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Mendelian and complex genetic trait diseases continue to burden and affect society both
socially and economically. The lack of effective tests has hampered diagnosis thus, the
affected lack proper prognosis. Mendelian diseases are caused by genetic mutations
in a singular gene while complex trait diseases are caused by the accumulation
of mutations in either linked or unlinked genomic regions. Significant advances
have been made in identifying novel diseases associated mutations especially with
the introduction of next generation and third generation sequencing. Regardless,
some diseases are still without diagnosis as most tests rely on SNP genotyping
panels developed from population based genetic analyses. Analysis of family genetic
inheritance using whole genomes, whole exomes or a panel of genes has been shown
to be effective in identifying disease-causing mutations. In this review, we discuss next
generation and third generation sequencing platforms, bioinformatic tools and genetic
resources commonly used to analyze family based genomic data with a focus on
identifying inherited or novel disease-causing mutations. Additionally, we also highlight
the analytical, ethical and regulatory challenges associated with analyzing personal
genomes which constitute the data used for family genetic inheritance.

Keywords: family genetic inheritance, next generation sequencing, third generation sequencing, genetic variants,
phenotypic traits

INTRODUCTION

Many Mendelian and complex genetic diseases remain unknown despite extensive diagnostic
efforts (Shashi et al., 2013). Conventional diagnostic testing methods in most cases return
inconclusive results with only less than half of cases receiving a genetic diagnosis (Shashi
et al., 2013). Consequently, affected individuals remain without diagnosis and can therefore
not be provided with treatment, proper prognosis, beneficial information and appropriate
clinical guidance (Stoller et al., 2005). Although Mendelian diseases and complex genetic
diseases are individually rare, collectively they affect millions of individuals and families causing
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negative socioeconomic implications (Angelis et al., 2015; Stoller,
2018). The absence of reliable diagnostic procedures further
impedes progress in the development of effective preventative
and therapeutic interventions.

Conventional diagnostic testing methods involve clinical
assessment followed by laboratory testing. Molecular tests
identify candidate gene regions which are subjected to linkage
analysis using multiple polymorphic markers within families
and individuals that show variation in the trait of interest for
positional mapping of the genes (Leal and Speer, 2000). In
most cases, large genomic regions containing multiple genes are
identified limiting the likelihood of pinpointing the causative
genes. Additional information such as phenotype segregation
within families or sets of families under examination may be
required to narrow down the region of interest and for validation
of putative causative genes (Dawn Teare and Barrett, 2005).
This approach requires prior understanding of the diseases’
etiology and is therefore only useful whenever such information
is available. Other tests such as chromosomal microarray and
metabolic testing may be inadequate (Engbers et al., 2008;
Miller et al., 2010).

Traditional molecular testing methods greatly relied on Sanger
sequencing technology (Sanger et al., 1977). Though efficient
for sequencing few short DNA fragments, it is tedious and
ineffective when sequencing large sequence fragments. Recent
advances in genome sequencing have led to the development of
next generation sequencing (NGS) technologies (Morey et al.,
2013; Reuter et al., 2015; Heather and Chain, 2016). NGS
refers to a collection of technologies that utilize massively
parallel sequencing approaches producing millions of short read
sequences in a much shorter time, at a much cheaper cost and
with higher throughput compared to Sanger sequencing.

NGS-based methods used to analyze genetic variation and
their association to particular phenotypes mainly involve
case-control study designs with unrelated individuals. These
study designs are prone to population stratification bias
(PSB) due to genetic differences in ancestry between cases
and controls (Freedman et al., 2004). PSB could lead to
underrepresentation of de novo variants with significant
association or overrepresentation of these variations, especially
in the absence of association (Thomas and Witte, 2002). Although
PSB can be corrected by sampling to enhance homogeneity,
false positives could arise even in well-designed studies due
to sufficient variation of genetic ancestry (Laird and Lange,
2009). Alternatively, statistical methods could be applied (Price
et al., 2006). In cases where variants do not follow Mendel’s
law of segregation, family based genetic analyses methods have
been used to identify genomic features that do not fall under
typical inheritance patterns or to select candidate variants that
may be further evaluated (Roach et al., 2010; Wijsman, 2012;
Bahlo et al., 2014; Kothiyal et al., 2019).

Family based genetic analysis especially those involving family
trios or quartets are crucial for identifying and/or confirmation
of rare and common genetic variants (Hansen et al., 2017;
Stajkovska et al., 2018; Toptas et al., 2018). In particular, analysis
of family trios or quartets provides an effective strategy for
the identification of de novo mutations that may be linked to

disease (Glazov et al., 2011; Jin et al., 2018). Compared to
typical variants found in any individual, de novo mutations
occur at low frequencies and it is quite common that these
mutations are overlooked or considered sequencing errors by
traditional genetic association analyses strategies (Conrad et al.,
2011; Acuna-Hidalgo et al., 2016; Erickson, 2016; Jónsson et al.,
2017). Importantly, analysis of family trios or quartets could
be used to benchmark variant calling tools in the absence of a
reliable “reference” set, aiding sample selection and as a quality
control step to improve variant calling and filtering (Bailey-
Wilson and Wilson, 2011; Chen et al., 2014; Pilipenko et al.,
2014; Teare and Santibanez Koref, 2014; Nutsua et al., 2015;
Kómár and Kural, 2018).

The quality of data offered by NGS combined with
affordable costs, improved data handling capabilities, increased
computational power and efficient bioinformatics analyses tools
have immensely facilitated the integration of NGS-based genetic
analysis strategies in clinical diagnostics and genetic medicine
(Koboldt et al., 2013a; Horton and Lucassen, 2019; Posey, 2019).
In this review, we provide an overview of next generation
sequencing strategies used for family based genetic analysis to
detect genetic variants implicated in Mendelian and rare complex
genetic diseases in research and clinical settings. We also discuss
the currently available bioinformatics analyses programs and
pipelines and considerations that may aid future studies or
analytical design.

NGS PLATFORMS

Currently available NGS platforms apply different approaches
to achieve high-throughput sequencing. The differences in
sequencing approach in turn influences the sequencing quality,
quantity and choice of application. The general approach for a
typical NGS run begins with genomic DNA extraction from test
samples, library preparation which involves DNA fragmentation,
ligation of adaptors, adaptor sequencing, and sample enrichment
and finally sequencing (Buermans and den Dunnen, 2014).
Several NGS platforms that are currently available (Heather and
Chain, 2016; Levy and Myers, 2016).

Illumina
Illumina1, is perhaps the most popular among currently available
NGS platforms offering various scalable options that complement
requirements of different study designs, cost of sequencing
and intended use of the sequencing data (Voelkerding et al.,
2009; Buermans and den Dunnen, 2014). These properties
present clients with affordable choices and flexibility when
designing their studies. Illumina offers a method for selecting
an optimum sequencing platform via its sequencing platform
comparison tool2. The various Platforms produce varying
amount of sequencing reads at different sequencing run
times (Table 1).

1https://www.Illumina.com
2https://emea.Illumina.com/systems/sequencing-platforms/comparison-tool.
html
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TABLE 1 | Popular NGS platforms Illumina, IonTorrent, and BGI/MGI.

