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Breast cancer is the most frequent malignant tumor in women, and the estrogen
receptor (ER) plays a vital role in the vast majority of breast cancers. The purpose of
the present study was to identify the significant genes regulated by ER in ER-positive
breast cancer and to explore their expression pattern changes when tamoxifen or
fulvestrant resistance occurs. For this purpose, the gene expression profiles GSE11324,
GSE27473, and GSE5840 from the Gene Expression Omnibus database were used,
which contain gene expression data from MCF7 cells treated with estrogen, MCF7 cells
with silencing of ER, and tamoxifen- and fulvestrant-resistant MCF7 cells treated with
estrogen (17β-estradiol), respectively. Differentially expressed genes (DEGs) between
the treatment group and negative control were identified and subjected to pathway
enrichment and protein–protein interaction (PPI) analyses. There were 230 DEGs in
common among the three datasets, including 160 genes positively regulated by ER and
70 genes negatively regulated by ER. DEGs mainly showed enrichment for pathways in
cancer, progesterone-mediated oocyte maturation, RNA transport, glycerophospholipid
metabolism, oocyte meiosis, platelet activation, and so on. PPI network and modular
analysis selected three significant clusters containing 19 genes. A total of 44 genes
were involved in Kyoto Encyclopedia of Gene and Genome pathway results or PPI
modular analysis, and 16 of them were found to correlate with relapse-free survival
in patients with ER+/human epidermal growth factor receptor 2-negative breast cancer
who had undergone endocrine therapies only. Some of the genes’ expression patterns
were different among wild-type, tamoxifen-resistant, and fulvestrant-resistant MCF7
cells such as DDX18, ANAPC7, MAD2L1, RSL1D1, and CALCR, etc., indicating different
resistance mechanisms and potential prognostic markers or therapeutic targets for
fulvestrant- or tamoxifen-resistant breast cancer.
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INTRODUCTION

Breast cancer is the most frequently diagnosed cancer and
the leading cause of cancer-related death in women worldwide
(DeSantis et al., 2019). Based on current clinical findings
and basic medical research, estrogen receptor (ER) exists in
the majority of breast cancers and has a profound influence
on the occurrence and development of breast cancer (Early
Breast Cancer Trialists’ Collaborative Group et al., 2011).
Endocrine therapies, such as tamoxifen, fulvestrant, and
aromatase inhibitors, which target estrogen or ER, are useful
in breast cancer treatment (Jelovac et al., 2005; Jordan and
Brodie, 2007). However, nearly half of ER-positive breast cancer
patients will eventually fail one or more of these endocrine
interventions; the incidence of endocrine resistance is relatively
high (Clarke et al., 2015). Therefore, more reliable endocrine
therapies with efficacy- and drug resistance-related biomarkers
should be explored. These biomarkers could not only be used to
convey prognostic information, but may also offer breakthroughs
in overcoming endocrine resistance.

Gene chips, which have been used for more than a decade,
are a quick and reliable technique for exploring differentially
expressed genes (DEGs) (Vogelstein et al., 2013), and large
quantities of chip data have been produced and stored in public
databases. These databases represent a valuable achievement that
can be retrospectively analyzed based on new perspectives and
approaches. Several bioinformatics studies on malignant tumors
have been published in recent years, which provide new methods
to uncover the underlying mechanisms of the development and
progression of different types of cancers (Feng et al., 2019).

In the present study, we retrieved the gene expression
profiles GSE11324, GSE27473, and GSE5840 from the Gene
Expression Omnibus (GEO) as the primary research datasets.
These files contain gene expression data from MCF7 cells (ER-
positive breast cancer cell line) treated with estrogen, MCF7
cells with silencing of the ER, and tamoxifen- and fulvestrant-
resistant MCF7 cells treated with estrogen (17β-estradiol).
These datasets were utilized to identify the DEGs between
the treatment group and negative control, followed by gene
ontology (GO), pathway enrichment, and protein–protein
interaction (PPI) analyses. Next, the interested DEGs were
interrogated for prognostic information associated with the
relapse-free survival (RFS) of patients with ER-positive and
human epidermal growth factor receptor 2 (HER2)-negative
breast cancer who had undergone endocrine therapies only,
which can be the best to reflect the effect of endocrine
therapies and whether patients develop endocrine resistance.
Finally, we analyzed these RFS-related genes in GSE5840 gene
expression profiles, which contain the differential expression
gene information of tamoxifen- and fulvestrant-resistant MCF7
cells treated with estrogen. We wanted to find out significant
genes regulated by ER in ER-positive breast cancer and
explore their expression pattern changes when tamoxifen or
fulvestrant resistance occurs. These genes may reflect the
functional status of ER in endocrine-resistant breast cancer cells
and promise therapeutic targets for tamoxifen or fulvestrant
resistance breast cancer.

