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In situ adaptation to climate change will be critical for the persistence of many ectotherm
species due to their relative lack of dispersal capacity. Climate change is causing
increases in both the mean and the variance of environmental temperature, each of
which may act as agents of selection on different traits. Importantly, these traits may
not be heritable or have the capacity to evolve independently from one another. When
genetic constraints prevent the “baseline” values of thermal performance traits from
evolving rapidly, phenotypic plasticity driven by gene expression might become critical.
We review the literature for evidence that thermal performance traits in ectotherms are
heritable and have genetic architectures that permit their unconstrained evolution. Next,
we examine the relationship between gene expression and both the magnitude and
duration of thermal stress. Finally, we identify genes that are likely to be important
for adaptation to a changing climate and determine whether they show patterns
consistent with thermal adaptation. Although few studies have measured narrow-sense
heritabilities of thermal performance traits, current evidence suggests that the end
points of thermal reaction norms (tolerance limits) are moderately heritable and have the
potential to evolve rapidly. By contrast, performance at intermediate temperatures has
substantially lower evolutionary potential. Moreover, evolution in many species appears
to be constrained by genetic correlations such that populations can adapt to either
increases in mean temperature or temperature variability, but not both. Finally, many
species have the capacity for plastic expression of the transcriptome in response to
temperature shifts, with the number of differentially expressed genes increasing with
the magnitude, but not the duration, of thermal stress. We use these observations to
develop a conceptual model that describes the likely trajectory of genome evolution in
response to changes in environmental temperature. Our results indicate that extreme
weather events, rather than gradual increases in mean temperature, are more likely to
drive genetic and phenotypic change in wild ectotherms.

Keywords: climate change, contemporary evolution, gene expression, heritability, molecular evolution,
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CLIMATE CHANGE AS AN AGENT OF
SELECTION

The majority of species are dispersal-limited and must adapt to
climate change in situ if they are to avoid extinction (Hoffmann
and Sgro, 2011). The first response of many ectothermic animals
will be to adjust their behavior to reduce exposure to stressful
temperatures (Kearney et al., 2009; Logan et al., 2013, 2015; Cox
et al., 2018; Fey et al., 2019). Nevertheless, behavioral adjustments
on their own may be insufficient to maintain fitness, requiring
populations to track shifting fitness optima through genetic
adaptation and phenotypic plasticity (Berger et al., 2013; Logan
et al., 2014, 2019; Buckley et al., 2015; Geerts et al., 2015).
A major question that remains is whether populations have
heritable variation in climate-related traits such that they may
adapt to environmental change over short time scales (Leal and
Gunderson, 2012; Walters et al., 2012).

Historical data and climate forecasts suggest that shifts in
environmental temperature associated with climate change has
occurred (and will continue to occur) along two distinct axes
(Alley, 2000; IPCC, 2013). First, mean temperature is increasing,
primarily as a result of days and seasons that are gradually
warming (Figure 1A). Second, the variance of environmental
temperature is increasing, primarily because of a rise in the
frequency of extreme weather events such as heat waves and cold
snaps (Figure 1B). These two axes of thermal change are likely to
generate selection on different components of thermal reaction
norms (Gabriel and Lynch, 1992; Gilchrist, 1995; Angilletta,
2009). For example, gradual increases in mean temperature
will favor genotypes that confer higher thermal optima for
ecologically important activities (e.g., genotypes associated with
the ability to digest food more effectively at warmer temperatures;
Fontaine et al., 2018). By contrast, increases in temperature
variability will favor genotypes that boost phenotypic plasticity
or whose fitness values are insensitive to temperature (Lynch and
Gabriel, 1987; Gabriel and Lynch, 1992).

THE EVOLUTIONARY POTENTIAL OF
THE THERMAL NICHE

While theory indicates that the mean or variance of
environmental temperature should select for changes in different
thermal performance traits, these traits will not evolve unless
they are heritable and unconstrained by genetic correlations
(Lande and Arnold, 1983; Lynch and Walsh, 1998). In practice,
the thermal niche of a given population is usually approximated
with a “thermal performance curve” (TPC; Figure 2A, inset).
TPCs relate a fitness-proxy (usually an ecologically relevant trait
such as locomotor performance) to body temperature (Huey and
Hertz, 1984), and often follow an archetypical shape whereby
performance increases with body temperature to some optimum
(Topt) and then sharply declines above that optimum (a pattern
driven by the thermodynamics of enzyme function; Hochachka
and Somero, 2002). The thermal optimum is expected to be
under selection primarily as a result of gradually increasing
mean temperatures (Logan et al., 2014). The ends of the TPC