Technology Sequencing platform Read length (bp) Data output Run time Recommended application

Illumina NovaSeq 6000 System
NextSeq 550 System
HISeq 3000/4000 System
HiSeq X Series

150 PE*
2.4–3.0 Tb
100–200 Gb
up to 1.5 Tb
1.6–1.8 Tb

44 h
29 h
4 days
3 days

WGS, WES, PGS

Ion Torrent Ion GeneStudio S5 System
Ion GeneStudio S5 Plus System
Ion GeneStudio S5 Prime System
Ion PGM 314 System
Ion PGM 316 System
Ion PGM 318System
Ion Proton System (Ion PI Chip)

200 SE
400 SE
200 SE
400 SE
600 SE
200 SE
200 SE
400 SE
200 SE
400 SE
200 SE
400 SE
up to 200

10–15 Gb
20–30 Gb
40–50 Gb
30–50 Mb
60–100 Mb
300–600 Mb
600 Mb–1 Gb
600 Mb–1 Gb
1.2–2 Gb
up to 15 Gb

19 h
10 h
12 h
2.3 h
3.7 h
3.0 h
4.9 h
4.4 h
7.3 h
2.5 h

WGS, WES, PGS

BGI/MGI DNBSEQ-T7
DNBSEQ-G400/MGISEQ 2000/BGISEQ 500
DNBSEQ-G400 FAST
DNBSEQ-G50/MGISEQ 200/BGISEQ 50

100 PE, 150 PE
400 SE, 100 PE, 150 PE,
200 PE
100 SE, 150 PE
50 SE, 100 SE, 50 PE,
PE100

6 Tb
18.75–1,080 Gb
330 Gb
10–150 Gb

24 h
∼78 h
12–13 h
10–64 h

WGS, WES, PGS
WGS, WES
PGS
PGS

The sequencing performance specifications are as per company description.
bp, base pair; WGS, whole genome sequencing; WES, whole exome sequencing; PGS, targeted generation sequencing; SE, Single-End reads; PE, Paired-End reads;
Gb, Gigabytes; Tb, Terabytes.
*Applies to all sequencers.

Ion Torrent
IonTorrent3 sequencing platform provides more or less the same
sequencing efficiency in terms of speed and quantity as Illumina.
IonTorrent unlike Illumina which uses fluorescent labeling to
detect newly synthesized nucleotides uses a semiconductor
technology. Detection of newly synthesized nucleotides is
based on measuring hydrogen ions released during DNA
polymerization using solid state pH meters. Although this
method offers shorter sequencing run times compared to
Illumina for similar sequence data, there are concerns about
the sequencing error rates especially with long sequence
homopolymers (Buermans and den Dunnen, 2014; Heather and
Chain, 2016; Besser et al., 2018). IonTorrent offers various
platforms which support whole genome sequencing (WGS),
panel gene sequencing (PGS) and whole exome sequencing
(WES) and molecular clinical applications (Table 1).

Complete Genomics Technology
Complete Genomics technology was developed by Beijing
Genomics Institute (BGI) and MGI Tech Co. Ltd. (MGI), a
subsidiary of BGI4. Complete Genomics technology involves
sequencing by ligation, PCR free rolling circle amplification
(RCA) and DNA nanoball (DNB) nanoarrays (Goodwin et al.,
2016), a process better known as combinatorial probe-anchor
synthesis (cPAS) (Fehlmann et al., 2016). NGS sequencing
platforms offered by BGI/MGI are adopted for various

3https://www.thermofisher.com
4https://www.bgi.com

sequencing applications such as WGS, WES, PGS, transcriptome
sequencing, microbial sequencing, epigenetics, and clinical
applications (Table 1). In terms of equipment performance
for instance, sequencing runtime, sequencing quality and
throughput, BGI/MGI sequencers are comparable to other
NGS sequencers including Illumina (Fehlmann et al., 2016;
Zhu et al., 2018).

Third Generation Sequencing (3GS):
PacBio and Oxford Nanopore
Recently, newer sequencing platforms commonly referred to as
Third Generation Sequencing (3GS) have been developed with
the aim of sequencing long genomic regions (Reuter et al.,
2015; van Dijk et al., 2018). The ultra-long reads produced
by these sequencing platforms eliminate the need for the
computationally expensive and time-consuming assembly steps
of NGS sequencing. Additionally, it allows for identification
of structural variants which is not always easy when using
short read NGS data.

SMRT (Single Molecule Real Time) sequencing offered
by Pacific Bioscience5 is able to generate sequence reads of
up to 20 Kbs. According to company description, SMRT
sequencing has been adopted for applications such as WGS,
PGS, RNA sequencing, sequencing of complex populations
and for epigenetic studies. Additionally, PacBio have developed
a workflow for detecting variants including single nucleotide
variants, INDELs and structural variants from the SMRT long

5https://www.pacb.com

Frontiers in Genetics | www.frontiersin.org 3 October 2020 | Volume 11 | Article 544162

https://www.thermofisher.com
https://www.bgi.com
https://www.pacb.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-544162 October 18, 2020 Time: 19:7 # 4

Kanzi et al. Analysis of Family Genetic Inheritance

read sequences. PacBio RSII is associated with high error rates,
however, the new SMRT Sequel II platform is able to generate
longer reads at higher throughput and quality at an affordable
cost (Table 2).

Oxford Nanopore Technologies (ONT)6 is the newest entry
in this category offering scalable and portable features that
enhance flexibility in terms of laboratory setup. This platform was
developed for short to ultra-long read sequencing of DNA/RNA
sequences producing high yields especially for large genomes.
See reviews by Reuter et al. (2015), Heather and Chain (2016),
and Levy and Myers (2016). NGS library preparation is tedious
and time consuming. Oxford Nanopore provides a simple,
rapid, and library preparation which could be automated thus,
does not require extensive training or experience. ONT’s major
desirability is the size of the sequencing devices. MinION
and FLONGLE for instance are pocket size sequencers thus,
enabling mobile genetic testing. The desktop options including
GridION and PromethION which produce high throughput
sequencing data are easily portable compared to next generation
sequencers (Table 2).

Other long read sequencing technologies that are still in early
development stages, such as Helicos single molecule sequencing
marketed by SeqLL LLC, are yet to achieve effective long
read sequencing with efforts still underway. Complete Genome
Technology developed by Complete Genomics advances the
sequencing by ligation technique used by SOLiD (Supported
Oligonucleotide Ligation and Detection) achieving longer
sequencing reads and lower error rates in repetitive genomic
regions. See review by Ambardar et al. (2016). GnuBIO by BioRad
(Hercules, California, United States) is based on microfluidic and
emulsion technology. Sequencing is performed on a droplet of
DNA effectively simplifying the library preparation step (Klein
et al., 2015; Macosko et al., 2015).

There are continued efforts to improve the current state of
DNA sequencing mainly to improve the quality, length of DNA
sequence, shorten the sequencing procedure and reduce the
cost of sequencing. These innovations and discoveries will ease
implementation of NGS and 3GS in human genetic research and
clinical diagnostic laboratories. In clinical diagnostics, increased

6https://nanoporetech.com

sequencing accuracy will guarantee specificity and sensitivity,
enabling appropriate disease diagnosis and treatment.

NGS STRATEGIES FOR FAMILY BASED
GENETIC ANALYSIS

Family Based Genome Wide Association
Studies
Genome wide association studies (GWAS) is a study method
used to detect associations between a genome-wide set of genetic
variants and phenotypic traits of individuals within a population,
see reviews by Visscher et al. (2012, 2017). Population based
GWAS is, however, unable to explain the estimated heritability of
the genetic variants detected. To compensate for this limitation,
GWAS has been used in combination with linkage analysis to
identify both common and rare variants using family based
association approach (Benyamin et al., 2009; Ott et al., 2011;
Saad and Wijsman, 2014; Ge et al., 2019). For instance, a family
based GWAS by Bohman et al. (2017) was able to identify
several genes that were implicated in chronic rhinosinusitis
with nasal polyps. These genes did not show the genome-wide
significant association of 5.0 × 10−8. Without linkage analysis
these candidate genes could have been overlooked. Using a
similar approach Herold et al. (2016) were able to detect with
statistical significance novel variants near, or in three genes that
influence the onset of Alzheimer’s disease. Mullin et al. (2016)
were able to identify two genes associated with bone mineral
density using a family based GWAS approach. Using a similar
approach, a study by Costantino et al. (2017) was able to identify
an association of spondylarthritis with MAPK14 in a large cohort
of multiplex families. Elsewhere, O’Brien et al. (2016) were able
to identify novel variants associated with susceptibility to young-
onset of breast cancer in a cohort of sisters and their parents.

