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Mitochondrial genomes (mitogenomes) are important for understanding molecular
evolution and phylogenetic relationships. The complete mitogenome of Perisesarma
bidens was determined, which is 15,641 bp in length. The A + T content of P. bidens
mitogenome was 74.81%. The AT skew was slightly negative (−0.021). The 22 tRNAs
ranged from 65 to 73 bp and were highly A + T biased. All tRNA genes had
typical cloverleaf structures, except for the trnS1 gene, which lacked a dihydrouridine
(DHU) arm. The gene order within the P. bidens mitogenome was identical to the
pancrustacean ground pattern, except for the translocation of the trnH. Additionally, the
gene order of trnI-trnQ-trnM in pancrustacean ground pattern became trnQ-trnI-trnM in
P. bidens. Phylogenetic analyses supported the inclusion of P. bidens in Sesarmidae
and the promotion of Sesarminae to Sesarmidae. The results will help us to better
understand the status and evolutionary history of Grapsoidea crabs.

Keywords: mitochondrial genomes, phylogeny, gene order, crustacean, Perisesarma bidens

INTRODUCTION

Decapoda is the most diverse, species-rich group of crustaceans, containing many well-known
animals, such as crayfish, lobsters, shrimps, hermit crabs, and “true” crabs (Shen et al., 2013; Basso
et al., 2017). The true crabs belong to Brachyura, which is a diverse, economically important group,
with about 7200 described species (De Grave et al., 2009; Ahyong et al., 2011). Brachyura is highly
adaptable and can live on land and in both marine and fresh water. Therefore, crabs have become

Abbreviations: A, adenine; Atp6 and Atp8, genes for the ATPase subunits 6 and 8; BI, Bayesian inference; BP, Base
pair; C, cytosine; Cox1-cox3, genes for cytochrome C oxidase subunits I–III; G, guanine; l-rRNA (large), rRNA subunit;
Mitogenomes, Mitochondrial genomes; ML, maximum likelihood; mtDNA, mitochondrial DNA; Nad1–nad6 and nad4L,
genes for NADH dehydrogenase subunits 1–6 and 4L; PCGs, protein-coding genes; rRNA, ribosomal RNA genes subunit;
s-rRNA, (small); T, thymine; tRNAx, transfer RNA, where X is replaced by three letters amino acid code of the corresponding
amino acid.
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important groups for the study of evolution (Castro et al., 2015).
Some Brachyura are edible and medicinal and have economic
importance (Carpenter and Niem, 1998).

Most Brachyura are grouped into the Podotremata,
Heterotremata, and Thoracotremata, with the latter two referred
to as the Eubrachyura. However, the phylogenetic relationships
within Eubrachyura remain controversial, particularly the
relationships of the Sesarmidae and Varunidae, and between
these two and Grapsoidea (Schubart et al., 2000, 2002; Kitaura
et al., 2002). The traditional classification of Grapsidae contains
four subfamilies: Grapsinae, Plagusiinae, Sesarminae, and
Varuninae (Schubart et al., 2000). Traditional methods place
the following in the Sesarminae: Perisesarma bidens, Sesarmops
sinensis, Clistocoeloma sinensis, Helice tientsinensis, Helice
latimera, Helice wuana, and Metaplax longipes. Of these,
P. bidens and S. sinensis should be Sesarmops crabs; C. sinensis
should be a Clistocoeloma crab; H. tientsinensis, H. latimera,
and H. wuana should be Helice crabs and M. longipes should
be a Metaplax crab (Schubart et al., 2000). However, some
scholars have suggested that Grapsidae should be promoted
to Grapsoidea, promoting the four subfamilies to families,
i.e., Grapsidae, Varunidae, Sesarmidae and Plagusiidae. Other
studies have advised that Sesarmops and Clistocoeloma crabs,
which originally belonged to Sesarminae, should belong
to Sesarmidae, and that Helice and Metaplax crabs that
originally belonged to Sesarminae should be transferred
from the Sesarminae to the Varunidae (Kitaura et al., 2002;
Schubart et al., 2002). The classification of these taxa remains
unresolved. Sesarmid crabs are common in mangroves and
can tolerate great variation in salinity along the environment
(Theuerkauff et al., 2018). They are very good experimental
research objects.