(where performance drops to zero) are referred to as the critical
thermal limits (critical thermal minimum = CTmin; critical
thermal maximum = CTmax), and these are closely related
to the breadth of the TPC (Tbr). The performance breadth
and critical thermal limits are thought to be under selection
primarily as a result of changes in the variance of environmental
temperature, although performance breadth is probably also
affected by selection for changes in performance at intermediate
temperatures (Lynch and Gabriel, 1987; Gabriel and Lynch, 1992;
Logan et al., 2014). Finally, the height of the TPC describes the
maximal performance capacity (Pmax) of the population. These
five components of thermal performance curves can be thought
of as “thermal performance traits” that combine to define the
shape of the thermal niche and may or may not have the capacity
to evolve independently of one another (Gomulkiewicz and
Kirkpatrick, 1992; Stinchcombe and Kirkpatrick, 2012; Martins
et al., 2018; Logan et al., 2020).

Indeed, studies of thermal performance curves across
environmental gradients suggest that their shapes may be
constrained (Knies et al., 2009; Angilletta et al., 2010; Logan
et al., 2013; Phillips et al., 2014). For example, when measured
at the level of the phenotype, the area under the curve tends
to remain constant even as the shape of the curve changes
(Gilchrist, 1996; Kingsolver and Gomulkiewicz, 2003; Izem
and Kingsolver, 2005; Phillips et al., 2014). This represents
a “specialist-generalist tradeoff” whereby a species can either
perform well over a narrow range of temperatures or poorly
over a broad range of temperatures (Figure 1C). Specialist-
generalist tradeoffs arise from the inability of organisms to
optimize biochemical performance across a broad range of
temperatures at the subcellular level and often manifest as
a negative correlation between whole-organism performance
breadth and maximal performance (or as a positive correlation
between the critical thermal limits; Hochachka and Somero,
2002). Another pattern commonly observed at the phenotypic
level is the “thermodynamic effect” (also referred to as the
"hotter-is-better" hypothesis; Angilletta et al., 2010). This
effect occurs because biochemical reactions are typically more
efficient at warmer temperatures (Hochachka and Somero,
2002), and leads to a positive correlation between the thermal
optimum and maximal performance at the whole-organism
level (Figure 1D).

If both the specialist-generalist tradeoff and the
thermodynamic effect are driven by underlying genetic
correlations and occur in the same populations, they represent
true evolutionary constraints that can give rise to non-intuitive
evolutionary dynamics depending on whether average thermal
conditions or extreme weather events are more important
sources of selection. For example, if the mean environmental
temperature changes faster than the variance, selection should
first favor an increase in the thermal optimum, which should
then indirectly cause an increase in maximal performance via the
thermodynamic effect. This increase in maximal performance
should then drive a decrease in performance breadth as a result
of a specialist-generalist tradeoff. Thus, adaptation to higher
mean temperature can lead to maladaptation with respect
to temperature variability (Figure 1E). Alternatively, if the
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FIGURE 1 | Genetic correlations can constrain the evolution of thermal performance curves, and evolutionary trajectories will likely depend on the specific nature of
environmental change. For example, different moments of the environmental temperature distribution can change at different rates, with mean temperature
increasing faster than the variance (A), or vise-versa (B). Traits may be constrained in their evolution via a specialist-generalist tradeoff (C) which occurs when
maximal performance is negatively genetically correlated with performance breadth, or a thermodynamic effect (D), which occurs when maximal performance is
positively genetically correlated with the thermal optimum. If these evolutionary constraints occur in the same population, complex evolutionary dynamics can result
from selection on thermal performance traits. For example, if mean environmental temperature increases faster than the variance (E), selection should favor an
increase in the thermal optimum, with maximal performance also increasing as an indirect result of the thermodynamic effect. As maximal performance increases,
performance breadth should then decline as an indirect result of a specialist-generalist tradeoff. Thus, the population becomes well-adapted to mean temperature
and maladapted to temperature variability. If the variance of environmental temperature increases faster than the mean (F), selection should favor an increase in
performance breadth, with maximal performance decreasing as an indirect result of a specialist-generalist tradeoff. As maximal performance decreases, the thermal
optimum should then decline as an indirect result of the thermodynamic effect. Thus, the population becomes well-adapted to temperature variability and
maladapted to mean temperature. The colors of the curves in this figure are arbitrary and meant to help increase readability.

variance in environmental temperature increases faster than the
mean, selection should first favor an increase in performance
breadth which should indirectly cause a decrease in maximal
performance as a result of a specialist-generalist tradeoff. This
decrease in maximal performance would then result in a decline
in the thermal optimum due to the thermodynamic effect.
In this case, adaptation to temperature variability will lead to
maladaptation with respect to mean temperature (Figure 1F).
Clearly, understanding the extent to which thermal niche
evolution is constrained by genetic correlations is critical for
generating accurate climate-impact forecasts.