There are benefits to using family based GWAS (Wijsman,
2012). This approach combines both association and linkage
analysis unlike population based GWAS which only provide
association analysis (Almlöf et al., 2019). This approach is
thus, able to perform genetic analyses that otherwise cannot
be conducted on a sample of unrelated individuals. Family
based GWAS also offers protection against spurious association

TABLE 2 | Long-read sequencing platforms.

Technology Platform Read length (bp) Data output Run time Recommended applications

PacBio SMRT RS II
Sequel
Sequel II 2.0

∼20 Kb
8–12 Kb
∼15 Kb

up to 1 Gb
3.5–7 Gb
160 Gb/ SMRTcell

4 h
30 Min–6 h

WGS, PGS

Oxford NanoPore Flongle
MinION
GridION Mk1
PromethION

5–200 Kb♣

2 Mb longest♣

1.8 Gb
30 Gb
250 Gb
up to 4 Tb

Real time+
WGS*, PGS

PacBio SMRT and Oxford NanoPore sequencing platforms currently available. The descriptions provided are from company product specifications.
bp, base pair; Kb, kilobase; WGS, whole genome sequencing; PGS, targeted generation sequencing; Gb, Gigabytes; Tb, Terabytes.
*Small whole genome sequences.
♣All Nanopore sequencers read the entire DNA/RNA fragment presented.
+Applies to all Nanopore sequencers.
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due to population substructure and provides robustness against
difficulties in genetic interpretation and misspecification of the
phenotype model. This approach also allows for identification of
genotyping errors and testing whether variants are inherited or
de novo. These properties make family based GWAS useful in the
initial and replication stages of a GWAS study and the selection
of appropriate markers (Laird and Lange, 2009).

Family based GWAS is not without disadvantages. Like
population based GWAS, it relies on large pedigrees (Herold
et al., 2016; Bohman et al., 2017). Recruiting such large numbers
of related individuals could be challenging. The large sample size
is essential for achieving realistic effective size, but it does come
with additional costs and logistical challenges whilst complicating
the experimental design. Also, genotypes required for GWAS
are normally typed using SNP-chips incorporating hundreds of
thousands of SNPs. The genotyping process may introduce errors
that may impact genotype calling and classification in addition
to its expensive cost. Although, advances have been made to
improve data cleaning and genotype calling algorithms, missing,
or misclassification errors may not be entirely eliminated.
In family based GWAS, these errors can be identified by
determining the plausibility of the off-spring’s genotype given
the parental genotypes. While it would be logical to exclude
misclassified genotypes from the dataset, removing them could
result in inflated significance levels (Laird and Lange, 2009).
Apart from cleaning genotyping errors, family based GWAS
requires an additional step to filter Mendelian inconsistencies
where genotypes violating Mendel’s genetic inheritance law
are identified and excluded from the dataset. The robustness
of family based GWAS is derived from its design which is
conditional and almost model free, however, this approach may
at times lack associating statistical power comparable to for
instance, population based GWAS (Laird and Lange, 2006, 2009).

Target Specific Sequencing
Target specific sequencing restricts search for genetic variants to
the genomic regions of interest. These regions are decided upon
based on previous genetic information regarding the disease
under investigation. Target specific sequencing approach utilizes
gene panels containing a set of genes known to be associated
with the disease or phenotype under study. These panels could
be purchased with pre-selected content or they could be custom
made to contain genomic regions or genes of interest. Advantages
of using this approach include low cost of sequencing due to the
smaller genomic region considered. The small genomic regions
being sequenced allow for higher sequencing depths which
enhances detection of rare genetic variants, short insertions
and deletions (INDELs), copy number variants (CNVs), alleles
occurring at low frequencies and causative or inherited mutations
all in a single assay (Lin et al., 2012).

Panel Gene Sequencing (PGS)
PGS involves selective enrichment of genes or genomic regions
known to be associated with diseases, biological function or
pathways as suggested by other genetic analysis. Genomic regions
commonly targeted include exons, introns, promoter sequences,
or other highly conserved regions of biological significance.

Previously, Sanger sequencing technology was used to sequence
each of these genomic regions, however, more efficient methods
based on NGS platforms have been developed. Currently there
are two approaches employed for targeted gene capture including
hybridization-based and non-hybridization-based approaches.
See review by Lin et al. (2012) for more gene capture methods.
This method is attractive for detection of genetic variants
associated with monogenic diseases or traits where variants are
directly associated and are localized to specific genomic regions
(Gulilat et al., 2019).

The design strategy of target specific sequencing allows
for detection of causative variants making it well-suited for
analysis of family genetic inheritance. A study by Okazaki et al.,
in 2016 used targeted gene approach to test for Mendelian
disorders in 17 families that made up a total of 20 syndromic
and non-syndromic patients (Okazaki et al., 2016). In their
study, a panel consisting of 4,813 genes associated previously
characterized clinical phenotypes were sequenced using the
TruSight One panel (Illumina, San Diego, CA). Their analysis
was able to positively identify causative variants in approximately
50% of the syndromic patients and approximately 17% for
the non-syndromic patients. Overall, in this study the targeted
gene sequencing approach using NGS outperformed traditional
genetic testing methods such as karyotyping and chromosomal
microarray analysis. This study also reported better performance
of the targeted gene sequencing approach compared to WES
(Okazaki et al., 2016).

PGS is advantageous in that it eliminates superfluous data that
could negatively impact the analysis by using a select number of
genes linked to or associated with the diseases or traits of interest.
This significantly reduces the computational resources required
for storage and analysis which is a common problem that is
encountered in WGS and WES projects which generate massive
amounts of sequence data. WGS and WES also require extensive
bioinformatics work that adds to the total cost of sequencing
which are not necessary in PGS assays. The cost of WES and WGS
has since become affordable, however, it could still be costly when
the sequences of more than one individual are required. Despite
its advantages, the appealing quality of PGS is also perhaps its
biggest limitation in that only variants within the selected genes
can be analyzed (Dillon et al., 2018). Targeted gene sequencing
assumes that the suspected variants are casual, and the genetic
disease is monogenic. As such, this approach is unreliable for
genetic diseases that are caused by variants in multiple unlinked
genes that may not be included in the targeted gene panel.

Whole-Exome Sequencing (WES)
Whole exome sequencing involves the capture and sequencing
of all the known protein-coding sequences or exome. In most
cases, WES covers approximately 22,000 protein coding genes
encoded in the human genome. This approach is also able to
capture sequences flanking the coding sequences that may harbor
genetic variants (Guo et al., 2012). WES platforms primarily rely
on hybridization using oligonucleotide probes to capture the
targeted exonic regions for enrichment and library preparation
(Keats et al., 2018). Prepared libraries can be sequenced with a
NGS platform of choice.
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The Illumina HiSeq platform is by far the most popular choice
(Chen et al., 2015; Marshall et al., 2015) but the Ion Torrent
platform is also frequently used (Franceschi et al., 2017).

The rationale behind the use of WES for genetic analysis of
Mendelian and complex diseases is based on the premise that
most (over 85%) Mendelian disorders tend to be caused by
defects in protein sequences (Kryukov et al., 2007; Stenson et al.,
2009; Ng et al., 2010). Additionally, protein coding sequences
show higher success rates in identifying variants for monogenic
diseases (Antonarakis and Beckmann, 2006). Implementation of
WES in clinical genetic diagnosis has had significant success
rates (Gorski et al., 2016; Gambin et al., 2017; Mueller et al.,
2018). The rate of molecular diagnostic success is seemingly
higher when using WES for common disease traits, non-specific
phenotypes and rare variants that are non-syndromic compared
to other traditional molecular clinical diagnostic tests as shown
in studies by e.g., Yang et al. (2013, 2014); Drew et al. (2015), and
Long et al. (2015).