Many studies have investigated these relationships using
nuclear DNA, mitochondrial DNA (mtDNA), and morphological
character analyses. Some studies combined mtDNA and nuclear
genes to reconstruct more reliable phylogenetic trees. However,
the combination of these genes made alignment and model
selection quite difficult (Foster, 2004; Cox et al., 2008). This
has led to the conclusion that the taxon sampling is insufficient
and unbalanced (Bergsten, 2005; Wägele and Mayer, 2007).
It is evident that more species are necessary to improve
the quality of the analyses and stability of phylogenetic trees
(Brinkmann and Philippe, 2008).

The mitochondrial genome (mitogenome) has been widely
used in phylogenetic analyses, due to its rich signals from
sequence information and gene arrangement (Xin et al., 2017a,b).
The mitogenome has a simple structure, haploid nature, maternal
inheritance, and rapid evolutionary rate (Liu et al., 2015). The
mitogenomes are closed circular double-stranded molecules in
the range of 14–18 kb in most bilaterian animals, including 13
protein-coding genes (PCGs; cox1–3, cob, nad1–6 and nad4L,
atp6, and atp8), 2 rRNA genes, 22 tRNA genes, and an AT-
rich region (control region) (Tang et al., 2003, 2017, 2018; Xin
et al., 2017a,b). The taxonomy of Sesarmid crabs has been studied
extensively and benefited from recent refinements in species of
Perisesarma and Sesarmops (Li et al., 2019; Shih et al., 2019; Ng
et al., 2020). However, the mitogenome of P. bidens has not been

analyzed. Here, we determined the mitogenome of P. bidens and
used the mitogenomes of 65 species to construct phylogenetic
trees to discuss the systemic status and genetic relationships of
the controversial taxa, Sesarmidae and Grapsoidea.

MATERIALS AND METHODS

Ethics Statement
We have taken a close look at the website1. We found that
the species Perisesarma bidens is not considered endangered
or protected species, the IUCN status for this species is “Not
evaluated.” Similarly, the species Perisesarma bidens is also Not
endangered or protected species in China. No special permit Is
required to collect crabs at selected sites in China. the sampling
locations are Not privately-owned or natural protected areas, the
collection of this species is legal in China. So we can use this
species for experiments and subsequent analysis.

Sample Collection
Specimens of P. bidens were collected from the seaside of
Zhangzhou City, Fujian Province, China, identified using
the morphological methods of Dai (1999) and molecular
identification with COI marker, and preserved in 95% ethanol
at –20◦C until DNA extraction. Voucher specimens of P. bidens
were deposited in the Jiangsu Provincial Key Laboratory of
Coastal Wetland Bioresources and Environmental Protection,
School of Ocean and Biological Engineering, Yancheng Teachers
University, Yancheng, China.

DNA Extraction, PCR, and Genome
Sequencing
Total genomic DNA was extracted from muscle using a
genomic DNA extraction kit (Sangon, China), following
the manufacturer’s instructions, and was visualized on
1.0% agarose gels. The complete mitogenome was obtained
using a combination of conventional PCR and long PCR
to amplify overlapping fragments spanning the entire
mitogenome. Initially, conserved sequences, such as cox1,
cox3, nad5, nad4, and rrnS, were amplified by conventional
PCR using universal primers synthesized by Beijing
Sunbiotech (Tang et al., 2003, 2017, 2018; Liu et al., 2015;
Xin et al., 2017a,b).

We designed species-specific primers to amplify large
overlapping regions of the mitogenome based on conserved
sequences using Primer Premier 5 (Supplementary Table S1).
All amplifications were performed on a Mastercycler
(Eppendorf) and Mastercycler gradient. The reactions
were 50 µL and contained 34.65 µL ddH2O, 5 µL
10 × LA PCR buffer II (Mg2+ Plus, Aidlab), 4 µL dNTPs
(10 mM), 2 µL each primer (10 µM), 0.35 µL red Taq
DNA Polymerase (5 U/µL, Aidlab), and 2 µL DNA
template (∼30 ng).

The PCR conditions for conserved sequences followed a
standard three-step protocol, with an initial denaturing at 96◦C

1https://www.gbif.org/en/species/4382775
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TABLE 1 | List of brachyuran species with their GenBank accession numbers.

Species Family Superfamily Size (bp) Accession No.