MATERIALS AND METHODS

Microarray Data
The gene expression profiles used in this study were obtained
from the NCBI-GEO, a free public data repository of microarray
and other genomic data. Three ER-positive breast cancer cell line
gene expression profiles, GSE11324, GSE27473, and GSE5840,
were chosen as the primary research datasets. GSE11324 contains
gene expression data from MCF7 cells that were stimulated
with estrogen for 0, 3, 6, or 12 h. All experiments were
performed in triplicate (Carroll et al., 2006). We compared
the gene expression data between 0 and 3, 0 and 6, and 0
and 12 h, respectively. There are nearly consistent trends in
genetic change among the three comparison groups. So we chose
the 0- and 6-h time-points to compare the gene expression
data and conducted the follow-up studies. GSE27473 contains
gene expression data of MCF7 parental cells and MCF7 cells
silencing of the ER by shRNA. These experiments were also
performed in triplicate (Al Saleh et al., 2011). GSE5840 compared
the gene expression patterns of 17β-estradiol-responsive genes
in wild-type MCF7 cells, tamoxifen-resistant MCF7 cells, and
fulvestrant-resistant MCF7 cells (the cells were treated with
17β-estradiol for 4 h). Four replicate experiments were performed
with biologically independent samples (Fan et al., 2006). These
three microarray datasets were generated with the use of the
GPL570 Affymetrix GeneChip Human Genome U133 Plus 2.0
Array. The comparison data of each dataset were uploaded as the
Supplementary Tables 1–3.

Data Processing of Differentially
Expressed Genes
The up-regulated genes when ER is activated by estrogen and
the down-regulated genes when ER is silenced may be genes
positively regulated by ER. In contrast, the down-regulated
genes when ER is activated by estrogen and the up-regulated
genes when ER is silenced may be genes that are negatively
regulated by ER. Three gene expression datasets (GSE11324,
GSE27473, and GSE5840) containing paired gene expression
data were used for the comparative analyses. DEGs in the
three datasets were identified with the GEO2R online tool
(Davis and Meltzer, 2007) using a adjust P < 0.05. Values for
log2FC > 0.5 in GSE11324 and GSE5840 (comparison data
for wild-type MCF7 cells) and log2FC < −0.5 in GSE27473
were considered to indicate genes positively regulated by ER,
whereas log2FC <−0.5 in GSE11324 and GSE5840 (comparison
data for wild-type MCF7 cells) and log2FC > 0.5 in GSE27473
were considered to indicate genes negatively regulated by ER.
Next, the raw data were plotted with the Venn diagram
software1, and the common DEGs among the three datasets
above were obtained.

GO and Pathway Enrichment Analyses
Gene ontology analysis is commonly used to define genes
and their expression products to identify unique biological

1http://bioinformatics.psb.ugent.be/webtools/Venn/
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FIGURE 1 | The diagram of the workflow and datasets.

TABLE 1 | List of the 230 common DEGs in response to ER activation or silence identified from three datasets.

ER regulating
genes

Genes name

Positively
regulated by ER

PNPT1, MREG, MAX, MED13L, CAMTA1, THADA, DDX18, CENPU, MAK16, TPBG, SLC9A3R1, FKBP4, LONRF2, KRT15, MAD2L1, IFITM10,
SYTL5, JAK2, C6orf141, ELF1, MAST4, CA12, ZC3H14, ADCY1, SLC25A24, SLC22A5, BRI3BP, LOC441155///ZC3H11A, NKAIN1, SIAH2,
CALM3///CALM2///CALM1, POLR1B, CHML, TMPRSS3, ZBTB21, RPRD1A, EIF3J, THBS1, CALCR, SLC26A2, PGR, TMEM64, ZDHHC21,
ZMYM2, PIK3R1, PTRH2, SKIL, PLA2G12A, RHOBTB1, GEMIN5, AFF3, MYB, MPPED2, NUFIP2, RPP40, DGKH, KRT13, DCLRE1B, PUS1,
RET, WWC1, SMG1P5///BOLA2///SMG1P2, KIF21A, NOP16, LRPPRC, IL17RB, EGR3, SLC7A2, NIFK, THRIL///BRI3BP, USP31, SNRPA1,
DSCAM, AKAP1, EIF5, NBPF4, TBC1D30, HSPA9, GTPBP4, SLC1A1, PUS7, LOC101928589///TMEM164, CXCL12, PPP4R3A, MLLT10,
BAZ1A, PPAT, C1orf226, LOC101060386///BOLA2///SMG1, PTP4A1, SNX24, STC2, SGO2, ADCY9, MDM4,
LOC101060275///NPIPA5///NPIPB5///NPIPB11///LOC613037///NPIPB4///NPIPB3, TTC3P1///TTC3, CAND1, CHRNA5, MTRR, MSMB,
ZNF75A, ABHD2, PKIB, AMMECR1, GABPB1-AS1, BARD1, CNOT7, MIR4657///PURB, TPD52L1, SLC19A1, GNA13, GLCCI1, ZFX, NUP35,
HDDC2, DMXL2, PIP4K2A, ELOVL2, MED13, TRNT1, GSPT1, DGKE, AGPAT5, MRPS25, C5orf22, RSL1D1, SLC16A1, SMIM13, CYP1B1,
SLC19A2, AGR3, METTL8, RFC3, GREB1, MBOAT1, NRIP1, RAPGEFL1, FAM208B, ANAPC7, NBPF1, SOX3, TPM1, TFRC, KPNA1, RLN2,
RARA, RASGRP1, MGA, TET2, SRSF1, PCDH10, PA2G4, RAB30, DEPTOR, PDZK1, IGFBP4, CHAC2, ONECUT2, SCAF11