WES analysis provides an efficient approach for identifying
rare and de novo mutations (Zhang, 2014; Posey et al.,
2019). For instance, rare genetic variants associated with
complex diseases such as schizophrenia have been identified
using WES data sets from family trios (Singh et al., 2017).
A study conducted by Franceschi et al. (2017) using WES of
a family trio with a history of Li–Fraumeni syndrome was
able to identify a novel mutation which developed de novo in
the mother and transmitted to the child. Another study by
Chen et al. (2019) reported a de novo pathogenic mutation
in WES of family trios with epileptic encephalopathy. The
efficiency of WES in detecting variants, especially when applied
to family trios provides an accurate means to differentiate
between sequencing errors and actual biological variation
(Bahlo et al., 2014; Retterer et al., 2015; Eldomery et al., 2017;
Wright et al., 2018).

Whole Genome Sequencing (WGS)
WGS is a process by which the entire DNA sequence of any
organism is determined. In the case of humans, this includes
the chromosomal DNA and mitochondrial DNA. Previously,
due to unaffordable costs, NGS was limited to panel-based
SNP arrays and targeted gene sequencing approaches. However,
current affordable WGS costs (less than $1,000 per genome in
the Illumina NovaSeq or BGI/MGI platforms), have incentivized
the use of WGS in genetic research and more recently in
clinical genetic diagnosis (Fang et al., 2017; Posey, 2019;
Rexach et al., 2019).

According to the latest release of the human reference genome
(GRCh38), the complete set of protein-coding sequence or
exome only constitutes approximately 3.09% (over 90 million
nucleotides) of the genome. Although, most Mendelian diseases
are caused by deleterious mutations found within the exome
(Ng et al., 2010), genetic variations occurring outside the exome
sequences that could have significant genetic implications have
been identified (Guo et al., 2012). Sequences other than exons
include untranslated intergenic regions and introns which have
been suggested to alter the regulation of gene expression thereby
affecting observed phenotypes.

Analysis of WGS data increases the likelihood of identifying
novel variants residing in genomic regions that are not
commonly targeted by panel-based and targeted gene
sequencing approaches. When applied to families, WGS
provides qualitatively unique data compared to that obtained
from multiple unrelated individuals. This approach enhances
identification of sequencing errors and comprehensive mapping
of inheritance states, thus enabling the detection of genomic
features showing Mendelian inconsistencies such as copy
number variations, and hemizygous deletions (Roach et al.,
2010; Kothiyal et al., 2019). For instance, a study using WES
data was unable to detect a mutation causing IMAGe syndrome
in an imprinted gene (Hamajima et al., 2013). However, using
WGS data from a family trio, an IMAGe syndrome causing
mutation was identified in an imprinted gene in the proband,
thus providing a diagnosis of IMAGe syndrome (Bodian et al.,
2014). Imprinted genes do not follow Mendelian inheritance
laws, and therefore may be missed especially when methods used
are reliant on these laws.

Using WGS in family genetic analysis provides the power to
differentiate between sequencing errors and actual mutations.
This has been illustrated in a genetic study of a family quartet
where candidate genes causing Miller syndrome and primary
ciliary dyskinesia in both offspring were precisely identified
(Roach et al., 2010). Using WGS, it is also possible to not
only identify variants caused by SNPs but also those caused
by DNA deletions and insertions (INDELs), structural variants
(SVs), and copy number variants (CNVs). Additionally, it is
possible to reconstruct the recombination events leading to these
variations as shown by Fang et al. (2017) in a study of Prader–
Willi Syndrome.

LINKAGE ANALYSIS IN THE ERA OF NGS

Before NGS, the analysis of Mendelian diseases and other non-
disease inheritable traits was achieved using linkage analysis. See
Bailey-Wilson and Wilson (2011), for detailed review of linkage
analysis in the era of NGS. Linkage analyses aim to find genomic
loci containing more than the expected number of co-segregating
alleles among affected family members. The assumption here is
that, therein, lies the linked genomic loci or genes responsible
for the disease in question. This characteristic makes linkage
analysis an effective method for identifying rare high-risk disease
alleles, however, it is less effective in identifying alleles conferring
moderate risk for disease compared to methods such as GWAS.
See review (Carlson et al., 2004).

In the advent of NGS, the application of linkage analysis for
the identification of disease-causing alleles has been overtaken
by methods such as GWAS, PGS, and WGS. However, it is not
uncommon for NGS based studies on Mendelian and complex
genetic diseases to complement their analysis with linkage
analysis. For instance, a genome wide linkage analysis involving
972 bipolar pedigrees was able to locate with significance a
genomic region with variants linked with the disease (Badner
et al., 2012). Linkage analysis has been used in combination
with WES (e.g., in another study of familial goiter) to inform
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selection of candidate genes for exome sequencing (Yan et al.,
2013) and to identify novel candidate genes for familial colorectal
cancer (Toma et al., 2019). Combining linkage analysis with
NGS based methods provides the ability to differentiate between
novel variants and sequencing artifacts or analytical errors
in studies involving multiple unrelated individuals, however,
rare variants are expected to co-segregate within a family
(Bailey-Wilson and Wilson, 2011).

BIOINFORMATICS PIPELINES FOR
VARIANT CALLING AND ANALYSES

General Variant Calling Workflow Using
WES and WGS Data
When searching for single nucleotide variants (SNVs) or INDELs
in sequence data, different tools are used at various intermediate
steps. A typical workflow is to sequence the whole genome or
exome, perform quality control and trim, align to a high-quality
reference, identify SNVs or short INDELs, and finally to annotate

the variants (Figure 1). The GATK7 best practices workflows
could serve as a guide when setting up variant analysis pipelines.

In the first step, WGS and WES data is subjected to a
quality assessment step to remove contaminants such as adapter
sequences and poor quality sequences. FastQC is a tool is a tool
used to perform quality checks on NGS data providing modular
analyses including pre-base analysis of sequencing reads aimed
at identifying sequencing problems that may affect downstream
analyses (Andrews, 2017). Based on FastQC output, programs
such as Trimmomatic (Bolger et al., 2014) can be used to trim
adapter sequences and poor-quality reads. These programs are
run independently which could affect the outcome of the quality
control assessment. For uniformity and reproducibility, fastp
(Chen et al., 2018) combines quality control, adapter trimming,
and quality filtering in a workflow that is run once.

The second step involves read alignment of the WGS or WES
data to the reference genome. It is advisable to use the latest
version of the human genome assembly from the 1000 Genomes

7https://gatk.broadinstitute.org/

FIGURE 1 | A typical NGS based variant analysis workflow. DNA samples are obtained after clinical, physical assessments and initial molecular diagnosis. WES is
preferred for mendelian-type diseases and WGS for unknown or suspected de novo variants. Before performing variant analysis, NGS data is pre-processed to
remove poor quality sequences. Thereafter, alignment of sequence reads to a reference genome or chromosome, alignment sorting, duplicate removal, variant
calling and annotation is performed.
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project. The process of aligning the raw reads to the reference
genome is the most important and often contentious step in the
entire workflow. Several tools have been developed to facilitate
this crucial step. Among the popular read aligners include BWA
(MEM and sample) (Li and Durbin, 2009), Bowtie2 (Langmead
and Salzberg, 2012), CUSHAW3 (Liu et al., 2014), MOSAIK (Lee
et al., 2014), and Novoalign8. While these aligners will generate
comparable alignments, MOSAIK’s major attraction is that it
can align sequence reads from all major sequencing platforms.
In terms of computational efficiency CUSHAW3 outperforms
BWA-MEM and Bowtie2. Novoalign is computationally efficient,
however, it is a commercial product that can be used with
Illumina, Ion Torrent and 454 sequencing platforms.