Sesarmops sinensis Sesarmidae Grapsoidea 15,905 KR336554

Clistocoeloma sinensis Sesarmidae 15,706 KU589292

Perisesarma bidens Sesarmidae 15,641 KY808394

Metaplax longipes Varunidae 16,424 MF198248

Helice latimera Varunidae 16,246 KU589291

Helice tientsinensis Varunidae 16,212 KR336555

Helice wuana Varunidae 16,359 KX344898

Sesarma neglectum Sesarmidae 15,920 KX156954

Metopaulias depressus Sesarmidae 15,765 KX118277

Parasesarmops tripectinis Sesarmidae 15,612 KU343209

Eriocheir japonica japonica Varunidae 16,352 FJ455505

Eriocheir japonica sinensis Varunidae 16,378 KM516908

Eriocheir japonica hepuensis Varunidae 16,335 FJ455506

Cyclograpsus granulosus Varunidae 16,300 LN624373

Pachygrapsus crassipes Grapsidae 15,652 KC878511

Grapsus tenuicrustatus Grapsidae 15,858 KT878721

Xenograpsus testudinatus Xenograpsidae 15,798 EU727203

Xenograpsus ngatama Xenograpsidae 16,106 KY985236

Portunus pelagicus Portunidae Portunoidea 16,157 KM977882

Callinectes sapidus Portunidae 16,263 AY363392

Portunus trituberculatus Portunidae 16,026 AB093006

Portunus sanguinolentus Portunidae 16,024 KT438509

Charybdis japonica Portunidae 15,738 FJ460517

Scylla paramamosain Portunidae 15,824 JX457150

Scylla olivacea Portunidae 15,723 FJ827760

Scylla tranquebarica Portunidae 15,833 FJ827759

Scylla serrata Portunidae 15,775 FJ827758

Charybdis feriata Portunidae 15,660 KF386147

Charybdis natator Portunidae 15,664 MF285241

Thalamita crenata Portunidae 15,787 LK391945

Chaceon granulatus Geryonidae 16,135 AB769383

Chaceon sp. Geryonidae 16,126 KU507298

Gandalfus yunohana Bythograeidae Bythograeoidea 15,567 EU647222

Gandalfus puia Bythograeidae 15,548 KR002727

Austinograea alayseae Bythograeidae 15,620 JQ035660

Austinograea rodriguezensis Bythograeidae 15,611 JQ035658

Segonzacia mesatlantica Bythograeidae 15,521 KY541839

Homologenus malayensis Homolidae Homoloidea 15,793 KJ612407

Moloha majora Homolidae 15,903 KT182069

Geothelphusa dehaani Potamidae Potamoidea 18,197 AB187570

Longpotamon xiushuiense Potamidae 18,460 KU042041

Huananpotamon lichuanense Potamidae 15,380 KX639824

Somanniathelphusa boyangensis Parathelphusidae 17,032 KU042042

Pseudocarcinus gigas Eriphiidae Xanthoidea 15,515 AY562127

Leptodius sanguineus Xanthidae 15,480 KT896744

Myomenippe fornasinii Menippidae Eriphioidea 15,658 LK391943

Ocypode cordimanus Ocypodidae Ocypodoidea 15,604 KT896743

Ocypode ceratophthalmus Ocypodidae 15,564 LN611669

Ilyoplax deschampsi Dotillidae 15,460 JF909979

Mictyris longicarpus Mictyridae 15,548 LN611670

Macrophthalmus japonicus Macrophthalmidae 16,170 KU343211

Umalia orientalis Raninidae Raninoidea 15,466 KM365084

Lyreidus brevifrons Raninidae 16,112 KM983394

Ranina ranina Raninidae 15,563 KM189817

(Continued)
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TABLE 1 | Continued

Species Family Superfamily Size (bp) Accession No.

Dynomene pilumnoides Dynomenidae Dromioidea 16,475 KT182070

Ashtoret lunaris Matutidae Calappoidea 15,807 LK391941

Maja squinado Majidae Majoidea 16,598 KY650652

Maja crispata Majidae 16,592 KY650651

Chionoecetes japonicus Majidae 15,341 AB735678

Damithrax spinosissimus Mithracidae 15,817 KM405516

Cherax destructor Parastacidae Parastacoidea 15,713 HG799087

Cambaroides similis Cambaridae Astacoidea 16,220 NC016925

Neopetrolisthes maculatus Porcellanidae Galatheoidea 15,324 KC107816

paralithoeds camtschaticus Lithodidae Paguroidea 16,720 NC020029

pagurus longicarpus Paguridae 15,630 AF150756

for 3 min, then 40 cycles of 94◦C for 30 s, annealing at
the recommended temperature for each primer for 30 s, and
elongation at 72◦C for 45 s, with a final 5 min extension at 72◦C.
The PCR conditions for large overlapping regions followed a
standard two-step protocol with 3 min at 94◦C, followed by 35
cycles of 35 s at 94◦C, 3–6 min at 50–56◦C, and 10 min at 72◦C.
All PCR products were sent to General Biosystems, Anhui for
Sanger sequencing.

