binding sites. The first two columns are the names of
the microRNAs, the 3rd column is the number of overlapping binding sites
between these two microRNAs, the 4th column is the number of mRNAs on
which these two microRNAs have overlapping binding sites.

TABLE S10 | Complete list of overlapping microRNA-microRNA binding sites. This
is a complete version of Supplementary Table S9. Each row represents a
microRNA-microRNA pair, the rows are sorted in descending order according to
the number of overlapping binding sites.

TABLE S11 | Complete list of overlapping RBP-microRNA binding sites. This is a
complete version of Table 4. Each row represents an RBP-microRNA pair, and
these rows are sorted in descending order according to the number of
overlapping binding sites.

TABLE S12 | Top 100 RBP-microRNA pairs from regression analysis in 7 cancers.
We use Fisher’s exact test to calculate the p-value of frequently occurring
RBP-microRNA pairs in each cancer. Each row represents an RBP-microRNA pair.
We sort the rows in ascending order according to p-value and select top 100
RBP-microRNA pairs for each cancer. Column 1 and 2 represent microRNA and
RBP. Columns 3–9, respectively represent the p-value calculated by Fisher’s exact
test in BRCA, KIRC, LIHC, LUAD, LUSC, PRAD, and THCA.

TABLE S13 | Top 100 RBP-microRNA-mRNA trios form regression analysis in
seven cancers. Top RBP-microRNA-mRNA trios. We used regression analysis to
calculate the significant p-value to RBP-microRNA-mRNA trios and used
Benjamini–Hochberg method to adjust the p-value to get the q-value. Each row
represents an RBP-microRNA-mRNA trio. We sort the rows in ascending order
according to q-value and select top 100 RBP-microRNA-mRNA trios for each
cancer. Column 1, 2, and 3 represent microRNA, RBP, and mRNA. Column 4, 5,
6, 7, 8, 9, and 10, respectively represent p-value/q-value calculated in BRCA,
KIRC, LIHC, LUAD, LUSC, PRAD, and THCA. Column 11 represents the number
of overlapping binding sites in RBP-microRNA-mRNA trios. Column 12 represents
the ratio between overlapping binding sites and the sum of the number of
microRNA target sites and RBP binding sites.

TABLE S14 | Complete list of significant RBP-microRNA pairs in seven cancers.
We used q-value less than 0.05 to screen the RBP-microRNA pairs for each
cancer and count the number of their occurrences in multiple cancers. Column 1
and 2 represent microRNA and RBP. Column 3, 4, 5, 6, 7, 8, and 9, respectively
represent the p-value calculated by Fisher’s exact test in BRCA, KIRC, LIHC,

LUAD, LUSC, PRAD, and THCA. Column 10 represents the number of the pair
occurrences in multiple cancers. We sorted these rows in descending order
according to column 10.

TABLE S15 | Complete list of significant RBP-microRNA-mRNA trios in seven
cancers. (Please see website:
http://sites.utoronto.ca/zhanglab/papers/RBP_miR/). We used q-value less than
0.05 to screen the RBP-microRNA-mRNA trios for each cancer and count the
number of their occurrences in multiple cancers. Column 1, 2 and 3 represent
microRNA, RBP, and mRNA. Column 4, 5, 6, 7, 8, 9, and 10, respectively
represent the p-value/q-value calculated in BRCA, KIRC, LIHC, LUAD, LUSC,
PRAD, and THCA. Column 11 represents the number of the trio occurrences in
multiple cancers. We sorted these rows in descending order
according to column 11.

TABLES S16–S19 are for RBP-RBP pairs and RBP-RBP-mRNA trios.

TABLE S16 | Top 100 significant RBP-RBP pairs in seven cancers.

TABLE S17 | Top 100 significant RBP-RBP-mRNA trios in seven cancers.

TABLE S18 | Complete list of significant RBP-RBP pairs in seven cancers.

TABLE S19 | Complete list of significant RBP-RBP-mRNA trios in seven cancers.
(Please see website: http://sites.utoronto.ca/zhanglab/papers/RBP_miR/).

TABLES S20–S23 are for microRNA-microRNA pairs and
microRNA-microRNA-mRNA trios.

TABLE S20 | Top 100 significant microRNA-microRNA pairs.

TABLE S21 | Top significant microRNA-microRNA-mRNA trios.

TABLE S22 | Complete list of significant microRNA-microRNA pairs.

TABLE S23 | Complete list of significant microRNA-microRNA-mRNA trios.

TABLE S24 | Summary of regression results. (A) The summary of regression
results on RBP-RBP-mRNA. Each row represents a type of cancer. Column 2, 3,
and 4, respectively represent the number of RBP,RBP, mRNA which show in our
processed TCGA tumor samples. Column 5 represents the number of
RBP-RBP-mRNA trios with overlapping binding sites. Column 6 represents the
number of RBP-RBP-mRNA trios with overlapping binding sites screened by
regression analysis. (B) The summary of regression results on
microRNA-microRNA-mRNA. Each row represents a type of cancer. Column 2, 3,
and 4, respectively represent the number of microRNA, microRNA, mRNA which
show in our processed TCGA tumor samples. Column 5 represents the number of
microRNA-microRNA-mRNA trios with overlapping binding sites. Column 6
represents the number of microRNA-microRNA-mRNA trios with overlapping
binding sites screened by regression analysis. (C) The summary of regression
results on RBP-microRNA-mRNA. Each row represents a type of cancer. Column
2, 3, and 4, respectively represent the number of RBP, microRNA, mRNA which
show in our processed TCGA tumor samples. Column 5 represents the number of
RBP-microRNA-mRNA trios with overlapping binding sites. Column 6 represents
the number of RBP-microRNA-mRNA trios with overlapping binding sites
screened by regression analysis.
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