To understand genetic constraints underlying the evolution
of the thermal niche, we canvassed the literature for primary,
peer-reviewed studies reporting heritabilities (broad and
narrow-sense) and genetic correlations underlying the thermal
performance traits that make up the thermal niches of animals.
We searched the terms “quantitative genetics AND thermal
physiology,” “genetic correlations AND thermal physiology,”
“heritability AND thermal trait,” “genetics AND specialist-
generalist AND temperature,” “genetics AND hotter-is-better,”

“genetics AND thermodynamic effect,” “heritability of CTmax,”
“heritability of CTmin,” “heritability of thermal optimum,”
“heritability AND cold tolerance,” and “heritability AND chill-
coma” in Google Scholar in October 2019. Due to the rapid
decline of relevant studies after the first few pages of search
results, we focused on the first 50 results for each set of search
terms (ordered by relevance). To ensure that our sampling was
robust, we subsequently (July 2020) included an additional
50 search results on Google Scholar (total = 100 results per
search) and conducted a separate set of searches with the same
search terms in Thompson Web of Science, again ordered by
relevance. In total, we examined more than 1400 results from
these databases for possible heritability and genetic correlation
estimates. Finally, we included additional studies that we were
aware of but that did not come up in our literature searches.
These various search avenues likely uncovered the majority of
quantitative genetic parameter estimates for our target traits that
were available in the literature. Our full database contained 98
independent heritability and genetic correlation estimates from
55 studies. Note that the temperature ramping rates used in
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FIGURE 2 | Patterns of genetic constraint on the thermal performance traits that combine to define the shape of thermal performance curves (A, inset). (A) The
critical thermal limits (CTmin and CTmax) are moderately heritable (h2 = narrow-sense heritability; H2 = broad-sense heritability), whereas the limited evidence that is
available suggests that performance breadth (Tbr) and the thermal optimum (Topt) lack the capacity to respond rapidly to selection (error bars represent standard
errors, and samples sizes are above each bar). (B) The majority of studies that tested for either a specialist-generalist tradeoff or a thermodynamic effect underlying
the evolution of thermal performance curves found evidence for either one or the other pattern. Two of six studies that tested for both types of constraints in the
same population found evidence suggesting that both were operating. Supplementary Table S1 contains the list of studies from which we extracted the values
included in this figure.

these studies varied by several orders of magnitude, and ramping
rate is known to affect heritability estimates (Terblanche et al.,
2007; Chown et al., 2009). Namely, slow-ramping protocols tend

to produce lower heritability estimates, and there is evidence
from simulation studies that this may be due to error introduced
during longer ramping procedures (Rezende et al., 2011; Santos
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et al., 2011, 2012). Thus, while most of the heritability estimates
included in our analyses were taken from ramping protocols of
some kind, when the heritability from both “slow” and “fast”
ramping protocols were reported for the same population or
species (total of four studies), we only included the latter in our
analyses to eliminate pseudoreplication and reduce error as much
as possible. For a detailed explanation of how we collated and
assessed data from these papers, please see “Extended Methods”
in the Online Supplementary Information. We have uploaded
the full list of studies included in our analyses of trait heritability
and genetic correlations in an online supplementary data file
(Supplementary Table S1).

Of the five thermal performance traits that define the shape
of the thermal performance curve (Figure 2A, inset), only the
critical thermal limits (CTmin and CTmax) were consistently
and substantially heritable (Figure 2A). The average broad
and narrow-sense heritabilities of CTmin were 0.27 and 0.28,
respectively. The average broad and narrow-sense heritabilities
of CTmax were 0.33 and 0.21, respectively. It is interesting to note
that phylogenetic studies on some taxa have led to the conclusion
that upper thermal limits, but not lower thermal limits, are
evolutionarily conserved (Araújo et al., 2013; Grigg and Buckley,
2013; Diamond and Chick, 2017), and this appears to conflict
with the relatively high heritability of upper thermal limits
observed in controlled breeding studies. The resolution of this
conflict may arise from the fact that many species behaviorally
thermoregulate during the hottest times of the day or during
heat waves, leading to a reduction in the strength of selection
on upper thermal tolerance (Muñoz et al., 2014). Thus, even
though upper thermal tolerance may be infrequently exposed to
selection, this trait may retain its ability to respond to selection
in many populations. Indeed, laboratory evolution experiments
that expose organisms to selection in warmer environments
frequently demonstrate rapid evolutionary change in upper
thermal limits (Bettencourt et al., 1999; Gilchrist and Huey, 1999;
Sambucetti et al., 2010; Hangartner and Hoffmann, 2016; but see
Schou et al., 2014).