Annotation and Alignment
The sequence was annotated using DNASTAR (DNASTAR,
Madison, WI, United States). The locations of the PCGs, rRNA
genes, tRNA genes, and CR were initially identified using the
MITOS Web Server2. The PCG coding regions were further
identified using the NCBI ORF Finder3. Two rRNA genes were
identified by alignment with published brachyuran sequences.
Codon usage and the nucleotide composition of the mitogenomes
were determined using MEGA6 (Tamura et al., 2013). The
nucleotide sequence of the complete P. bidens mitogenome was
deposited in the NCBI database under accession no. KY808394.
Gene orders in the complete mitogenome were also inferred
through the MITOS Web Server.

Phylogenetic Analyses
We used nucleotide (NT) sequences for phylogenetic analyses.
The sequences were aligned with MAFFT using the default
settings (Katoh et al., 2002). Gaps in the sequences were
removed using Gblocks (Castresana, 2000), and the saturation
of the sequences was examined using DAMBE (Xia and
Xie, 2001), which indicated that the sequences were not
saturated and were suitable for phylogenetic analyses.
Complete mitogenomes of 65 decapods (60 crabs plus 5
outgroups) were downloaded from NCBI (Table 1). The
five outgroups were Cherax destructor, Cambaroides similis,
Neopetrolisthes maculatus, Paralithodes camtschaticus, and
Pagurus longicarpus.

Phylogenetic analyses were performed using Bayesian
inference (BI) and maximum likelihood (ML) methods

2http://mitos.bioinf.uni-leipzig.de/index.py
3https://www.ncbi.nlm.nih.gov/orffinder/

TABLE 2 | Summary of the P. bidens mitogenome.

Gene Direction Location Size (bp) Intergenic nucleotides

cox1 F 1–1560 1560 −25

trnL2 F 1536–1604 69 5

cox2 F 1610–2317 708 −20

trnK F 2298–2366 69 0

trnD F 2367–2434 68 0

atp8 F 2435–2593 159 −7

atp6 F 2587–3261 675 −1

cox3 F 3261–4052 792 −1

trnG F 4052–4116 65 0

nad3 F 4117–4467 351 2

trnA F 4470–4536 67 10

trnR F 4547–4612 66 2

trnN F 4615–4681 67 0

trnS1 F 4682–4748 67 1

trnE F 4750–4815 66 4

trnH R 4820–4884 65 0

trnF R 4885–4950 66 1

nad5 R 4952–6682 1731 41

nad4 R 6742–8073 1350 −7

nad4L R 8067–8369 303 8

trnT F 8378–8443 66 0

trnP R 8444–8509 66 2

nad6 F 8512–9015 504 −1

cob F 9015–10,149 1135 0

trnS2 F 10,150–10,217 68 15

nad1 R 10,233–11,171 939 34

trnL1 R 11,206–11,271 66 0

rrnL R 11,272–12,612 1341 0

trnV R 12,613–12,685 73 0

rrnS R 12,686–13,515 830 0

CR — 13,516–14,193 678 0

trnQ R 14,194–14,263 70 23

trnI F 14,287–14,354 68 8

trnM F 14,363–14,431 69 0

nad2 F 14,432–15,439 1008 2

trnW F 15,442–15,511 70 −3

trnC R 15,509–15,573 65 0

trnY R 15,574–15,641 68 –

Frontiers in Genetics | www.frontiersin.org 4 November 2020 | Volume 11 | Article 536640

http://mitos.bioinf.uni-leipzig.de/index.py
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-536640 October 27, 2020 Time: 18:41 # 5

Li et al. Mitochondrial Genome of Perisesarma bidens

using MrBayes v 3.2.2 (Ronquist et al., 2012) and IQ-Tree
(Nguyen et al., 2014; Kalyaanamoorthy et al., 2017; Hoang
et al., 2018), respectively. The GTRmodel was selected
by MrModeltest 2.3 (Nylander, 2004). The BI analyses
ran four independent chains for 10,000,000 generations,
sampled every 100 generations, with a burn-in of 25,000
generations. The average standard deviation of split frequencies
was < 0.01. Convergence was assessed using Tracer v1.6 and
the effective sampling size for all parameters was > 200.
The ML analyses were performed on 1000 bootstrap

replications. The resulting phylogenetic trees were visualized
using FigTree v1.4.2.

