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Accumulation of evidence has indicated a close relationship between alternative
splicing (AS) and gastric cancer (GC), whereas systematic analyses of the differentially
expressed AS events (DEAS) between GC and normal tissues are lacking. RNA-Seq
data and the corresponding clinical information were downloaded from TCGA GC
cohort. The percent spliced-in (PSI) value calculated in the GC tissues and normal
tissues was employed to quantify the DEAS. Further, survival-associated DEAS and
DEAS signatures were identified by univariate and multivariate cox regression analyses.
To evaluate the association between DEAS and patients’ clinical features, Kaplan-
Meier analysis, receiver operator characteristic (ROC) curve, Cox proportional regression
and nomograms incorporating the DEAS signatures were performed. DEAS and their
splicing networks were finally analyzed by bioinformatics methods. In addition, we use
the method of random grouping to divide the samples into the training group and the
test group. The final results of the two groups are consistent. After strict filtering, a
total of 44,935 AS events were identified, among which 11,141 DEAS were preliminarily
screened from 5032 genes. A total of 454 DEAS was associated with OS, and 872
DEAS were associated with DFS. The final prognostic signatures were constructed from
the survival-associated DEAS with an area under the receiver operating characteristic
(ROC) curve (AUC) greater than 0.6. Only ES in ABI1 was simultaneously associated
with OS and DFS. Finally, we identified the splicing correlation network between the
prognostic splicing factors (SF) and DEAS in GC. Our study provided a systematic
portrait of survival-associated DEAS in GC and uncovered splicing networks that are
valuable in deciphering the underlying mechanisms of AS in GC.
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INTRODUCTION

Gastric cancer (GC) is the fifth diagnosed cancer and the third
leading cause of cancer-related death worldwide (Bray et al.,
2018). Despite advances in screening, diagnosis, and curative
resection, the clinical outcomes for individual patients with GC
remain unsatisfactory. More seriously, more than 25% of GC
patients with resectable tumors will develop recurrence (Wang
A. et al., 2016). Thus, further comprehensive understanding of
the relationship between the biological mechanisms involved
in GC progression and the corresponding clinicopathological
characteristics is a vital step to identify novel biomarkers, develop
targeted therapy and improve prognosis of GC patients.

Accumulating evidence has revealed that both genetic
alterations (Zhang et al., 2018) and epigenetic alterations (Fu,
2015) play key regulatory roles in GC pathogenesis. For example,
the molecular subtypes of GC were classified by Kim Y.
et al. (2017) through the comprehensive analysis of genetic
alterations in Korean GC patients, which provided a critical
starting point for the design of more appropriate clinical trials.
Additionally, studies involving epigenetic alterations, including
methylation, acetylation, histone modifications, etc., have also
been widely performed (Patel et al., 2017). The results obtained
from the studies mentioned above not only identified GC-
related alterations in a number of oncogenes, such as KRAS (Till
et al., 2017), c-MET (Bradley et al., 2017), and c-Myc (Khanna
et al., 2009), but also revealed the complicated relationship that
govern GC malignant progression. These studies, although with
promising results, often showed diametrically opposite results.
For example, (Clohessy and Pandolfi, 2009) identified p63 as a
potent suppressor of metastasis, while (Malaguarnera et al., 2005)
showed that p63 may promote thyroid cancer progression. The
reason for these kinds of results is that there are many transcripts
and variants of these genes (Chen et al., 2018).

Human genome contains over 19,000 protein-coding genes,
with over 82,000 transcripts indexed in the current version of
GENCODE 27 (Frankish et al., 2019). Alternative splicing (AS),
occurring in over 90% of human protein-coding genes, is one of
the most extensively applied mechanisms that expands protein
diversity in light of the limited number of genes (Yang et al.,
2016). During the process of AS, a single RNA precursor can
produce structurally and functionally distinct mRNA and protein
variants via AS (Revil et al., 2006). Indeed, AS has a profound
effect on the biological characteristics of the final protein and
accounts for proteome diversity and cellular complexity (Mollet
et al., 2010). Although (Shi et al., 2018) and (Lin et al., 2018)
conducted transcriptome-wide analysis of the alternative mRNA
splicing signature in stomach adenocarcinoma (STAD) tissues
from The Cancer Genome Atlas (TCGA), both articles only
focused on single AS events. Additionally, systematic analyses
of differentially expressed AS events (DEAS) between GC and
normal tissues are lacking. Although only protein-coding genes
were studied, DEAS could produce differentially expressed
transcripts and protein variants.