To our knowledge, there are only five estimates (from four
studies) of the quantitative genetic parameters underlying the
other major thermal performance traits: maximal performance,
performance breadth, and the thermal optimum. Maximal
performance was moderately heritable at an average narrow-
sense heritability of 0.12. Every study that examined the
performance breadth and the thermal optimum found zero
additive genetic variation underlying these traits. Due to the
low sample sizes for most of these traits, we did not conduct
formal statistical comparisons. Of the studies (N = 15) that tested
for genetic correlations corresponding to either a specialist-
generalist tradeoff or a thermodynamic effect, the majority found
evidence of one or the other. 87% of studies found evidence
of a specialist-generalist tradeoff, while 67% of studies found
evidence of a thermodynamic effect (Figure 2B). Additionally, of
the six studies that tested for both a specialist-generalist tradeoff
and thermodynamic effect in the same population, two of those
studies detected both patterns (Figure 2B). All else remaining
equal, these results suggest that the endpoints of the thermal
niche (the critical thermal limits) can respond relatively rapidly

to selection, although they are likely constrained to some extent
by genetic correlations. By contrast, the traits which describe
performance at intermediate temperatures (e.g., Topt) appear to
have minimal capacity for rapid evolution.

GENE EXPRESSION PLASTICITY

For most organisms, thermal performance traits are not fixed
across environmental conditions, but instead can exhibit adaptive
or non-adaptive phenotypic plasticity (Scheiner, 1993; Via et al.,
1995; Ghalambor et al., 2007, 2015). For example, previous
exposure to cool temperatures reduced the recovery time after
induction of chill- coma in fruit flies (Drosophila melanogaster)
compared to flies reared at intermediate temperatures
(Ayrinhac et al., 2004). Similarly, acclimation to warmer
temperatures increased time to immobilization (a measure of
heat tolerance) in the freshwater crustacean Daphnia magna
(Yampolsky et al., 2014a).

The mechanism driving most phenotypic plasticity is changes
in gene expression (Scheiner, 1993; Schlichting and Pigliucci,
1993; Schlichting and Smith, 2002; Chen et al., 2017). Shifts
in gene expression can involve only a few genes (Hamdoun
et al., 2003), or can occur across the entire transcriptome (Bay
and Palumbi, 2015). For example, shifts in the expression of
genes in the heat-shock protein (hsp) 70 family seem to underlie
phenotypic plasticity in thermal tolerance limits in the oyster
Crassostrea gigas (Hamdoun et al., 2003), whereas exposure to
warm temperatures was associated with alterations of whole-
transcriptome expression and increased heat tolerance in the
coral Acropora nana (Bay and Palumbi, 2015). Broadly, this
suggests that phenotypic plasticity, mediated by gene expression,
is important for the adaptive response to global climate change.

To understand how gene expression might be involved in
the response to climate change, we canvassed the literature for
studies that measured transcriptomic responses to thermal stress
in ectothermic animals. We searched the terms “transcriptome
heat stress,” “transcriptome expression temperature vertebrate,”
“gene expression heat vertebrate,” “transcriptome expression
thermal,” “transcriptome thermal,” and “gene expression
thermal” in Google Scholar during October 2019. We conducted
a subsequent, deeper search (100 results for each set of search
terms) in both Google Scholar and Thompson Web of Science
during July 2020. These queries returned hundreds of journal
articles, each of which we evaluated for relevance. Ultimately,
this process yielded 36 articles containing 42 independent
estimates of the effects of temperature on the transcriptomic
response in ectotherms. These studies spanned early microarray
work to recent experiments that leveraged high-throughput
RNA sequencing, and they focused on acute, reversible gene
expression responses rather than fixed changes that may occur
over development (Table 1).

All species in these experiments, which range from arthropods
to vertebrates and occur in diverse habitats across the
globe, shift expression of their transcriptome in response to
thermal changes (Table 1). However, the temperature changes
experienced by organisms in these studies varied greatly in
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TABLE 1 | Studies of transcriptomic responses to temperature change.

Study Organism Species Data type Change in transcriptome expression? Altered hsp expression?