Negatively
regulated by ER

HIC2, TMEM42, SPTBN1, CYP1A1, AHNAK, SOX9, PLEKHM3, JRK, TPGS1, SOCS3, LOC100288911, LOC100996760, PBXIP1, AJUBA,
SNORA11E///SNORA11D///MAGED4///MAGED4B, MIR4746///UBXN6, KLHL5, IL1R1, ABTB1, CTTN, RGS3, CHEK1, FZD2, PARVA,
TP53INP2, KIAA1217, CAPG, PCGF2, C10orf10, CTGF, GLMP, DDIT4, LYN, BRI3, SERPINB1, ING4, PANX2, CDKN1C, HEMK1, TBC1D2,
SHISA2, ENC1, LMNA, FBXO32, SH3BP4, HS3ST1, GATA6, ORAI3, APOBEC3B, PXN, NEDD4L, BCAR3, LOC102725292///DTX2, EXT1,
NGEF, , KRT7, ALDH1A3, UBALD2, C11orf96, SLC17A5, INO80C, TLDC1, TAGLN, IFIT1, PLEKHM1, PARP10, BCL2L1, MIR4800///MXD4,
NUMA1, GPR39

properties of high-throughput transcriptome or genome data
(Ashburner et al., 2000). Kyoto Encyclopedia of Gene and
Genome (KEGG) is a collection of databases dealing with
genomes, diseases, biological pathways, drugs, and chemical
materials (Du et al., 2014). The Database for Annotation,
Visualization, and Integrated Discovery (DAVID2) is an
online bioinformatics tool for functional annotation of
large numbers of genes or proteins (Huang da et al., 2009).
We used DAVID to perform GO and KEGG analyses of
the list of DEGs we had identified, in terms of molecular
function (MF), cellular component (CC), and biological
process (BP); the terms with a P < 0.05 would be taken
into consideration.

PPI Network and Modular Analyses
We used the online tool, STRING (Search Tool for the
Retrieval of Interacting Genes3) (Szklarczyk et al., 2015), to
extract PPI information from the list of identified DEGs.
Cytoscape (Shannon et al., 2003) was used to visualize

2https://david.ncifcrf.gov/
3https://string-db.org/

FIGURE 2 | A total of 230 common differentially expressed genes (DEGs)
were identified among the three datasets (GSE11324, GSE27473, and
GSE5840) using Venn diagrams. (A) There were 160 genes positively
regulated by ER. (B) There were 70 genes negatively regulated by ER.
Different colors represent different datasets.

these DEGs with STRING, and the PPI network was
analyzed with the MCODE (Molecular Complex Detection)
plug-in to identify the significant gene clusters (degree
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FIGURE 3 | Gene ontology (GO) analysis of the common DEGs among the three breast cancer datasets. (A) DEGs positively regulated by ER were analyzed by GO
enrichment, the top 3 in P-value ranking (sorting from small to large) in biological process (BP), cellular component (CC), and molecular function (MF). (B) DEGs
negatively regulated by ER were analyzed by GO enrichment, the top 3 in P-value ranking (sorting from small to large) in BP, CC, and MF (P < 0.05).

cutoff = 2, maximum depth = 100, k-core = 2, and node
score cutoff = 0.2). MCODE is a graph theoretic clustering
algorithm that detects densely connected regions in PPI
networks that may represent molecular complexes, and
larger, more dense complexes have higher MCODE scores
(Bader and Hogue, 2003).

Relapse-Free Survival Analyses
We used the Kaplan–Meier plotter online tool4 to explore
the RFS of patients with ER-positive/HER2-negative breast
cancer who had undergone endocrine therapies only. It was

4https://kmplot.com/analysis/
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TABLE 2 | KEGG pathway analysis of the common DEGs among the three datasets.