To further evaluate the potential of DEAS in the prediction of
GC prognosis and the regulation of the AS prognostic network
by splicing factors (SFs), we systematically analyzed SFs and

AS events in GC tissues and normal tissues by analyzing the
data provided by the TCGA database. Our results reveal that
several GC-related prognostic markers are particularly important
in GC, and they may provide clues for therapeutic targets for
further validation.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
RNA-Seq data and the corresponding clinical information of the
GC patients were downloaded from the TCGA data portal1. This
study meets the publication guidelines provided by TCGA (Wang
Z. et al., 2016). The AS data for each GC patient were analyzed
by SpliceSeq. The percent spliced-in (PSI) value calculated by
SpliceSeq is used to indicate the reliability of each AS event, and
the missing PSI values were imputed using missForest (version
1.4). In this study, (1) a AS event is considered as reliable if
more than 75% samples have PSI values. (2) histological diagnosis
and complete clinical features. (3) patients with OS less than
30 days and stage IV were excluded. Finally, 304 GC patients
were included in analysis cohort. To increase the credibility of
bioinformatics analysis, we randomly divide patients into two
groups according to a 6:4 ratio (training group vs. test group).
The training group was used to perform the relevant analysis, and
the test group was applied to verify the conclusion.

Identification of Differentially Expressed
AS Events and Enrichment Analysis
Differentially expressed AS events (DEAS) and Differentially
expressed gene (DEG) were analyzed through the limma
package (version 3.42.0), and the batch effect was removed by
a generalized linear model (Supplementary Figure S1). Adj.
p.value < 0.05 was used as the threshold to prevent skipping
significant changes. The interactive sets between the seven types
of reliable DEAS events (Conway et al., 2017) were illustrated
by the distinguishable visualization Upset plot (UpSetR, version
1.3.3) and the differences among DEAS and DEG were illustrated
using Venn diagrams.

Subsequently, the parent genes of these significantly DEAS
were used as the background in enrichment analysis using
Metascape (Zhou et al., 2019). Adj. p.value < 0.05 was
statistically significant.

Survival Analysis
According to the survival information of two groups, univariate
Cox regression and lasso regression (Supplementary Figure S2)
were used to determine DEAS, which was significant to overall
survival (OS) and disease-free survival (DFS). Further, to
establish a rigorous prognostic model, signature DEAS with an
area under the receiver operating characteristic (ROC) curve
(AUC) greater than 0.6 was selected as candidates for multivariate
Cox regression. Then, the risk score for each sample was
calculated based on the PSI values of the prognostic DEAS
signatures and the corresponding coefficients. GC samples were

1https://portal.gdc.cancer.gov/
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subsequently divided into two subgroups by the median risk
score: high risk group and low risk group. Kaplan-Meier analysis
was used to test the model’s ability to distinguish patient’s
survival. All the reported P-values (if not clearly stated) were
less than 0.05. All the analyses were performed using RStudio
(version 3.5.2).

Splicing Factor (SF) Genes and the
Potential Regulatory Network
Splicing factor genes were extracted from the SpliceAid 22

database (Giulietti et al., 2013). Based on the RNA-Seq data of
tumor and normal tissues, the differentially expressed SF genes
(with adj. p.value < 0.05) were identified. Then, the correlation
between SF genes and signature DEAS events in the prognostic
model was analyzed by Hmisc (version 4.3-0). To explore the
direct interaction between SF and DEAS, we predicted the
binding sites through catRAPID (Livi et al., 2016).