The third step that follows after performing sequence
alignment is variant calling. Variant calling involves comparing
aligned reads to the reference and identifying nucleotide
variations and INDELS. Popular variant callers such as Genome
Analysis Tool Kit HaplotypeCaller (GATK-HC) (McKenna et al.,
2010), Samtools mpileup (Li et al., 2009), Freebayes (Garrison
and Marth, 2012), SNPSVM (O’Fallon et al., 2013), RTG (non-
commercial version 3.9.1)9, DeepVariant (Poplin et al., 2018),
varScan (Koboldt et al., 2013b), and Torrent Variant Caller
(TVC) (Life Technologies, Rockville, MD), are widely used in
genomic variant analyses. VarScan has recently been extended
to also identify variants from Samtools mpileup output BAMs
(Koboldt et al., 2013b).

In most cases, any aligner can be used together with any of
the variant callers. However, low concordance has been reported
among the different combinations of the aligners and variant
callers as they are influenced by a number of factors including; (1)
The sequencing platform used to sequence the data. For example,
only Tmap and TVC can be used on Ion Proton data. They
also cannot be used for data generated from other sequencing
platforms. (2) Quality of the dataset can affect the rate of precision
and recall rates of the pipeline. (3) The type of variant of interest,
whether SNP or INDEL. Assessment of outputs from different
aligner-caller pairs shows that performance can vary based on
the type of variant. INDELs are particularly more difficult to
call. (4) GC content of the genomic region (Liang et al., 2019).
For example, GATK can detect SNPs in the low GC-content
region with a relatively low error rate while RTG and VarScan
are more suitable for detecting SNPs in high GC-content region
when calling de novo SNPs. Detailed explanation of these factors
has been documented in other reviews (Reinert et al., 2015;
Mielczarek and Szyda, 2016). A growing trend is to use the
methods ensemble and produce a consensus call set that contains
variants called by the most methods.

To simplify the process of variant calling, several automated
workflows have been developed that combine different aligners
and variant calling tools, coupled with further up and down
stream tools to form a complete end to end solution. Some of
these pipelines have been compared thus, aiding the selection
process for a suitable variant calling pipeline (Hwang et al.,
2015). Here we review the relevant freely available alternatives.

8http://novocraft.com/
9https://www.realtimegenomics.com/news/rtg-core-3-9-rtg-tools-3-9-released

To facilitate the choice of a pipeline, ToTem (Tom et al.,
2018), a tool for automated pipeline optimization has thus been
developed. It can be used to test whole pipelines from raw
reads or focussing only on the final variant filtering phases.
SeqMule (Guo et al., 2015) is an automated variant calling
platform designed to overcome the problem of low concordance
across variant calling tools. It integrates five alignment tools
i.e., BWA (including BWA-backtrack and BWA-MEM), Bowtie,
Bowtie2, SOAP2, SNAP, and five variant calling algorithms i.e.,
GATK (including GATKLite and version 3), SAMtools, VarScan
2, Freebayes, SOAPsnp, and allows various combinations of them
via modifying a text-based human-readable configuration file.
The intersection of sets of variants from different combinations
of tools is used to achieve higher accuracy. Consensus Variant
Calling System (CoVaCS) is an automated, highly accurate system
with a web-based graphical interface for genotyping and variant
annotation of NGS data. It is able to analyze WGS, WES, and PGS
data, performing all steps from quality trimming of sequences
to variant annotation and visualization. It implements VarScan,
GATK, and Freebayes, with a final call set as the consensus call
among tools (Chiara et al., 2018).

Some pipelines integrate many variant calling tools for
increased sensitivity. Appreci8 (Sandmann et al., 2018) is an
automated variant calling pipeline integrating eight different
tools to perform valid variant calling. It can be used for calling
single nucleotide variants or short INDELs. It works based on
a novel artifact-and polymorphism score. BAYSIC (BAYeSian
Integrated Caller) is a variant caller that summarizes SNP variant
calls produced by different programs. BAYSIC differs from other
consensus-based methods in that it calculates independent false
positive and false negative error rates for each input method.
The user is able to define cut-off values for the tolerable error
rates by supplying a suitable posterior probability threshold
thus, controlling specificity and sensitivity (Cantarel et al., 2014).
Consensus-based methods are effective in reducing error rates,
however, it has been shown that some of these tools require
normalization. To ensure uniformity vt normalize a tool that
normalizes all VCF entries to ensure that they are unambiguous
and concisely represented (Tan et al., 2015) could be used.

The process of variant calling can be difficult especially when
there are conflicting results from different calling tools. This
process becomes even more complicated when there is a high
rate of false positives and false negatives. Programs such as
geck (Kómár and Kural, 2018) compare differential precision
of variant calls from two different tools thereby assisting in
determination of variant calls.

Specialized Pipelines for Family Based
Variant Analysis
Some variant callers are designed for analysis of NGS from family
members. For instance, novoCaller is a read level variant caller
that can be used to identify SNPs from pedigree or population
based NGS data. This method has been widely used in studies
of family trios (Mohanty et al., 2018). FMFilter is an easy to
use inheritance model-based tool for analyzing variants from
NGS data generated for the analysis of Mendelian diseases
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(Akgün et al., 2016). It has been developed to work with
family based NGS data and requires minimal bioinformatics
experience and computational resources to run. FamPipe (Chung
et al., 2016) is an automatic analysis pipeline for analyzing
sequencing data in families for disease studies. It includes several
family specific analysis modules, including the identification of
shared chromosomal regions among affected family members,
prioritizing variants assuming a disease model, imputation of
untyped variants, and linkage and association tests (Chung
et al., 2016). FamSeq incorporates family information from the
Mendelian genetic model into variant calling process (Peng
et al., 2014). dv-trio (Ip et al., 2020) incorporates family trio
information from the Mendelian genetic model into variant
calling. This program is based on DeepVariant (Poplin et al.,
2018) variant caller that uses a deep neural network to call genetic
variants. DeNovoGear is a de novo variant calling software that
analyses somatic and familial sequencing data. The program
uses likelihood-based models to filter out false positives and
fragment information predict the parental origin of identified
variants. The choice of a family based variant caller could be
based on the experimental design, computational efficiency and
quality of output.

GENETIC RESOURCES FOR VARIANT
ANALYSIS

The first fully annotated genome was generated by The Human
Genome Project10. Afterward, the HapMap Project (International
HapMap Consortium et al., 2007) produced a haplotype map of
the human genome. Currently, The genome build by The 1000
Genomes Project (The 1000 Genomes Project Consortium et al.,
2015) provides information on common human genetic variation
with significant implications for common genetic diseases and
genetic maps of locations of disease causing variants. The
International Genome Sample Resource (IGSR)11 maintains the
1000 Genomes Project data which is currently the standard
reference genome ensuring regular updates and free access.

While the 1000 Genome Project samples across populations, it
may not represent some populations. The Genome Aggregation
Database or gnomAD12 contains summarized exome and genome
sequencing data retrieved from a variety of large-scale sequencing
projects. The datasets in this database include SNPs and SVs
generated from whole genomes and exome sequences from
unrelated individuals as part of disease-specific and population
genetic studies. gnomAD provides summary data suitable for
diagnosis of disease causing genetic variants. The UK biobank
samples over 500,000 volunteer participants for genotyping. The
genetic data available from this database include high quality
genotype calls, extensive information on the SNPs, population
structure and imputed data. Information regarding specific
genomic loci is provided through an integrated database13. This is

10https://www.genome.gov/human-genome-project/results
11https://www.internationalgenome.org/
12https://gnomad.broadinstitute.org/
13http://biobank.ctsu.ox.ac.uk/crystal/gsearch.cgi

particularly useful when analyzing variants suspected of causing
Mendelian diseases. The information in this database is freely
available to researchers and clinicians.