Term Count P-value Genes

hsa04914: progesterone-mediated oocyte maturation 6 7.80E-04 PGR, ADCY1, MAD2L1, ADCY9, ANAPC7, PIK3R1

hsa00564: glycerophospholipid metabolism 5 0.008 AGPAT5, DGKE, PLA2G12A, MBOAT1, DGKH

hsa00561: glycerolipid metabolism 4 0.013 AGPAT5, DGKE, MBOAT1, DGKH

hsa04114: oocyte meiosis 5 0.014 PGR, ADCY1, MAD2L1, ADCY9, ANAPC7

hsa03013: RNA transport 6 0.015 TRNT1, EIF5, EIF3J, NUP35, RPP40, GEMIN5

hsa05200: pathways in cancer 9 0.016 GNA13, MAX, ADCY1, RET, ADCY9, RASGRP1, RARA, CXCL12, PIK3R1

hsa04611: platelet activation 5 0.024 GNA13, ADCY1, ADCY9, RASGRP1, PIK3R1

hsa04064: NF-κB signaling pathway 3 0.045 IL1R1, LYN, BCL2L1

hsa04070: phosphatidylinositol signaling system 4 0.049 DGKE, DGKH, PIP4K2A, PIK3R1

hsa04915: estrogen signaling pathway 4 0.049 ADCY1, ADCY9, FKBP4, PIK3R1

a specific group of patients who were not interfered with
by other therapeutic strategies, and the recurrence of breast
cancer was more likely due to endocrine therapy resistance.
The Kaplan–Meier plotter for breast cancer is commonly used
to assess the effect of genes on survival; the background
database was established using gene expression data and survival
information of breast cancer patients obtained from the GEO
database (Gyorffy et al., 2010). The median of each gene
expression probe as a cutoff value splitting the patient into
high- and low-expression groups, and when a logrank P < 0.05
was considered to have the RFS difference. In this way,
the candidate genes related to endocrine therapy resistance
can be screened.

Expression Patterns Analyses of the
RFS-Related Genes
We compared the gene expression data of the RFS-
related genes in GSE5840 dataset, which contains the
gene expression information of wild-type, tamoxifen-
resistant, and fulvestrant-resistant MCF7 cells treated
with estrogen. Differences among groups were analyzed
by the Student’s t-test, one-way analysis of variance
and least significant difference, and Student–Newman–
Keuls post hoc test. P < 0.05 was considered to be
statistically significant.

Workflow
The diagram of the workflow and datasets is shown in Figure 1.

RESULTS

Identification of Genes Regulated by ER
in MCF7 Cells
Three datasets containing paired gene expression data, namely,
GSE11324, GSE27473, and GSE5840, were analyzed in the
present study. The up-regulated genes when ER is activated by
estrogen and the down-regulated genes when ER is silenced
may be genes positively regulated by ER. In contrast, the
down-regulated genes when ER is activated by estrogen and
the up-regulated genes when ER is silenced may be genes
that are negatively regulated by ER. Using the GEO2R online

tool, we identified 1,833, 5,209, and 2,163 genes meeting
the standard to be positively regulated by ER in GSE11324,
GSE27473, and GSE5840, respectively. Meanwhile, there were
993, 4,887, and 1,845 genes to be negatively regulated by
ER in GSE11324, GSE27473, and GSE5840, respectively. Venn
diagrams were used to obtain the common DEGs among the
three datasets. There were 230 common DEGs associated with ER
activation or silence, comprising 160 genes positively regulated
by ER and 70 genes negatively regulated by ER (Table 1 and
Figure 2).

GO and KEGG Pathway Analyses for ER
Regulating Genes
All 230 common DEGs were analyzed with the DAVID functional
annotation tool, which included the functional categories
of BP, CC, MF, and KEGG pathways. For BP, the genes
positively regulated by ER mainly showed enrichment for the
negative regulation of apoptotic process, negative regulation
of cell migration, and adenylate cyclase-activating G-protein-
coupled receptor signaling pathway (P < 0.05). The genes
negatively regulated by ER mainly showed enrichment for
the negative regulation of transcription, tissue homeostasis,
and negative regulation of intracellular signal transduction
(P < 0.05). For CC, the ER positively regulating genes were
mainly enriched for the nucleoplasm, nucleolus, and membrane
(P < 0.05). Moreover, the ER negatively regulating genes
were mainly enriched for the cytoplasm, cytosol, and cell–
cell adherens junction (P < 0.05). For MF, the ER positively
regulating genes were mainly enriched for RNA binding and
transcription coactivator activity (P < 0.05). The ER negatively
regulating genes were mainly enriched for protein binding, actin
binding, and cadherin binding involved in cell–cell adhesion
(P < 0.05) (Figure 3).