RESULTS AND DISCUSSION

Genome Structure, Organization, and
Composition
The complete mitogenome of P. bidens was a circular of 15,641 bp
(GenBank accession no. KY808394). Its size was within the

FIGURE 1 | Map of the P. bidens mitogenome. Protein-coding and ribosomal genes are shown with standard abbreviations. Genes for tRNAs are abbreviated by
single letters, with S1 = AGN, S2 = UCN, L1 = CUN, and L2 = UUR. CR, control region.
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range observed in completely sequenced brachyuran species. The
mitogenome composition (A: 36.61%, T: 38.20%, C: 15.13%,
G: 10.06%) was strongly A + T biased which accounts for
74.81%, and exhibited with negative AT-skew (–0.021). The
AT-skew of the mitogenomes of most crabs were negative,
for example, H. wuana (Tang et al., 2018), S. sinensis (Tang
et al., 2017), H. tientsinensis (Xin et al., 2017b), C. sinensis
(Xin et al., 2017a), the AT-skew value of mitogenomes in
other crabs had also been calculated and counted in related
studies (Xin et al., 2017a,b). The genes were typical of animal
mitogenomes, with 22 tRNA genes, 13 PCGs, 2 rRNA genes,
and a CR (Table 2). Overall, 4 of the 13 PCGs (nad5, nad4,
nad4L, and nad1), 8 tRNAs [trnQ, trnC, trnY, trnF, trnH, trnP,
trnL (CUN), and trnV], and 2 rRNAs (rrnL and rrnS) were
encoded by the minority strand, while the other 23 genes were
encoded by the majority strand (Table 2 and Figure 1). The
13 PCGs ranged from 159 to 1731 bp. Of 22 tRNA genes,
8 were encoded by the L-strand and the remaining 14 by
the H-strand. All tRNAs had the typical clover-leaf secondary
structures observed in mitochondrial tRNA genes, except for
trnS1 (AGN), which lacked a stable dihydrouridine (DHU)
arm; this has been observed in several animals, including
insect and brachyuran mitogenomes (Liu et al., 2015; Xin
et al., 2017a,b). Figure 2 shows the relative synonymous codon
usage (RSCU) of P. bidens. The codon usage was biased with
a high frequency of AT compared to GC in the third codon
position. The codon usage analysis revealed that the leucine 2
(Leu2), isoleucine (Ile), phenylalanine (Phe) codon families were
most frequently utilized, while cysteine (Cys) family was the least
used (Figure 3).

Gene Order in Sesarmidae
The gene order of P. bidens was identical to other Sesarmidae
species in our study. In contrast to the inferred ancestral gene
sequences of Pancrustaceans, where trnH was located between
nad5 and nad4, here it was found between trnE and trnF. In
Pancrustaceans, the tRNA gene sequences between CR and trnM
was trnI-trnQ, but here was trnQ-trnI (Figure 4A).

The duplication/random loss model was used to explain the
rearrangements seen in Sesarmidae (Moritz and Brown, 1987;
Macey et al., 1997; Boore and Brown, 1998). The movement of
trnH can be explained as follows. First, gene duplication occurred
in trnF, nad5, and trnH, changing the arrangement of trnF-nad5-
trnH to trnF-nad5-trnH-trnF-nad5-trnH. Then, the redundant
trnF, nad5, and trnH genes were lost at random. Finally, the
new gene order of trnH-trnF-nad5 was formed (Figure 4B). The
order principles of trnQ moving from the junction between trnI
and trnM to between the CR and trnI could also be explained
similarly (Figure 4C).

Gene Order of Crabs From Other
Families
The gene orders of all species are shown in Figure 5. The
gene sequences within 13 families were the same. The gene
order pattern of Macrophthalmus japonicus (Ocypodoidea,
Macrophthalmidae) was identical to that of other Varunidae. The
gene orders of Damithrax spinosissimus (Majoidea, Mithracidae)
and Dynomene pilumnoides (Dromioidea, Dynomenidae) were
different, as were those of two Xenograpsidae crabs (Xenograpsus
testudinatus and X. ngatama). However, two Majidae crabs (Maja

FIGURE 2 | The RSCU in the P. bidens mitogenome.
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FIGURE 3 | Amino acid composition of the P. bidens mitogenome.