Development and Apparent Performance
of a DEAS-Clinicopathologic Nomogram
We combined multivariable Cox regression analysis and all
informative clinicopathologic variables described above to
formulate a nomogram for the better prediction of the
individualized survival rates of GC patients (Zhang and Kattan,
2017). Backward stepwise variable selection with the Akaike
information criterion (AIC) was performed to determine
the variables included in the final nomogram (Rousson and
Zumbrunn, 2011; Balachandran et al., 2015). Then, the predictive
accuracy of the final nomogram was evaluated by Calibration
curves. To further identified predictive efficiencies of the model,
the Uno’s inverse-probability of censoring weighting estimation
of the dynamic time-dependent ROC area under the curve (AUC)
values (time span from 0 to 3 years) was calculated with time ROC
package (version 0.3) (Blanche et al., 2013).

RESULTS

Overview of AS Event Profiling in GC
The design of this study design is illustrated, as shown in
Figure 1. Integrated AS event profiling was curated using AS
events data and clinical information obtained from 304 GC
patients. The included population comprised 199 male (65.5%)
and 105 female (34.5%) patients. Among these patients, 88
(28.9%) patients developed recurrence and 105 (34.5%) died.
The clinical information of GC patients is summarized in
Supplementary Table S1. In SpliceSeq (Ryan et al., 2016), the
AS events are divided into seven types based on the splicing
patterns, as illustrated in Figure 2A. By using SpliceSeq on
the RNA-Seq data of GC patients, we found a total of 44,935
AS events in 10,256 genes, including 17,274 exon skip (ES)
in 2,273 genes, 198 mutually exclusive exons (ME) in 31
genes, 2,738 retained intron (RI) in 658 genes, 9,573 alternate
promoter (AP) in 3,844 genes, 8,198 alternate terminator (AT)

2www.introni.it/spliceaid.html

in 2,468 genes, 3,241 alternate donor site (AD) in 401 genes,
and 3,713 alternate acceptor site (AA) in 581 genes, as shown
in Figure 2B. The detail of the detected AS events is listed in
Supplementary Table S2. Consistent with the previous studies,
according to the detected AS events of GC patients, we can also
find each gene contains almost four types of AS events, which
indicated the gene expression diversity through the different
combinations of splicing types. Similarly, the proportion of ES
in the detected AS events (nearly 40%) is still the highest among
other types of AS events.

Compared with the detected different AS events between
primary GC and normal tissues, we identified 11,141 DEAS,
which were corresponding to 5,032 genes (Supplementary
Table S3), and the GC-specific splice genes ranked according
to upregulation and downregulation were labeled in the volcano
plots (Figure 2C). Moreover, we used unsupervised hierarchical
clustering based on these DEAS to identify that these DEAS
were credible (Figure 2D). To further visualize the intersecting
sets of each AS type, an Upset plot was generated. As shown
in Figure 2E, 27.9% (1405/5032) of the genes contain two or
more DEAS and one gene might have up to five types of DEAS.
Besides, we also investigate DEAS that occurred in the differently
expressed genes (DEG), as shown in Figure 2F, and the details
are provided in Supplementary Table S4. The Venn diagrams
suggested that when a gene is up-regulated or down-regulated,
it’s AS events may change in the same direction or in the opposite
direction, which provides an important supplement to clarify the
functional changes caused by gene changes.

Enrichment and Interaction Analysis of
DEAS
Accumulating evidence has suggested that AS could directly
affect protein expression and function. Therefore, we further
examined the potential influence of DEAS by analyzing
their corresponding proteins. Figure 3A shows that specific
GO categories are enriched in these genes with DEAS,
including regulation of cell adhesion, regulation of cytoskeleton
organization, response to oxidative stress, etc. Additionally,
some pathways were enriched in these genes with DEAS,
including pathways in cell-cell communication, mTORC1-
mediated signaling, and Autophagy (Figure 3B). Detailed
information on GO category and KEGG pathway enrichment
are provided in Supplementary Table S5. Both the GO category
enrichment results and KEGG pathway enrichment results
indicated that the parent genes of DEAS have very close
relationship to GC progression.