Kyoto Encyclopedia of Gene and Genome pathway
enrichment analysis demonstrated that ER might regulate genes
along pathways associated with cancer, progesterone-mediated
oocyte maturation, RNA transport, glycerophospholipid and
glycerolipid metabolism, oocyte meiosis, platelet activation,
phosphatidylinositol signaling system, estrogen signaling
pathway, and nuclear factor κB (NF-κB) signaling pathway
(P < 0.05). The genes involved in each pathway are listed
in Table 2.
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FIGURE 4 | The protein–protein interaction (PPI) network among the common DEGs was constructed and then subjected to modular analysis with Cytoscape
software and the MCODE plug-in (degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and maximum depth = 100). (A) The PPI network complex, including 89
nodes and 149 edges. The nodes meant proteins; the edges meant the interaction of proteins; three major clusters were identified by MCODE plug-in and labeled by
red, orange, and blue colors. (B) The cluster with the top MCODE score (score = 8.0) contained 8 nodes and 28 edges labeled red. (C) The cluster with the
second-highest MCODE score (score = 6.0) contained 6 nodes and 15 edges labeled orange. (D) The cluster with the third-highest MCODE score (score = 5.0)
contained 5 nodes and 10 edges labeled blue.

PPI Network and Modular Analyses
The common DEGs identified among the three datasets were
imported into STRING online tool to analyze the PPI network.
A total of 89 of the 230 DEGs were contained into the
PPI network complex, including 89 nodes and 149 edges
(Figure 4A). Moreover, we applied MCODE, a plug-in of the
Cytoscape software for further analysis. Three major clusters
were identified according to the MCODE score. The cluster
with the top MCODE score (score = 8.0) contained 8 nodes
and 28 edges: PUS7, POLR1B, MAK16, RSL1D1, NIFK, PA2G4,

GTPBP4, DDX18 (Figure 4B). Followed by the cluster (MCODE
score = 6.0), which contained 6 nodes and 15 edges: NEDD4L,
SOCS3, SIAH2, KLHL5, ANAPC7, and,FBXO32 (Figure 4C).
The cluster with the third-highest MCODE score (score = 5.0)
included 5 nodes and 10 edges: ADCY9, ADCY1, GPR39, CALCR,
and,RLN2 (Figure 4D).

Relapse-Free Survival Analyses
Genes involved in the KEGG pathways or major PPI clusters
were imported into the Kaplan–Meier plotter online tool to
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analyze associations between the genes’ expression and RFS from
patients with ER-positive/HER2-negative breast cancer who had
undergone endocrine therapies only. It was a specific group
of patients who were not interfered with by other therapeutic
strategies, and the recurrence of breast cancer was more likely
due to endocrine therapy resistance. Among these, the expression
of 16 genes was found to be significantly associated with RFS
(P < 0.05), whereas the other 28 genes had no significant
associations (Table 3). The 16 genes were ADCY9, ANAPC7,
CALCR, CXCL12, DDX18, EIF3J, FKBP4, GEMIN5, GTPBP4,
MAD2L1, MAX, NUP35, POLR1B, PUS7, RSL1D1, and SOCS3
(Figure 5). In this way, the candidate genes related to endocrine
therapy resistance could be screened.

Expression Patterns Analyses of the
Screened Genes Among Wild-Type,
Tamoxifen-Resistant, and
Fulvestrant-Resistant MCF7 Cells
We analyzed the expression data of the 16 RFS-related genes
in GSE5840 dataset, which contains comparison data, including
wild-type MCF7 cells treated with 17β-estradiol versus negative
control [dimethyl sulfoxide (DMSO)], tamoxifen-resistant MCF7
cells treated with 17β-estradiol versus negative control (DMSO),
and fulvestrant-resistant MCF7 cells treated with 17β-estradiol
versus negative control (DMSO). First, we compared the
gene expression data among wild-type, tamoxifen-resistant, and
fulvestrant-resistant MCF7 cells in the negative control groups.
There were different gene expression patterns among the three
cell lines. For instance, the genes such as ANAPC7 and DDX18
were significantly up-regulated (log2FC > 0.5 and P < 0.05)
in the fulvestrant-resistant cells, and the MAD2L1, RSL1D1,
and CALCR were significantly up-regulated (log2FC > 0.5 and
P < 0.05) in the tamoxifen-resistant cells; all the comparison
results are shown in Figure 6. Then, we analyzed the gene
expression data among the three kinds of cell lines treated with
estrogen or DMSO (negative control) (Figure 7). Comparing
with wild-type cells, nearly all of the genes’ expression levels
changed less in fulvestrant-resistant cells when treated with
estrogen. However, in tamoxifen-resistant cells, the change
patterns of gene expression under the estrogen treatment
were similar to that of wild-type cells except for DDX18,
CXCL12, FKBP4, NUP35, MAD2L1, RSL1D1 (changed less), and
CALCR (changed more).