The National Center for Biotechnology Information (NCBI)
supports a wide range of genome analyses through various
databases. These include The Database of Genotypes and
Phenotypes (dbGaP) an archive of studies investigating the
interaction between genotype and phenotype (Mailman et al.,
2007), the Database of Genomic Structural Variation (dbVar)
an archive of human genomic variations including insertions,
deletions, translocations and inversions (Church et al., 2010),
and the Database of Short Genetic Variations (dbSNP) an
archive of SNPs and other variants with detailed information
regarding population frequency, genotype data, and mapping
information clinical implications (Sherry et al., 2001). ClinVar14

is a database of interpretations of clinical significance for human
variants. ClinVar uses Human Genome Variation Society (HGVS)
nomenclature and MedGen identifiers for genetic conditions
(Landrum et al., 2016). MedGen15 database provides information
about conditions and phenotypes related to medical genetics.
Search results are linked to relevant databases where the primary
data can be found.

Genotyping using SNPs has been crucial in determining
variants associated with disease. Databases such as GWAS
Catalog16 and GWASdb17 are archives of GWAS data. GWAS
Catalog extracts traits, SNP-trait associations and sample
metadata from published GWAS studies. The database is
searchable, visualisable and can be downloaded for integration
into other resources. GWASdb archives and curates traits/disease
associated SNPs, their functional annotations and disease
classifications collected from current GWAS studies. GWASdb
provides an interactive interface to facilitate research and help
clinicians to fully exploit available GWAS data. The SNP data
from these two databases could be used to design related
studies and for analyzing genotyping data. Other helpful genome
variation resources include the European Variation Archive18 and
the Human Variome Project19 that archive curated information
on all types of genetic variation and their associated effects from
all species and in human genomes, respectively.

Most of the databases discussed above primarily archive
genes and variants. While they provide detailed and annotations
and effects on human health, they may not provide clinically
tailored information. Disease specific databases such as ClinGen
or The Clinical Genome Resource20 provides comprehensive
information on the relationship between genes and human
health with defined clinical relevance. The database is equipped
with tools that enable efficient acquisition of actionable disease
information. Similar databases include DisGeNET21 a large

14https://www.ncbi.nlm.nih.gov/clinvar/
15https://www.ncbi.nlm.nih.gov/medgen/
16https://www.ebi.ac.uk/gwas/
17http://jjwanglab.org/gwasdb
18https://www.ebi.ac.uk/eva
19https://www.humanvariomeproject.org/
20https://www.clinicalgenome.org/
21https://www.disgenet.org/
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collection of genes and variants associated with human diseases,
The Monarch Initiative22 that enables phenotype to genotypes
analysis by a semantics based approach, eDGAR23 a database
of gene and disease relationships, MalaCards24 a searchable
database of human diseases linked to the GenCards–Human
Gene Database, Orphanet25 an encyclopedia of rare diseases and
associated genes, and Geno2MP26 a browser that enables users to
link genotypes to mendelian phenotypes.

Locus-specific databases (LSDBs) archive collections of
curated sequence variants in genes associated with disease. The
Online Mendelian Inheritance in Man or OMIM27 is a catalog
of human genes and associated diseases. The database has a
collection for all known Mendelian diseases and over 15 000
comprehensively annotated genes. LSDBs like OMIM are crucial
for interpretation and classification genetic variation in research
and clinical diagnostic results. Due to the numerous number of
LSDBs, The Locus Specific Database list28 is a searchable database
that eases search for LSDBs for specific diseases.

CLASSIFYING GENETIC VARIANTS

Once variants have been identified, an important next step is
to annotate each variant according to its genomic location,
predict its functional effect on a gene and prioritize those that
are beneficial or deleterious (filtering). Variants can generally
be classified as neutral, beneficial, deleterious/harmful, or as
frameshift. Neutral variants include synonymous variants and
these neither harm nor help, beneficial mutations provide
an advantage such as conferring protection against disease
while deleterious mutations are harmful and may increase
the likelihood of conditions such as cancer. Beneficial/harmful
mutations also referred to as non-synonymous alter the function
of proteins. Frameshift mutations, results from a deletion or
insertion of a nucleotide altering every subsequent codon.

Scoring of variants is necessary in order to identify the
harmful subset (Eilbeck et al., 2017). Tools for scoring deleterious
mutations include Polyphen—A web-based tool to predict the
impact of amino acid substitutions on the structure and function
of a human protein (Adzhubei et al., 2013) and SIFT (sorting
intolerant from tolerant) also a web server designed to predict
whether an amino acid substitution is deleterious (Sim et al.,
2012). A newer version, SIFT 4G, which is much faster and
enables computations on reference genomes is also available
(Vaser et al., 2016). Other tools include SnpEff (Cingolani et al.,
2012), Variant Effect Predictor (VEP) (McLaren et al., 2016)
and SeqAnt (Shetty et al., 2010). Tools such as ANNOVAR
(Wang et al., 2010), Variant Annotation and Filter Tool (VarAFT)
are able to predict and annotate variants and incorporating
information related to Mendelian diseases. ClinVar could be used

22https://monarchinitiative.org/
23http://edgar.biocomp.unibo.it/gene_disease_db/
24https://www.malacards.org/
25https://www.orpha.net/
26https://geno2mp.gs.washington.edu/Geno2MP
27https://www.omim.org/
28https://grenada.lumc.nl/LSDB_list/lsdbs

for identification of medically important variants and associated
phenotypes (Landrum et al., 2016). ClinVar output is interlinked
with dbSNP (Sherry et al., 2001) and dbVar (Landrum et al., 2014)
and MedGen (Louden, 2020) databases. Annotations generated
could be viewed using genome browsers such as the ENSEMBL29

and UCSC Genome Browser30. These browsers provide links to
databases such as OMIM, ClinGen, and ClinVar among others
for further functional analysis.

In order to increase prediction accuracy, it is recommended
to use more than one of the tools above and compare the
results. Predictions where two or more tools are in agreement
confer more confidence. An even better approach is to use
a tool such as Combined Annotation–Dependent Depletion
(CADD) (Rentzsch et al., 2018) which objectively integrates many
diverse annotations into a single measure (C score) for each
variant. CADD scores help interpret the genomes of patients
with Mendelian diseases caused by high-penetrance mutations
and also prioritize low-penetrance variants found in genome-
wide association studies. Furthermore, CADD accurately predicts
variants in non-coding regions. A substantial number of SNVs
with high CADD scores in noncoding variants have been
observed, supporting the hypothesis that mutations in regulatory
regions contribute to many diseases. CADD is regularly updated
implying that the scores keep improving as more annotations are
made available. Variant annotation, prediction and prioritization
facilitates the application of variants analysis results to clinical
practice for diagnosis, prediction and treatment.

Interpretation of variant functional predictions and
annotations could be complicated depending the level of
individual capacity. As such, the American College of Medical
Genetics and Genomics (ACMG) and the Association for
Molecular Pathology (AMP) have published standards and
guidelines for the interpretation of sequence variants (Richards
et al., 2015). Using these guidelines, Clinical Genome Resource
(ClinGen) Pathogenicity Calculator, a configurable system and
web service for the assessment of pathogenicity of Mendelian
germline sequence variants was developed (Rivera-Muñoz
et al., 2018) to support clinical and research investigations.
ClinVar terms such as pathogenic, protective, risk factor could
be used to describe variants that could be considered for further
characterization (Kalia et al., 2017). The use of NGS for clinical
application is still growing and is bound to experience challenges
(Jamuar and Tan, 2015).