Akashi et al. (2016) Lizard Anolis allogus RNAseq Y Y

Akashi et al. (2016) Lizard Anolis homolechis RNAseq Y Y

Akashi et al. (2016) Lizard Anolis sagrei RNAseq Y Y

Coughlin et al. (2019) Fish Osmerus mordax RNASEq Y Y

Cui et al. (2019) Insect Megacopta cribaria RNAseq Y Y

Etges et al. (2017) Insect Drosophila mojavensis RNAseq Y Y

Gleason and Burton (2015) Mollusc Chlorostoma funebralis RNAseq Y Y

Gracey et al. (2004) Fish Cyprinus carpio Microarray Y Y

Hu et al. (2016) Fish Danio rerio RNAseq Y N/A

Hu et al. (2016) Fish Oreochromis niloticus RNAseq Y N/A

Jayasundara et al. (2013) Fish Thunnus orientalis Microarray Y Y

Jesus et al. (2016) Fish Squalius carolitertii RNAseq Y Y

Jesus et al. (2016) Fish Squalius torgalensis RNAseq Y Y

Kassahn et al. (2007) Fish Pomacentrus moluccensis Microarray Y Y

Kim et al. (2017) Mollusc Crassostrea gigas RNAseq Y Y

Lewis et al. (2010) Fish Onchorhyncus mykiss Microarray Y Y

Li et al. (2017) Fish Onchorhyncus mykiss RNAseq Y Y

Li et al. (2019) Fish Megalobroma amblycephala RNAseq Y Y

Lim et al. (2016) Mollusc Crassostrea gigas RNAseq Y Y

Liu et al. (2013) Fish Ictalurus hybrids RNAseq Y N/A

Lockwood et al. (2010) Mollusc Mytilus trossulus Microarray Y Y

Lockwood et al. (2010) Mollusc Mytilus galloprovincialis Microarray Y Y

Logan and Somero (2011) Fish Gillichthys mirabilis Microarray Y Y

Moskalev et al. (2015) Insect Drosophila melanogaster RNAseq Y N/A

Moya et al. (2012) Cnidarian Anemonia viridis Microarray Y Y

Narum and Campbell (2015) Fish Oncorhynchus mykiss RNAseq Y Y

Qian and Xue (2016) Fish Larimichthys crocea RNAseq Y Y

Quinn et al. (2011) Fish Salvelinus alpinus Microarray Y Y

Semmouri et al. (2019) Crustacean Temora longicornis RNAseq Y Y

Shi et al. (2019) Fish Salmo salar RNAseq Y Y

Smith et al. (2013) Fish Melanotaenia duboulayi RNAseq Y Y

Smolina et al. (2015) Crustacean Calanus finmarchius RNAseq Y Y

Smolina et al. (2015) Crustacean Calanus glacialis RNAseq Y N/A

Sørensen et al. (2016) Insect Drosophila melanogaster RNAseq Y Y

Stillman and Tagmount (2009) Crustacean Petrolisthes cinctipes Microarray Y Y

Vornanen et al. (2005) Fish Onchorhyncus mykiss Microarray Y Y

Wang et al. (2014) Mollusc Echinolittoria malacaria RNAseq Y Y

Wellenreuther et al. (2019) Fish Chrysophus auratus RNAseq Y Y

Xiao et al. (2016) Spider Pardosa pseudoannulata RNAseq Y Y

Yampolsky et al. (2014b) Crustacean Daphnia sp. Microarray Y N/A

Yang et al. (2016) Fish Ctenopharyngodon idellus RNAseq Y Y

Zheng et al. (2019) Crustacean Marsupaenus japonicus RNASeq Y Y

Irrespective of the methodology or focal taxon, all experiments detected changes in gene expression when the organism was exposed to a change in temperature.
Additionally, all studies that reported analyses of heat-shock protein (hsp) genes detected shifts in the expression of these genes.

their magnitude and duration. When restricting the analyses
to RNAseq studies and excluding whole-organism studies
(Supplementary Table S2), we found that the magnitude
of temperature change [F(3, 33) = 13.0448, P = 0.0010;
Figure 3A], but not the duration of exposure [F(3, 33) = 2.1269,
P = 0.1542: Figure 3B] predicted the number of log-
transformed differentially expressed genes when controlling for

log-transformed transcriptome size [F(3,33) = 3.3718, P = 0.0753]
using linear regression models. These results indicate that
brief, severe weather events could impact gene expression and
phenotypic plasticity more profoundly than longer-term changes
in thermal conditions.