DISCUSSION

Estrogen and ER play essential roles in the development
and progression of ER-positive breast cancer. At the same
time, the phenomenon of endocrine therapy resistance occurs
frequently and complicates patient management (Rani et al.,
2019). However, the regulatory network of the ER has not
yet been fully elucidated (Bhuva et al., 2019). The present
study used bioinformatics methods to interrogate three gene
expression datasets from MCF7 cells treated with estrogen,
MCF7 cells subjected to the silencing of the ER, and

TABLE 3 | The prognostic value (RFS) of the selected genes in patients with
ER-positive/HER2-negative breast cancer who had undergone
endocrine therapies only.

Category Genes

Genes significantly
associated with RFS
(P < 0.05)

ADCY9, ANAPC7, CALCR, CXCL12, DDX18, EIF3J,
FKBP4, GEMIN5, GTPBP4, MAD2L1, MAX, NUP35,
POLR1B, PUS7, RSL1D1, SOCS3

No significant
associations with RFS
(P > 0.05)

ADCY1, AGPAT5, BCL2L1, DGKE, DGKH, EIF5,
FBXO32, GNA13, GPR39, IL1R1, KLHL5, LYN,
MAK16, MBOAT1, NEDD4L, NIFK, PA2G4, PGR,
PIK3R1, PIP4K2A, PLA2G12A, RARA, RASGRP1, RET,
RLN2, RPP40, SIAH2, TRNT1

These genes were involved in the KEGG pathways or major PPI clusters. RFS,
relapse-free survival.

tamoxifen- and fulvestrant-resistant MCF7 cells treated with
17β-estradiol, respectively. By using these datasets, the function
of the ER could be explored from different perspectives.
Not only did we perform GO and KEGG pathway analyses,
but also screened RFS-related genes and explored their
expression pattern changes in tamoxifen- and fulvestrant-
resistant cells.

There are two classes of ER, including nuclear ER
(intracellular receptor) and membrane ER (mostly G-protein-
coupled receptor) (Razandi et al., 1999). For nuclear ER
(ERα and ERβ), once activated by estrogen, the ER can
translocate into the nucleus and regulate the activity of different
genes (Yasar et al., 2017). In the present study, GO and
KEGG analyses showed that ER positively regulating genes
were mainly localized in the nucleoplasm, nucleolus, and
membrane, involving biological processes such as negative
regulation of apoptotic process and adenylate cyclase-
activating G-protein-coupled receptors signaling pathway,
which were corresponding to the two forms of ER as the
nuclear receptor and the membrane receptor. The molecular
functions such as RNA binding and transcription coactivator
activity could create conditions for genetic transcription and
cell proliferation. Meanwhile, the biological processes for
ER negatively regulating genes were negative regulation of
transcription and negative regulation of intracellular signal
transduction, further reflecting the main functions of the
two forms of ER.

DEGs involved in the KEGG pathways or major PPI
clusters were analyzed with Kaplan–Meier plotter to determine
whether there were any associations between these genes and
the RFS of patients with ER-positive/HER2-negative breast
cancer who had undergone endocrine therapies only. It is a
specific group of patients who were not interfered with by
other therapeutic strategies; such analysis may best reflect the
interplay between ER-regulated genes and the development
of endocrine resistance. ADCY9, ANAPC7, CALCR, CXCL12,
DDX18, EIF3J, FKBP4, GEMIN5, GTPBP4, MAD2L1, MAX,
NUP35, POLR1B, PUS7, RSL1D1, and SOCS3 were found to be
significantly associated with RFS. We subsequently analyzed the
expression patterns of these genes among wild-type, tamoxifen-
resistant, and fulvestrant-resistant MCF7 cells. Interestingly
enough, nearly all of the genes’ expression level changed
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FIGURE 5 | Kaplan–Meier plotter was used to analyze associations between the expressions of the genes involved in the KEGG pathways or major PPI clusters and
relapse-free survival (RFS) in patients with ER-positive/HER2-negative breast cancer who had undergone endocrine therapies only. This analysis identified 16 of 44
genes as being associated with a significantly different RFS (P < 0.05).

less when treated with estrogen in fulvestrant-resistant cells
compared with the wild type, indicating that the function of
ER is weakened or disappeared in fulvestrant-resistant MCF7
cells. Fulvestrant is a selective ER degrader; it works by

binding to and destabilizing the ERs (Lai and Crews, 2017).
If ERs ceased to function in breast cancer cells, fulvestrant
resistance would be occurring. ANAPC7 and DDX18 were ER
positively regulating genes in wild-type MCF7 cells. However,
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FIGURE 6 | The comparisons of the screened RFS-related genes’ expression among the wild-type, tamoxifen-resistant, and fulvestrant-resistant MCF7 cells (treated
cells with DMSO) in GSE5840 dataset (*P < 0.05, **P < 0.01, ***P < 0.001).

they were significantly up-regulated in the fulvestrant-resistant
cells without estrogen treatment, speculating that these genes
may play essential roles in promoting the survival of fulvestrant-
resistant breast cancer cells.