CLOUD-BASED BIOINFORMATICS
SERVICES FOR ANALYSIS GENOMIC
DATA

Analyzing massive genomic data may require advanced
computational resources which may be expensive to acquire
and manage. Additionally, researchers and clinicians may
not have the computing and/or bioinformatics capacity to
organize the various computational tools available into workable

29http://www.ensembl.org
30https://genome.ucsc.edu/
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pipelines for their analysis. High-performance computing (HPC)
environments that require advanced computational platforms
are commonly used for NGS projects. While HPC’s may be
effective for computational analysis, the issue of limited storage
space or computational power are common. Cloud computing
could provide a solution to this challenges by offering on demand
availability of computer systems resources including storage and
computing power over the Internet. The application of cloud
computing for bioinformatics and genomics analysis have been
reviewed (Zhou et al., 2013; Langmead and Nellore, 2018; Navale
and Bourne, 2018). Cloud-based genomic analysis platforms
such as Terra31 and Seven Bridges are32 have been developed to
accelerate biomedical research including NGS analysis. A list of
available open-source and commercial cloud-based NGS tools
have been have been described by Bani Baker et al. (2020).

SELECTING AN NGS AND
BIOINFORMATICS STRATEGY

The choice in strategy for NGS largely depends on the type
of genetic disease in the case of clinical diagnosis, or the
question to be answered within a research setting (Figure 2).

31https://terra.bio/
32https://www.sevenbridges.com/

In clinical genetics, sequencing and analysis methods should
be well-validated to produce accurate and consistent data that
can be reliably used to make clinical decisions. This is very
critical considering the psychological, economic, and social
implications such information will have on people if and when
a hereditary disorder is detected or not. Therefore, appropriate
and validated methods spanning from the pre-analytical to the
post-analytical phases are crucial in such instances (Zook et al.,
2014; Gargis et al., 2015; Highnam et al., 2015). Moreover, prior
understanding of the methods for analyzing molecular data is an
important consideration in deciding the choice of NGS method.
For instance, different NGS methods generate varying sizes of
sequencing data, as well as variations in sequence data output
[i.e., FASTQ, FAST5, binary base call (BCL)], that require specific
methods for analysis. Making these prior considerations helps
to save time and money by streamlining the processes and by
producing data that meets the requirements for clinical diagnosis.

Different strategies can also be considered depending on
whether sequencing is being done for known diseases, multi-
gene diseases, or unknown diseases. When a particular disease
is known, as well as its clinical features and association with
a specific gene, single-gene testing is a more appropriate
approach. This approach has an advantage of focusing only on
a single gene which results in the known phenotype. However,
specialized clinical expertise is paramount with such an approach
(Xue et al., 2015). For multi-gene diseases, gene panels are a

FIGURE 2 | A general next-generation sequencing (NGS) based genetic testing workflow. This is a general guideline for choosing an NGS strategy for analyzing
genetic diseases that do not have any known molecular test. (A) Single gene testing is suitable when the clinical presentations fit a known disease. If the test is
inconclusive, PGS, WES or WGS could be the next approach. (B) Panel gene sequencing (PGS), could be used where multiple genes are suspected while (C) (WES)
and (D) (WGS) could be implemented if clinical assessments are inconclusive and in cases where there are no known genetic tests. The illustrated workflow was
modified from Shashi et al. (2014).
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more feasible strategy for sequencing. Instead of testing one
gene at a time, NGS gene panels simplify sequencing and add
analytical sensitivity to the diagnostic test. With this strategy,
all possible genes associated with a clinical outcome can be
targeted at once, or a conservative approach can be used to
target only specific genes strongly associated with a disorder.
Whichever the strategy used, it is important to understand that
some genes which are linked with a disease based exclusively
on association studies, do not always result in the expected
phenotype. A more pragmatic approach would be to first choose
genes that are certainly associated with disease, then genes
associated with disorders that have overlapping phenotypes with
those of the primary disorders (i.e., for differential diagnosis),
and then choose whether to include genes for certain phenotypes
associated with syndromic and non-syndromic forms (Xue et al.,
2015). For unknown diseases, whole exome sequencing (WES)
is the most reasonable strategy to diagnostic testing. WES does
not need hypothesis-driven targeted approaches of sequencing
specific genes. However, the interpretation of results is better
informed when complemented with a thorough history and
background information on the phenotype (Xue et al., 2015).
Ultimately, the strategy used could aid as a screening tool and
has to be sensible enough to provide accurate clinical diagnosis.

The size of the gene, sequence quality, number of reads, and
depth of coverage required should be used to direct the choice of
the NGS application used. For instance, WGS can help to identify
genetic variants which affect phenotypes that are transmissible
from parent to offspring. However, it is expensive to produce
WGS to a depth that is sufficient to find variants that affect
phenotypic expression (Warr et al., 2015). In such cases, target
specific sequencing such as WES would be preferable, as the
human exome is only∼3% of the genome, exons average <200 bp
in length, and WES only focuses on the coding region of the
genome (Meienberg et al., 2015). This allows for sequencing of
only the relevant regions without incurring the cost of sequencing
the entire genome.

When sequencing larger genome sizes and or in de novo
sequencing, long read sequencing becomes preferential, as short
reads tend to be more challenging to reconstruct, especially
around homologous and repetitive sequence regions (Mantere
et al., 2019). One of the major limitations to long read sequencing,
however, is the higher chances of sequencing errors. In some
cases, this may be overcome by increasing the sequencing
coverage, and using optimized filtering strategies (Kraft and
Kurth, 2019; Mantere et al., 2019). Alternatively, subsequent short
read sequencing can be used to optimize for any errors in long
read sequencing data (Goodwin et al., 2015).

The time and cost taken to produce results remains a
significant limiting factor for most NGS platforms, especially
amongst short read sequencing technologies, as library
preparations can be time consuming, and batching of samples
before processing is required in most cases to reduce the cost
of sequencing (Colman et al., 2019; Mayday et al., 2019).
Considering the two most popular NGS platforms Illumina and
Ion Torrent, both have a range of products that are optimized
for speed, cost and amount of sequence data produced (Misyura
et al., 2016; Jennings et al., 2017). Illumina provides the lowest

cost per base while Ion Torrent generates sequence data faster.
In clinical diagnostics and research, these factors would affect the
choice of sequencing platform differently, while also providing
complementarity. Comparisons between Ion Torrent and
Illumina platforms have highlighted Ion Torrents’ suitability for
application in clinical diagnostics including automated library
preparation, ease of use and speed, however, Illumina offers more
accuracy and flexibility (Alekseyev et al., 2018).

While calculating cost, often times the required computational
resources both for data storage and bioinformatics analysis
required tend to be overlooked. These could be costly especially
if NGS strategies like WES or WGS are chosen for studies or
tests that require more than one individual. The availability
of bioinformatics and computational capacity should also be
considered. Therefore, the choice of NGS application for
sequencing should take into consideration these various factors,
which could have very huge cost implications with little benefit.

COMMON SEQUENCING ERRORS
ASSOCIATED WITH NGS ANALYSES

The nature of errors expected from NGS vary based on the
sequencing technology. For instance the common error in
Illumina’s sequencing by synthesis technology is single nucleotide
substitutions, whilst the Ion Torrent semiconductor sequencing
errors mainly come from short deletions, PacBio real-time
sequencing errors from CG deletions, and the Life Technologies
SOLID technology errors from A-T bias (Voelkerding et al.,
2009; Buermans and den Dunnen, 2014; Chimukangara et al.,
2017). However, despite the different chances of errors, sequences
with a Q30 quality score and above are generally considered
reliable, and the number of reads and depth obtained increase
the confidence in differentiating the base calls from sequencing
errors. Therefore, the ability of NGS platforms to produce
vast amounts of sequencing reads, allow for inclusion of only
sequence data with high quality, reducing the concern of
sequencing errors (Heather and Chain, 2016; Besser et al., 2018).
Regardless, it is considered good practice to perform quality
control assessments before any analyses.