A previous study by Gunderson and Stillman (2015) reported
limited potential for plastic responses to warming across a broad
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FIGURE 3 | Transcriptomic responses to temperature change. (A) The
number of differentially expressed genes increases with the magnitude of
temperature change to which an organism is exposed. (B) The number of
differentially expressed genes does not vary with duration of exposure to a
given magnitude of temperature change. See Table 1 for the list of studies
from which we extracted the values included in this figure.

range of organisms. This suggests that there may not be a one-to-
one correspondence between the magnitude of gene expression
shifts and physiological plasticity in the typical whole-organism
traits that investigators measure (e.g., CTmax and CTmin). Indeed,
not all mRNAs that are transcribed will be translated into proteins
(Liu et al., 2016), possibly leading to a discordance between the
magnitude of gene expression plasticity and phenotypic plasticity.
Additionally, many of the studies cited in Gunderson and
Stillman (2015) involved ramping or constant-exposure thermal
stress experiments, which may be less likely to result in large-scale
changes in gene expression. In general, further work is needed
to understand the link between gene expression plasticity under
large magnitude shifts in temperature and phenotypic plasticity
in thermal tolerance limits.

Among the genes that were differentially expressed in response
to temperature, gene ontology (and similar) analyses have
found that biological processes associated with protein synthesis,
folding and degradation, oxygen transport, and biological and
cellular responses to heat and other stress-stimuli are often
significantly enriched (Supplementary Table S3). Heat shock
proteins, which are a conserved set of molecular chaperone
proteins with important roles for responding to stress in general,
and heat stress in particular (Feder and Hofmann, 1999),
were especially important. Genes for heat-shock proteins were
frequently (94% of species, Table 1) affected by changes in
temperature, with shifts in expression often occurring in well-
characterized canonical genes such as hsp40 (or DNAJ), hsp70,
and hsp90 (Supplementary Table S4). Because expression of
heat shock proteins is usually altered in response to changing
temperature and has been linked to phenotypic plasticity
(Hamdoun et al., 2003), these proteins are likely to be important
targets of selection as global climate change progresses.

HOW WILL GENOMES RESPOND TO
SELECTION WHEN THERMAL
ENVIRONMENTS SHIFT?

Rapid environmental change can induce selection on the genome
in two major ways. First, selection can target sequence variation
in crucial protein-coding genes (Hoekstra et al., 2004; Rosenblum
et al., 2010). This is most likely to occur when the capacity for
gene expression plasticity is minimal or under weak selection and
may manifest as changes in loci that affect the “baseline” values
of thermal performance traits like the thermal optimum or the
critical thermal limits. Second, if variation among individuals in
gene expression plasticity is high or under strong selection, the
primary adaptive response to a changing climate may be shifts in
loci that are associated with variation in gene expression (Behera
and Nanjundiah, 1995; Ghalambor et al., 2015; Campbell-Staton
et al., 2020). Selection on gene expression could target trans-
regulatory pathways or the upstream and downstream cis-
regulatory regions that affect expression of individual genes
(Schlichting and Pigliucci, 1993; Via, 1993; Campbell-Staton
et al., 2020), and is likely to increase the frequency of genotypes
with broad phenotypic reaction norms. Alternatively, selection
could target genes that regulate epigenetic mechanisms such
as histone modification or methylation (Johannes et al., 2009;
Furrow and Feldman, 2014).

Our review of the literature suggests several pathways by
which shifts in environmental temperature distributions should
impact genomic variation (Figure 4). To date, studies suggest that
the endpoints of the thermal niche (the critical thermal limits)
are heritable, whereas performance at intermediate temperatures
(e.g., Topt) are not (Figure 2). The critical thermal limits are
most important under extreme weather conditions such as heat
waves and cold snaps (Campbell-Staton et al., 2017), indicating
that baseline genetic variation for thermal performance may
be more capable of responding to these extreme events than
to gradual changes in mean temperature (although adaptation
to extreme weather events may still be constrained by genetic
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correlations; Figures 1, 2). Similarly, most species appear to
alter gene expression when they are exposed to short-term
shifts in temperature (Table 1), and the number of genes that
are differentially expressed increases with the magnitude of the
temperature shift (akin to a short-term extreme weather event;
Figure 3A). In contrast, the number of differentially expressed
genes did not vary with duration of exposure to these temperature
shifts (Figure 3B). This pattern may reflect a reduced importance
of gene expression plasticity when environmental change is
dominated by longer-term increases in mean temperature. Taken
together, these data suggest that genomic responses will be more
rapid and pronounced in response to changes in the frequency of
extreme weather events than in response to gradual warming.

Emerging patterns from genomic and transcriptomic studies
also suggest that the specific nature of environmental change will
be important for determining trajectories of molecular evolution
(Figure 4). As environmental temperature distributions change,
different moments of the distribution can shift at different rates.
Because the mean and variance of environmental temperatures
drive selection on separate traits that have varying levels of
additive genetic variation underlying them, we would expect
“baseline” genetic adaptation and changes in gene expression
plasticity to make up different components of the adaptive
response depending on the details of environmental change
(Figure 4A). If both the change in mean temperature and
the change in variance are low, then selection will be weak
or non-existent on all traits (compensatory responses might
be entirely behavioral, for example), leading to zero molecular
and phenotypic evolution. However, if the change in mean
temperature is higher than the change in variance, we would
expect shifts in alleles underlying variation in gene expression
instead of shifts in alleles underlying “baseline” values of
thermal traits. This is because, even though selection favoring
better performance at intermediate temperatures should be high
(Figure 4B), we would predict minimal evolution (Figure 4C)
since the relevant traits (e.g., Topt) appear to lack additive genetic
variation (Figure 2A).