The Prognostic Value of DEAS in GC
Growing evidence has suggested that cancer-specific splice
variants could serve as prognostic biomarkers and therapeutic
targets (Robinson et al., 2019). To investigate the relationship
between DEAS and prognosis of GC, the univariate survival
tests were performed on the clinicopathological features and
outcomes in the TCGA GC cohort. As showed in Supplementary
Table S6, it can be observe that age (HR = 1.94, 95% CI:
1.05–3.58; p = 0.034), lymph node metastasis (HR = 1.84, 95%
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FIGURE 1 | Flowchart of the present study.
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FIGURE 2 | Overview of AS events profiling in GC. (A) Illustration of the splicing patterns of seven types of AS events, including alternate acceptor site (AA), alternate
donor site (AD), alternate promoter (AP), alternate terminator (AT), exon skip (ES), mutually exclusive exons (ME) and retained intron (RI). (B) Seven types of AS
events and corresponding genes from the patients in training group are depicted according to a classified P-value of 0.05. (C) The difference in AS events between
GC tissues and normal tissues. The DEAS identified in GC was visualized in a Volcano plot. The red and blue points in the plot represent DEAS with statistical
significance (adj P value < 0.05). (D) Heat map of the DEAS. The horizontal axis shows clustering information of samples divided into two major clusters: GC tissue
and normal tissue. The left longitudinal axis showed the DEAS clustering information. The gradual change of color from green to red represents the alteration in
DEAS expression from low to high. (E) UpSet plot of the interactions between DEAS events and their parent genes. (F) Venn diagram demonstrated the intersection
set of DEAS and DEG.
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FIGURE 3 | Gene Ontology (GO) and pathway analysis. (A) GO annotation of DEAS covering kinase binding, regulation of hydrolase, and regulation of cell adhesion,
etc. (B) KEGG pathway enrichment analysis of DEAS with enrichment scores.

CI: 1.01–3.44; p = 0.046), and TNM stage (HR = 1.47, 95%
CI:1.02–2.13; p = 0.039) were significantly associated with OS.
Meanwhile, lymph node metastasis (HR = 1.31, 95% CI: 1.03–
1.66; p = 0.028), and sex (HR = 0.42, 95% CI: 0.22–0.82;
p = 0.011) were significantly associated with DFS. These results
indicate that the survival data from the TCGA GC cohort
were informative and appropriate for use in further survival
analysis. Further, the univariate survival analyses were conducted
for OS and DFS. A total of 454 DEAS was significantly
associated with OS, and 872 DEAS was significantly associated

with DFS. Among these prognosis-related DEAS, there are 61
DEAS that are simultaneously associated with OS and DFS
(Supplementary Figure S3). Then the multivariate analysis
was performed to identify independent prognostic indicators in
GC. As shown in Figure 4A, there were 12 DEAS recognized
as independent prognostic indicators for OS and 22 DEAS
recognized as independent prognostic indicators for DFS. Among
these prognosis-related DEAS, we unexpectedly found that ES
in ABI1 was an independent prognostic indicator for both OS
and DFS in the GC cohort. Furthermore, to intuitively show
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the difference in the ES events in ABI1 between GC tissues
and normal tissues, we generated scatter plots (Figure 4B).
As presented in Figures 4C,D, the DEAS signatures were
constructed with an ES event in ABI1. The Kaplan–Meier survival
analysis results showed that the ES event in ABI1 was an
independent prognostic indicator for both OS (p = 0.001) and
DFS (p = 0.00026) in the GC cohort. Figure 4E depicts ES events
in ABI1 in a splice graph.

Then, a prognostic model consisting of signature DEAS
were identified from the significant DEAS by multivariate
Cox regression. Then, the risk score for each sample was
calculated based on the PSI values of the prognostic DEAS
signatures and the corresponding coefficients. The GC patients
were classified into high- and low-risk subgroups based on the
median value of risk scores. Figures 5A,B demonstrate that
the model could distinguish the survival of patients in the
two groups. A Kaplan–Meier survival analysis was employed to
assess the relationship between the signatures and prognosis
(Figures 5C,D).