In order to avoid carrying over sequencing errors into the
analysis, a quality control assessment pre-processing step is
performed as standard practice. In this step, per-base sequence
errors are assessed based on a standard threshold. Sequence reads
that do not meet the threshold are removed or trimmed off
the erroneous bases if they are found on the flanks. Sequencing
artifacts and other contaminants introduced during library
preparation such as adapters are trimmed from the sequence
reads at this step. Similarly, duplicated reads arising from
enrichment bias during sequencing should be removed using
tools such as FastQC, Trimmomatic, and fastp.

Analyzing genomes for variation requires correct alignment of
sequence reads to reference genomes and accurate variant calling.
The alignment step is perhaps the most important step in variant
analysis. Inaccurate alignments could lead to incorrect variant
calls, therefore, choosing a suitable aligner is crucial (Lindner
and Friedel, 2012). Unfortunately, there is no standard method
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for choosing an aligner leaving the decision to the user who will
require a deep understanding of these aligners. To avoid biases
due to poor alignment, there are several benchmarking studies
comparing the performance of various NGS aligners (Fonseca
et al., 2012; Hatem et al., 2013; Shang et al., 2014; Highnam
et al., 2015), which could aid in selection of the right aligner.
Alternatively, programs like Teaser (Smolka et al., 2015) could
be used to assist in the selection of an appropriate aligner and
the respective optimum parameters. Errors in alignment are
associated with repetitive genomic regions, high genetic diversity
between reference genome and target sequences and missing
nucleotides or presence of contaminating sequences. It is good
practice to assess the quality of the sequence alignments before
proceeding with the variant calling step. Tools such as SAMtools
provide functionalities to assess the quality of mapped reads
based on the PHRED-scaled mapping quality scores (Li et al.,
2009). See Pfeifer (2017) for review on generating high quality
data for variant analysis.

Variant calling, filtering and annotation is the last step and
perhaps the most challenging step in that the outcome is often
influenced by factors in previous steps. It is advisable to use
one or more variant calling program to increase confidence.
The filtering step is necessary to remove false positives caused
by sequencing and alignment errors. The choice of filtering
program should also reflect the sequencing coverage in order to
maximize accuracy. The choice of reference sequence needs to
be carefully considered and most importantly, the latest version
should be used. Methods used for variant calling have to be
highly accurate across millions of base positions in the human
genome. It is good practice to always test pipelines whether
commercial, open source or in-house pipeline before applying
them in any research study or clinical application. Variant calling
pipelines can be tested by using a benchmark of high quality
genotype datasets. The Genome in a Bottle Consortium (GIAB)
is an initiative that has undertaken to analyze and categorize
positions in the genome where no confidence calls are likely
to be made (Zook et al., 2014). All the methods and reference
datasets used by GIAB is freely available at: https://www.nist.gov/
programs-projects/genome-bottle. Similarly, the Genetic Testing
Reference Materials Coordination Program (GeT-RM) provides
appropriately characterized reference materials that could be
used for quality control, research, proficiency testing and testing
and validation of genotyping pipelines. Reference material
provided by GeT-RM include those for testing hereditary genetic
disorders among others. This information is also available in the
GeT-RM browser hosted in NCBI33.

ANALYTICAL, ETHICAL, AND
REGULATORY CHALLENGES IN
ANALYSIS OF NGS

Whilst NGS has been a fast-growing technology, there remain
vast knowledge gaps in the interpretation of NGS data. With

33https://www.ncbi.nlm.nih.gov/variation/tools/get-rm/

several NGS pipelines available, regulating data from NGS
still remains challenging, especially when data is to be used
for clinical management. This is partly because there is no
uniformity in data processing strategies, which results in
incomparable and unreproducible data outputs (Gargis et al.,
2015; Kanwal et al., 2017; Kulkarni et al., 2018). There are
several efforts in place to establish standardized methods
of bioinformatics analysis including development of sharable
workflows (Baichoo et al., 2018; Kulkarni et al., 2018). The
clinical interpretation of identified variants is not standard
for all diseases. This issue is being resolved by generating
standardized analysis, interpretation and reporting guidelines
(Endrullat et al., 2016; Roy et al., 2016; Li et al., 2017;
Lindeman et al., 2018; Roy et al., 2018; Hutchins et al.,
2019). Incomparable results carry huge implications in clinical
applications and should be regulated sooner rather than later
(Endrullat et al., 2016).

There are a wide range of ethical issues that obscure
acquisition of personal whole genomes or any other genetic
data. Careful consideration including genetic counseling on the
implications of possible unintended analytical outcomes, must
be undertaken before any acquisition of genetic data from
patients or clients. Additionally, written consents accompanied
by mandatory advice need to be provided. The cost of test
needs to be properly addressed, with a strong consideration
of insurance authorization, since without insurance, the person
or entity is liable for the expenses to be incurred. The
issue of secondary findings has to be well relayed to the
patient before the test. When confronted by this issue,
accredited laboratory guidelines such as those recommended
by American College of Medical Genetics and Genomics
(ACMG) (Richards et al., 2015; Kalia et al., 2017) or
those provided for by credible organizations need to be
followed if clinical regulations or local legislation is unavailable
(Green et al., 2013).

Handling patient/client genomic data is a sensitive subject
entangled in active debate. The regulations safeguarding sharing
of personal genomic data for research purposes is of particular
concern for many. Governments over the world have introduced
legislation to protect the privacy of their citizens’ genomic
data. In South Africa, for instance, the Protection of Personal
Information Act No. 4 of 2013 (POPIA) was introduced
(Staunton et al., 2019). While these regulations have boosted
public trust, there are loopholes that still need to be addressed
especially when dealing with international collaborations sharing
personal genomic data. Case in point, an article appearing in
Science magazine (doi: 10.1126/science.aba0343) on Oct. 30,
2019, detailed a scandal where scientists in the famous Wellcome
Sanger Institute, United Kingdom, were accused of misusing
DNA collected from African people. In contention was a claim
that Sanger scientists had developed a commercial chip using
the shared DNA which, according to Stellenbosch University
and the University of Kwa-Zulu Natal (both who shared 100
DNA samples each) was not part of the material transfer
agreements (MTAs). This scandal raised serious ethical questions
regarding adherence to MTAs and could jeopardize future

Frontiers in Genetics | www.frontiersin.org 13 October 2020 | Volume 11 | Article 544162

https://www.nist.gov/programs-projects/genome-bottle
https://www.nist.gov/programs-projects/genome-bottle
https://www.ncbi.nlm.nih.gov/variation/tools/get-rm/
https://doi.org/10.1126/science.aba0343
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-544162 October 18, 2020 Time: 19:7 # 14

Kanzi et al. Analysis of Family Genetic Inheritance

genomics research collaborations with the African continent.
Additionally, it could erode public trust thereby affecting access
to personal genome data.

CONCLUSION

Advances in sequencing technology have revolutionized clinical
genetic diagnostics and research approaches to identify associated
mutations causing Mendelian or complex genetic trait diseases.
NGS and 3GS based diagnostic tests for these diseases have been
incorporated in clinical medicine. This review discussed the use
of family genetic inheritance as an efficient method to identify
novel disease-causing mutations using NGS. We also highlighted
3GS platforms that could be used for similar analyses. In addition,
we briefly discussed the various bioinformatics tools that are
currently available to analyze family based sequencing data. The
use of personal genomes for diagnostic or research purposes
is not without challenges. These include analytical, ethical and
regulatory impediments. We discussed some of the commonly
encountered limitations and the remedial efforts that have been
put in place and those that still need to be implemented as this
fast-developing field of genome sequencing evolves.
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