Patterns of molecular and phenotypic evolution should
be different if the variance of environmental temperature
changes faster than the mean. There appears to be substantial
genetic variation in both the critical thermal limits and the
gene expression response to thermal stress within populations
(Figures 2, 3 and Table 1). Thus, selection for performance
at extreme temperatures should favor loci that correspond to
high and low baseline values of CTmax and CTmin, respectively
(Figures 4A,D). Selection for increased gene expression plasticity
should also increase in strength as extreme weather events
become more common (Figure 4D), but the rate of change in
plasticity should decline as baseline trait values become locally
adapted (Figure 4E).

FUTURE RESEARCH DIRECTIONS

The literature on the genomic and transcriptomic basis of
thermal adaptation hints at multiple potential evolutionary
outcomes depending on the nature of environmental change.

Nevertheless, these observations should be considered
preliminary, as comparatively few studies have investigated
the quantitative genetic basis of full thermal performance curves.
Thus, estimates of heritabilities and genetic correlations
underlying performance at intermediate temperatures
(temperatures at or close to the thermal optimum) are
exceedingly rare. To our knowledge, only three studies have
estimated narrow-sense heritabilities of the thermal optimum
and performance breadth. Two of these were on lizards (Logan
et al., 2018; Martins et al., 2018) and the third was on an invasive
population of harlequin beetles (Logan et al., 2020). A fourth
study reported broad-sense heritabilities of the performance
breadth and the thermal optimum in parasitoid wasps (Gilchrist,
1996). Although a general pattern of low genetic variation
in these traits is starting to emerge from this research, we
need many more studies of the quantitative genetics of full
thermal performance curves to understand whether performance
at intermediate temperatures truly lacks rapid evolutionary
potential, or whether the patterns we report here are an artifact
of insufficient sampling.

Most studies have examined genetic variation in either the
baseline values of thermal traits or their plasticity, but rarely both.
Future work should focus on the genetic basis of baseline values
of thermal traits and their plasticity in the same populations
to tease apart the independent contribution of both to local
adaptation under environmental change. A rare example of such
a study is Gerken et al. (2015), who assessed the heritability and
genomic basis of both basal cold tolerance and its plasticity in
laboratory lines of fruit flies. They found that baseline thermal
tolerance was genetically correlated with its plasticity, implying
that adaptation is constrained when both the mean and variance
of temperature are increasing.

Our review suggests that genes in the heat shock protein
family are a likely target for selection when environments first
shift, and the evolutionary potential of these genes may be a
major determinant of populations’ resilience in the face of climate
change. Past evolution of heat shock proteins is dominated by
repeated duplications and insertion events, which might have
been followed by neofunctionalization (Waters, 1995; Franck
et al., 2004; Yamashita et al., 2004; Huang et al., 2008). At least
in some contexts, there is evidence of directional selection on
heat-shock proteins (Bettencourt et al., 2002; Fares et al., 2002).
However, we do not know whether selection acts primarily on
the coding sequences of these genes or on their upstream and
downstream regulatory regions. Future work should determine
the level of functional sequence variation underlying this family
of genes in wild populations, and the relationship between heat-
shock protein evolution and population mean fitness.