DEAS Correlation Network of Splicing
Factors
As we known, AS events are mainly regulated by splicing
factors (SFs). Therefore, we further aimed to find a few key
SFs that regulated these DEAS expressions in GC. To resolve
this question, we first identified 71 SFs validated in previous
study (Supplementary Table S7). Then, the expression of these
SFs was determined from the RNA sequencing data in the
TCGA GC cohort, and 29 out of the 71 SFs were identified as
having differential expression in STAD. The detail of the detected
differently expressed splicing factors is listed in Supplementary
Table S8. Next, correlation analyses of the expression levels
of these 36 SFs and the PSI values of each DEAS were
performed in the GC cohort, and a splicing regulatory network
was built using the significant correlations (|R|>0.1; t-test,
p < 0.05; Supplementary Table S9). The results imply that 36
SFs are significantly associated with 12 OS-related DEAS and
22 DFS-related DEAS prognostic signatures (r > 0.1, P < 0.05,
Figures 6A,B).

Since ES_ABI1 was related to both the patient’s OS and
DFS, we had a keen interest in it. Further, we explored the
relationship between ES_ABI1 and SF and found that TIA1 had
a direct interaction site with ES_ABI1, and their expression was
negatively correlated (Figure 6C). This discovery provides an
important foundation for our subsequent experiments.

Development and Apparent Performance
of the DEAS-Clinicopathologic
Nomogram
Supplementary Table S6 showed the results of the univariate
Cox analysis of clinicopathologic characteristics. According to
the results, age, lymph node metastasis, TNM stage and OS
model were independent prognostic factors for OS in the STAD
cohort. Similarly, sex, lymph node metastasis and DFS models
were independent prognostic factors for DFS. By applying the
backward stepwise selection based on optimizing AIC, a total

of four variables including age, lymph node metastasis, TNM
stage and OS model were finally incorporated in the subsequent
OS nomogram construction (Figure 7A), and a total of three
variables including sex, lymph node metastasis and DFS model
were finally incorporated in the subsequent DFS nomogram
construction (Figure 7F). During OS and DFS nomogram, the
probability of survival at 1, 2, or 3 years were subject to the
calibration cure and indicated a good agreement between the
prediction and actual observation (Figures 7B,G). The C-index
for OS prediction was 0.832 (95% CI, 0.809–0.855), and the
C-index for the DFS prediction was 0.898 (95% CI, 0.879–0.917).

Furthermore, to compare the advantages of clinical indicators
and nomograms in evaluating the survival of GC patients, we
calculated the ROC curves of clinical features, AS prognostic
model and the nomogram in the training group (Figures 7C–E
for OS and 7H-J for DFS) and test group (Supplementary
Figures S4C,D). The results demonstrated that the AUCs of
nomogram in either the training group (AUC > 0.85 from
1 to 3 years) or the test group (AUC > 0.60 from 1 to
3 years) were all obviously greater than those of clinical indicator,
which illustrates the robust and valuable predictive efficiency of
the nomogram model.