When tamoxifen-resistant cells were treated with estrogen,
the expression change patterns of many genes were similar
to that of wild-type cells, suggesting that the function of ER
exists in tamoxifen-resistant MCF7 cells. As the selective ER
modulator, tamoxifen blocks the effects of estrogen by attaching
to the ERs in breast cells (Goodsell, 2002). The existence of
functional ERs explains why fulvestrant treatment may still

be effective when tamoxifen resistance occurs. Meanwhile, in
the negative control groups, MAD2L1, RSL1D1, and CALCR
were found to be significantly up-regulated in the tamoxifen-
resistant cells compared with wild-type cells. It was speculated
that these genes might play crucial roles in tamoxifen-resistant
breast cancer cells.

Dead-box RNA helicase 18 (DDX18) is an essential factor
in cell cycle progression in zebrafish hematopoietic cells and
is mutated in some patients with acute myeloid leukemia
(Payne et al., 2011). Redmond et al. (2015) identified DDX18
as a novel driver of endocrine resistance in breast cancer.
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FIGURE 7 | Analyses of the RFS-related genes’ expression data among the wild-type, tamoxifen-resistant, and fulvestrant-resistant MCF7 cells under the treatment
of estrogen or DMSO in GSE5840 dataset. (A) Heat map of the gene expression data in six groups (wild-type MCF7 cells treated with 17β-estradiol or DMSO,
tamoxifen-resistant MCF7 cells treated with 17β-estradiol or DMSO, fulvestrant-resistant MCF7 cells treated with 17β-estradiol or DMSO). (B) The comparisons of
gene expression between the 17β-estradiol treatment group and negative control (treated with DMSO) for wild-type MCF7 cells. (C) The comparisons of gene
expression between the 17β-estradiol treatment group and negative control for tamoxifen-resistant MCF7 cells. (D) The comparisons of gene expression between
the 17β-estradiol treatment group and negative control for fulvestrant-resistant MCF7 cells (*P < 0.05, **P < 0.01, ***P < 0.001).

They found a significant inhibition of the proliferation of
endocrine-resistant cell lines based on an increased G1 phase
cell population when DDX18 was silenced. By analyzing
clinical samples, they discovered that the mRNA levels of
DDX18 were significantly correlated with poor prognosis in
breast cancer patients (Redmond et al., 2015). It is consistent
with our results. High expression of DDX18 was correlated
with significantly worse RFS in ER-positive/HER2-negative
breast cancer patients who had undergone endocrine
therapies only, and the expression level of DDX18 was
continuously high in the fulvestrant-resistant breast cancer
cells. Naorem et al. (2019) investigated six microarray

datasets from the Gene Expression Omnibus consisting of
405 triple-negative breast cancer (ER/PR/HER2-negative,
TNBC) and 463 non-TNBC samples and identified 1,075
DEGs; DDX18 was 1 of 12 up-regulated genes identified
as essential by a machine learning-based feature selection
method (Naorem et al., 2019). In the present study, we found
that the function of the ER is weakened or disappeared
in fulvestrant-resistant MCF7 cells, suggesting that these
cells might possess the characteristics of TNBC. With the
DDX18 exhibits significantly higher expression in TNBC
and is no longer regulated by ER in fulvestrant-resistant
MCF7 cells. These phenomena suggest that DDX18 might
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play a vital role in endocrine therapy resistance and that
its activity might confer characteristics of TNBC onto
ER-positive breast cancer.

ANAPC7 gene encodes a tetratricopeptide repeat-containing
component of the anaphase-promoting complex/cyclosome
(APC/C), a multisubunit ubiquitin ligase that is essential
for mitosis by targeting a number of cell cycle regulators
such as cyclin B1 and promoting timely degradation
(Wild et al., 2018). Reducing the activity of APC/C delays
mitotic progression, whereas APC/C activity loss is lethal
(Magnuson and Epstein, 1984; Wirth et al., 2004). In our
study, high expression of ANAPC7 was correlated with
significantly worse RFS in the specific cohort of breast
cancer patients, and the expression level of ANAPC7
was continuously high in the fulvestrant-resistant breast
cancer cells. Considering the vital function of APC/C in
eukaryotic cells mitosis (Pines, 2011), ANAPC7 might
play an essential role in fulvestrant resistance, and
ANAPC7 (anaphase-promoting complex subunit 7) was
expected to be a novel biomarker or therapeutic target for
fulvestrant-resistant breast cancer.