FIGURE 4 | Generation of the P. bidens mitochondrial gene arrangement. The duplication/random loss, recombination, and duplication/non-random loss models
were used to explain the principle of gene rearrangement. (A) Comparison of gene order in mitogenome of Perisesarma bidens and Pancrustacean ground pattern.
tRNA genes are indicated by the singer letter IUPAC-IUB abbreviation with S1 = AGN, S2 = UCN, L1 = CUN, and L2 = UUR, where as protein and rRNA genes are
labled with three letter codes. (B) Gene duplication occurred in trnF, nad5, and trnH, changing the arrangement of trnF-nad5-trnH to trnF-nad5-trnH
-trnF-nad5-trnH. Then, the redundant trnF, nad5, and trnH genes were lost at random. Finally, the new gene order of trnH-trnF-nad5 was formed. (C) Gene
duplication occurred in trnI, trnQ, and trnM, changing the arrangement of trnI-trnQ-trnM to trnI-trnQ-trnM-trnI-trnQ-trnM. Then, the redundant trnI, trnM, and trnQ
genes were lost at random. Finally, the new gene order of trnQ-trnI-trnM was formed.

squinado and M. crispata) had the same gene order. Interestingly,
although there were only four species of Potamoide, each showed
a different gene order.

Phylogenetic Analyses
The phylogenetic trees were constructed based on 13 PCGs under
ML and BI methods, which resulted in congruent tree topologies,

except for minor differences within “Grapsoidea+Ocypodoidea”
(Figure 6). As shown in Figure 6, P. bidens formed a well-
supported clade with Parasesarmops tripectinis (BP = 100;
BPP = 1). (P. bidens + P. tripectinis) clade, (S. sinensis + S.
neglectum) clade, (C. sinensis + M. depressus) clade were well
supported with each other; these results were in accordance
with the information provided by the same genes orders of
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FIGURE 5 | The mitochondrial gene order of all Brachyura.

P. bidens, P. tripectinis, S. sinensis, S. neglectum, C. sinensis,
and M. depressus. Moreover, S. neglectum, M. depressus,
and P. tripectinis all belonged to Sesarmidae (Park et al.,
2018). Therefore, P. bidens, S. sinensis, and C. sinensis should
belong to Sesarmidae rather than to Sesarminae. The species
originally belonging to the Sesarminae should belong to
the Sesarmidae. These results agree with previous analyses
using the mitogenome of one species (Tang et al., 2017;
Xin et al., 2017a,b).

In our study, two families (Potamidae and Parathelphusidae)
were primarily freshwater crabs and were recognized as true
heterotremes (Guinot et al., 2013). The systemic status of primary
freshwater crabs had stimulated interest because of their high
value and diversity (Cumberlidge et al., 2009; Klaus et al.,
2010). The monophyly of Potamidae and Parathelphusidae was
confirmed based on morphological and molecular analyses.

However, there still were uncertainties regarding the phylogenetic
placement of Potamidae and Parathelphusidae (Xing et al.,
2017). Von Sternberg and Cumberlidge (2001) suggested that
these two families Potamidae and Parathelphusidae should
be placed in Thoracotremata. Here, the Thoracotremata
contained Grapsoidea and Ocypodoidea crabs. Our results
showed that four heterotreme crabs (Geothelphusa dehaani,
Longpotamon xiushuiense, Huananpotamon lichuanense, and
Somanniathelphusa boyangensis) were actually more closely
associated with thoracotreme crabs, showing that Heterotremata
was not monophyletic; this result was in accordance with that
inferred from 23 brachyuran crabs, in which the author use
the two mitogenomes (Ji et al., 2014). Within Podotremata,
the clade was monophyletic. The six crabs formed a robust
clade [(Homolidae + Dynomenidae) + Raninidae]. Within
Heterotremata, the phylogenetic relationships were clear, with
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FIGURE 6 | Phylogenetic trees were constructed using BI and ML methods based on NT dataset. Bootstrap values (BP) (IQ-Tree) and Bayesian posterior probability
(BPP) of each node are shown as BP based on NT dataset/BPP based on NT dataset. C. destructor, C. similis, N. maculatus, P. camtschaticus, and P. longicarpus
were used as outgroups. The supermatrix underlying this figure is as a Supplementary File.

the exception of the four potamid crabs, which were outside of
the heterotreme crabs.
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