DISCUSSION

Alternative splicing is the main mechanism that accounts for
proteome diversity and cell complexity. Normal tissues can
precisely control AS event stability, maintain the usually low
spontaneous mutation rate and exert the normal physiological
function. However, aberrant AS in cancer tissues is a critical
factor in initiation or maintenance of cancer. Preliminary
investigations revealed that the potential significance of AS
perturbation was involved in the initiation and progression of
cancer by generating different mRNA and protein isoforms with
diverse functional properties (He et al., 2004; Kameyama et al.,
2012). Similarly, several specific AS events in GC have been
identified (Lin et al., 2018); we identified 44,935 AS events in
GC through the analysis of TCGA data, and ES events were
the most frequent AS events. We also found that a single
gene might have an average of almost four types of AS events.
For example, CD44, an important adhesion molecule serving
a critical role in cancer development, has been demonstrated
to be associated with risk for several types of cancer via its
different splicing modes and contains 3 types splicing modes in
GC (AA, AT, and ES). In addition, we observed 47 AS events
in CD44 in GC. This result raises the question of whether all
these splicing events could play a role in the development of
GC. The answer is obvious. Thus, we need a better method to
identify significant AS events in GC. Directly comparing gene
expression between cancer tissues and normal tissues has been
considered an effective approach to screen hub genes involved
in the cancer biological processes. Therefore, it is more reliable
to identify GC-related AS genes via screening differentially
expressed alternative splicing events in GC. Finally, 11,141 DEAS
were identified in our study. Interestingly, we found only five
DEAS (DYNLL1, SMUG1, PLAGL1, DYNLL1, and SMUG1),
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FIGURE 4 | The prognostic value of DEAS in GC. (A) DEAS that were simultaneously associated with OS and DFS. Univariate and multivariate analysis of DEAS on
OS and DFS. Unadjusted HRs (boxes) and 95% confidence intervals (horizontal lines) limited to DEAS with P < 0.05. Box size is inversely proportional to the width of
the confidence interval. (B) The different PSI values of the ES event in ABI1 in the normal tissues and GC tissues. (C,D) Prognostic signatures based on ES events in
ABI1 in GC for both OS and DFS. Patients were divided into high- and low-risk groups according to prognostic signatures. The figure contains three parts: [1]
survival differences estimated by Kaplan-Meier survival curve; [2] number of patients in different groups; [3] number censored at different times; (E) Splice graph of
ES events in ABI1. Exons are drawn to scale, and the connecting arcs represent splice paths.
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FIGURE 5 | Determination and analysis of the final prognostic models. (A) OS-related prognostic model. (B) DFS-related prognostic model. High- and low-risk
groups were divided based on the median value of risk score. The upper plot illustrated assignment of patients’ survival status and survival times, the middle plot
showed the risk score curve, and the bottom heatmap represented splicing distribution of the AS in compound prognostic models. Color transition from blue to red
indicates the increasing PSI value of corresponding AS event from low to high. (C) KM plot of OS-related prognostic model. (D) KM plot of DFS-related prognostic
model. The figure contains three parts: [1] survival differences estimated by Kaplan-Meier survival curve; [2] number of patients in different groups; and [3] number
censored at different times.

which is consistent with the results reported by Shi et al. (2018),
who also conducted transcriptome-wide analysis of alternative
mRNA splicing signatures in GC (Supplementary Table S10).
Therefore, screening DEAS in GC is a different method compared
with traditional different expression screening. Consistent with
this result, our results showed that only 2636 genes had DEAS
simultaneously occurring in DEG.

We then evaluated the potential functions and pathways
of the DEAS-associated genes by performing the enrichment
analysis. The pathways involving regulation of cell adhesion,

which plays a crucial role in tumor progression, invasion and
metastasis (Vitte et al., 2005). Furthermore, we also discovered
that DEAS-associated genes were positively associated with cell-
cell communication, the canonical Wnt signaling pathway, the
mTORC1-mediated signaling pathway and autophagy. Notably,
immune-related pathways may be involved in GC tumorigenesis.

To further evaluate whether specific DEAS could be used as
indicators of GC prognosis, we built prognostic models based on
individual AS patterns. Among these DEAS, there are 61 DEAS
that are simultaneously associated with OS and DFS according
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FIGURE 6 | Correlation analysis between splicing factors and DEAS prognostic predictors. (A) the correlation between OS-related DEAS and splicing factors.
(B) The correlation between DFS-related DEAS and splicing factors. The weight of the correlation coefficient was represented by the size and color of the circle.
(C) The correlation between TIA1 and ES_ABI1. The left graph shows the correlation between the TIA1 and ES_ABI1. The right figure shows the interaction score
and site prediction.
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FIGURE 7 | DEAS associated clinicopathologic nomogram for prediction of survival probability in GC patients. (A) Development of DEAS associated
clinicopathologic nomogram for predicting 1-, 2-, and 3-year OS for GC patients, with age, lymph node metastasis, TNM stage and OS model. (B) The calibration
curves of 1-, 2-, and 3-year OS nomogram prediction in the GC cohort. The y-axis showed the observed OS, and the red, blue and green line indicated the
respective performance of the nomogram with 1-, 2-, and 3-year outcomes in the GC cohort. (C–E) ROC curves with calculated AUCs of prognostic signatures built
by clinical features, AS prognostic model and the nomogram for risk prediction from 1 to 3 years. (F) Development of DEAS associated clinicopathologic nomogram
for predicting 1-, 2-, and 3-year DFS for GC patients, with sex, lymph node metastasis, and DFS model. (G) The calibration curves of 1-, 2-, and 3-year DFS
nomogram prediction in the GC cohort. The y-axis showed the observed OS, and the red, blue and green line indicated the respective performance of the
nomogram with 1-, 2-, and 3-year outcomes in the GC cohort. (H–J) ROC curves with calculated AUCs of prognostic signatures built by clinical features, AS
prognostic model and the nomogram for risk prediction from 1 to 3 years.