Our results suggest that the evolution of gene expression
plasticity may be particularly important in maintaining fitness
under climate change, not only because a number of thermal
traits appear to lack genetic variation in their baseline values,
but also because extreme weather events are rising in frequency.
Moreover, past research has revealed that the capacity for
gene expression plasticity can be heritable and evolve rapidly
(Gerken et al., 2015; Leder et al., 2015). Additionally, variation
in plasticity that is not genetic may persist across generations due
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FIGURE 4 | The rates at which different moments of the environmental temperature distribution change are likely to impact observed patterns of genomic and
phenotypic evolution. (A) Based on patterns of genetic variation reported in the literature, alleles underlying variation in gene expression (blue and purple regions) are
more likely to change in frequency during environmental change than alleles underlying baseline thermal tolerance. Only in cases where the change in the variance of
temperature is equal to or higher than the change in mean temperature should alleles associated with baseline trait values shift substantially (purple region). (B) If
mean environmental temperature changes faster than the variance, selection (β) should favor an increase in baseline values of traits like the thermal optimum, while
selection for increased plasticity should gradually rise as baseline values fail to evolve due to genetic constraints. (C) When mean environmental temperature
increases faster than the variance, traits that correspond to performance at intermediate temperatures (such as the thermal optimum) should evolve slowly while
plasticity increases to compensate for the lack of heritability in the baseline values of these traits. (D) When the variance of environmental temperature increases
faster than the mean, selection should favor an increase in both the baseline values of traits which correspond to performance at extreme temperatures (e.g., the
critical thermal limits) and the plasticity of such traits. (E) Because the critical thermal limits are heritable in most species, they should evolve in response to selection.
This should lead to a reduction in the rate of change in plasticity as baseline trait values become locally adapted. Note that this assumes more genetic variation is
initially present in baseline thermal tolerance than in its plasticity. The dashed and solid lines in (E) would be flipped if there was more genetic variation underlying the
plasticity of thermal tolerance than in their baseline values.
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to epigenetic mechanisms and can be important for population
persistence in the initial stages of environmental change (Geng
et al., 2013; Schlichting and Wund, 2014). Despite growing
evidence that the evolution of phenotypic plasticity may be
critical for organismal responses to climate change, it is still
unclear how selection on plasticity is manifested at the level
of the genome. Related questions that should be addressed by
future research include 1) If extreme weather events select for
higher gene expression plasticity, should we expect fast changes in
regulatory regions of the genome, non-coding regions, or both?
2) Does selection for increased phenotypic plasticity constrain
the evolution of baseline thermal tolerance (or vice versa)?
Additional studies of within-population variation in baseline
thermal tolerance and plasticity, and the genetic loci associated
with each, are sorely needed.

CONCLUSION

Our review suggests that several general rules may be emerging
from studies of the genetic and transcriptomic basis of
thermal performance:

1. In many species, there is more genetic variation in
performance at extremely high or low temperatures than
in performance at intermediate temperatures.

2. Gene expression plasticity is rampant when organisms are
exposed to acute thermal stress.

3. Patterns (1) and (2) indicate that populations are more
likely to evolve rapidly in response to extreme weather
events than in response to gradual changes in mean
temperature, and the rate at which different moments of

the temperature distribution change will determine the
dominant trajectory of phenotypic and genetic evolution.

4. Gene regulatory networks linked to heat shock
proteins are likely to be a major target of selection as
environmental temperatures become warmer and more
variable.

Finally, our work highlights the need for further studies on
the quantitative genetic basis of thermal performance curves and
the interactions between baseline thermal tolerance and gene
expression plasticity. Continued advances in this field should lead
to substantial improvements in our ability to predict the viability
of animal populations as our planet continues to change.
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GLOSSARY OF TERMS

Thermal performance curve: The mathematical relationship between an ecologically relevant metric of performance (e.g., locomotion, energy assimilation, immune
function, etc.) and organismal body temperature. These curves are often used to approximate a populations’ thermal niche and can be
sub-divided into “thermal performance traits” that describe different aspects of its shape.

Thermal performance trait: A phenotypic trait that describes performance (e.g., locomotion, energy assimilation, immune function, etc.) at one or a range of
temperatures. These traits combine to describe the shape of a population’s thermal performance curve.

Narrow-sense heritability (h2): The component of phenotypic variation in a trait that is comprised of additive genetic variation. Narrow-sense heritability describes the
capacity for a trait to respond efficiently to selection.

Broad-sense heritability (H2): The component of phenotypic variation in a trait that is comprised of both additive and non-additive genetic variation, including the
effects of dominance and epistasis. Broad-sense heritability includes forms of genetic variation that do not respond efficiently to
selection (e.g., recessive alleles that can remain hidden from selection in the heterozygous state).

Genetic correlation: Positive or negative statistical correlation between genes underlying different phenotypic traits. Genetic correlations often arise from
linkage disequilibrium or pleiotropy and can cause correlated evolution of a trait that is not itself under direct selection, but rather is
genetically correlated with a different trait that is under direct selection.

Gene expression: Transcription of mRNA from the genome, which can later be translated into a protein. All mRNA transcripts expressed in a cell, tissue,
or organism are referred to as the transcriptome.

Gene expression plasticity: The ability to alter gene expression in response to an environmental cue. This could be measured at the level of the organism (i.e., the
total number of genes that shift their expression) or at the level of an individual gene (i.e., the number and persistence of gene
transcripts).

Phenotypic plasticity: The capacity of the same genotype to produce different phenotypes in different environments. The functional basis of phenotypic
plasticity is usually gene expression plasticity.
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