Other up-regulated genes such as GEMIN5 and POLR1B
(values of log2FC were between 0 and 0.5, and P < 0.05)
might also be associated with fulvestrant resistance. Gem
nuclear organelle associated protein 5 (Gemin5) is an RNA-
binding protein that was identified as a component of the
survival of motor neurons (SMN) complex (Pineiro et al.,
2015). The SMN complex plays a critical role in mRNA
splicing and may mediate the assembly and transport of
other classes of ribonucleoproteins (Massenet et al., 2002).
GEMIN5 codes Gemin5; alteration of GEMIN5 expression
may play a role in alternative mRNA splicing and tumor
cell motility (Lee et al., 2008). Recently, a study reported
that POLR1B is up-regulated in non-small cell lung cancer
and may serve an important modulator of lung cancer cell
proliferation (Yang et al., 2020). Our research added to the
understanding of GEMIN5 and POLR1B genes, and they
might serve as biomarkers for fulvestrant resistance in ER-
positive breast cancer.

In tamoxifen-resistant cells, MAD2L1, RSL1D1, and CALCR
were found to be significantly up-regulated compared with the
wild-type cells. MAD2L1 (mitotic arrest deficient 2 like 1) plays
an essential role in supervising chromosome segregation as the
component of spindle checkpoint during mitosis (Guo et al.,
2010). Studies showed that MAD2L1 presented overexpression
in breast cancer and was significantly associated with higher
clinical stage, higher histological grade, aggressive tumors, and
worse disease-free survival (Wang et al., 2015; Zhu et al., 2017).
RSL1D1 (ribosomal L1 domain containing 1) is a nucleolar
protein that has been demonstrated to delay cellular senescence
and serve as an independent prognostic factor in prostate cancer
(Li et al., 2016). CALCR (coding calcitonin receptor) has similar
gene expression patterns to MAD2L1 and RSL1D1 in tamoxifen-
resistant MCF7 cells; the expression of these genes was all
correlated with worse RFS in ER-positive/HER2-negative breast
cancer patients who had undergone endocrine therapies only. In
addition, compared with the wild-type MCF7 cells, the expression

level of MAD2L1, RSL1D1, and CALCR was significantly up-
regulated in tamoxifen-resistant cells even without estrogen
treatment. However, there has not been sufficient research on
the relationship between the proteins coded by these genes
and endocrine therapy resistance in breast cancer. Therefore,
MAD2L1, RSL1D1, and CALCR might be promising candidates
for further research in endocrine therapy-resistant breast cancer
as potential therapeutic targets or prognostic markers.

By identifying the significant genes interacting with the
ER and their expression pattern changing when tamoxifen
or fulvestrant resistance occurs, we not only can obtain a
better understanding of this essential receptor’s regulatory
network but also can speculate some possible mechanisms of
endocrine resistance. The main assumptions are as follows:
(1) in fulvestrant-resistant breast cancer cells, the expression
change of most estrogen-regulated genes was not evident
under estrogen treatment, indicating that the function of
ER is weakened or disappeared in fulvestrant-resistant
cells. Fulvestrant works by destabilizing the ERs, and if
ERs ceased to function in breast cancer cells, fulvestrant
resistance would occur. (2) DDX18 and ANAPC7 might
play a vital role in fulvestrant-resistant breast cancer cells
because of their crucial functions in cell cycle progression
and eukaryotic cells mitosis (Pines, 2011; Redmond et al.,
2015) and continuous overexpression in the fulvestrant-
resistant breast cancer cells. So they were expected to be
novel biomarkers or therapeutic targets for further study.
(3) In tamoxifen-resistant breast cancer cells, the expression
changes of many genes were similar to wild-type cells under
estrogen treatment, suggesting that the ER’s function exists
in tamoxifen-resistant cells, and explaining that fulvestrant
treatment might still be valid when tamoxifen resistance
occurs. (4) Some genes such as MAD2L1, RSL1D1, and CALCR
were found to be significantly up-regulated in the tamoxifen-
resistant cells, indicating that tamoxifen might not completely
block the estrogen signaling in tamoxifen-resistant breast
cancer cells. These highly expressed genes would be potential
biomarkers for tamoxifen resistance, and suppression of them
might be an important direction to overcome tamoxifen
resistance in the future.

In summary, this bioinformatics analysis study identified
the significant genes regulated by ER in ER-positive
breast cancer cells. As endocrine resistance in ER-positive
breast cancer is likely to be attributable to the abnormal
regulation of ER network, the expression pattern changes
of these genes were explored in tamoxifen- and fulvestrant-
resistant breast cancer cells. Although these predictions
need to be further validated, the present study provided
useful insights regarding potential biomarkers and the
pathomechanisms of ER-positive breast cancer resistant to
endocrine therapy.
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