to the univariate analysis. For instance, CAMKK2, overexpressed
in 94% (92 of 98) of gastric cancer cases (Subbannayya
et al., 2015), contains two variants that differentially modulate
neuronal differentiation (Cao et al., 2011). During our study,
ES events of CAMKK2 were simultaneously associated with OS
(HR = 2.05, 95% CI: 1.23–3.42) and DFS (HR = 1.93, 95%
CI: 1.11–3.37).

Interestingly, only ES events in ABI1 were simultaneously
associated with OS and DFS according to the univariate survival
analyses and multivariate analysis, respectively. ABI1 is a key
molecule that coordinates actin cytoskeleton reorganization and
growth signaling, which explain the simultaneous dysregulation
of PI-3 kinase and actin cytoskeleton in cancer (Kotula,
2012). Cui et al. (2010) found that down-regulation of ABI1
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expression plays an important role in tumor progression
in gastric carcinoma, and it may be a potential diagnostic
biomarker and a promising target for medical treatment. Besides,
(Nath et al., 2019) found that ABI1 could suppress EMT of
tumor through inhibiting downstream of non-canonical WNT
signaling (FYN-STAT3 pathway) and the loss of ABI1 would
drive the tumorigenesis of prostate tumors. These studies were
consistent with our conclusions. ES_ABI1 was downregulated
and significantly related to the patient’s prognosis in our research.
In addition, we innovatively found the splicing factor TIA1
which could directly interact with ABI1. This discovery was
a supplement to the mechanism and provided a direction for
further research.

To predict survival probability, we combined analysis
the DEAS signatures and clinical parameters in an inclusive
model. Indeed, prognostic nomograms integrated with age, sex,
lymph node metastasis and TNM stage were recommended
for evaluating individualized survival risk for OS and DFS
prediction. Besides, our results also showed a clinical usefulness
nomogram in predicting long-term survival probability,
especially in 2 and 3 years.

Currently, AS has been considered to be generally regulated
by SFs. Therefore, another notable finding of this study was
the distinguished splicing correlation network between the
expression of SFs and DEAS in GC patients. Correlation
analyses between the differential expression levels of SFs and
the PSI values of each DEAS were performed in the GC
samples, and the results indicated that SFs influence biological
process by regulating the AS of many downstream target
genes during GC relapse. For example, ES_ABI1 is significantly
correlated with the splicing factors NOVA1, TIA1, ELAVL1,
KHDRBS1, PTBP2, ESRP2, and HNRNPA1. Among these
splicing factors, TIA1 (Yang et al., 2018) and NOVA1 (Kim
E. K. et al., 2017) have been proven to promote gastric
cancer development via regulating AS. In addition, ELAVL1
(Kim E. K. et al., 2017) and PTBP2 (Cheung et al., 2009)
also participate in cancer progression via AS function. The
findings of this study shed light on the roles and significance
of DEAS in the splicing machinery of GC and can be used
to guide the targeting of cancer-specific splicing isoforms as
a cancer therapy.

Although our model performs well in GC prognosis
prediction, several limitations still need to be improved. First,
we need to find other independent cohort of GC patients to
prove that the prognostic models proposed here are reproducible.
Second, we did not use any number of GC samples to validate the
DEAS, so additional studies with larger sample sizes are needed.

In conclusion, to the best of our knowledge, this is the first
study to comprehensively evaluate the predictors of long-term
survival GC outcomes through molecular analysis of DEAS and

to construct an interaction network of DEAS and regulatory
SFs. Although the prognostic implications of these potential
therapeutic targets for GC still need to be validated by further
research, our study still showed that DEAS could serve as
diagnostic, predictive and prognostic biomarkers of GC.
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