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Genomic breed composition (GBC) of an individual animal refers to the partition of
its genome according to the inheritance from its ancestors or ancestral breeds. For
crossbred or composite animals, knowing their GBC is useful to estimate heterosis, to
characterize their actual inheritance from foundation breeds, and to make management
decisions for crossbreeding programs. Various statistical approaches have been
proposed to estimate GBC in animals, but the interpretations of estimates have varied
with these methods. In the present study, we proposed a causality interpretation of
GBC based on path analysis. We applied this method to estimating GBC in two
composite breeds of beef cattle, namely Brangus and Beefmaster. Three SNP panels
were used to estimate GBC: a 10K SNP panel consisting of 10,226 common SNPs
across three GeneSeek Genomic Profiler (GGP) bovine SNP arrays (GGP 30K, GGP
40K, and GGP 50K), and two subsets (1K and 5K) of uniformly distributed SNPs. The
path analysis decomposed the relationships between the ancestors and the composite
animals into direct and indirect path effects, and GBC was measured by the relative ratio
of the coefficients of direct (D-GBC) and combined (C-GBC) effects from each ancestral
breed to the progeny, respectively. Estimated GBC varied only slightly between different
genotyping platforms and between the three SNP panels. In the Brangus cattle, because
the two ancestral breeds had a very distant relationship, the estimated D-GBC and
C-GBC were comparable to each other in the path analysis, and they corresponded
roughly to the estimated GBC from the linear regression and the admixture model. In
the Beefmaster, however, the strong relationship in allelic frequencies between Hereford
and Shorthorn imposed a challenge for the linear regression and the admixture model
to estimated GBC reliably. Instead, D-GBC by the path analysis included only direct
ancestral effects, and it was robust to bias due to high genomic correlations between
reference (ancestral) breeds.
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INTRODUCTION

Genomic breed composition (GBC) of an individual animal
refers to the partition of its genome according to the inheritance
from its ancestors or ancestral breeds. At the DNA level, every
individual has two haplotypes, which are linages of genes and
markers. One haplotype is inherited from the father and the
other from the mother. In crossbreeding, a haplotype segment is
usually present in many individuals as descendants of a common
ancestor from which the segment originates. It is also possible
that one progeny can carry two segments that are identical-by-
status (IBS), meaning identical by chance, because they are not
inherited from the same ancestor. The chance of IBS, however,
is minimal if many markers are included in the segments, e.g.,
based on runs of homozygosity (ROH), which are long DNA
segments containing consecutive homozygous loci (Ferencakovic
et al., 2011; Purfield et al., 2012). The information about GBC is
very useful in many aspects. For purebred animals, knowing their
genomic composition can help the registry of purebred animals
when the pedigree is missing (Kuehn et al., 2014; Norman et al.,
2016) or the identification of population structures (Pritchard
et al., 2000; Pickrell and Pritchard, 2012). For crossbred or
composite animals, GBC is often used to estimate heterozygosity,
to understand their breeding history, to characterize their actual
inheritance from foundation breeds, and to make management
decisions for crossbreeding programs (VanRaden and Cooper,
2015; Akanno et al., 2017; Gobena et al., 2018; He et al., 2018).

Various statistical methods have been proposed to estimate
GBC (Pritchard et al., 2000; Tang et al., 2005; Frkonja et al.,
2012; Bansal and Libiger, 2015), but the interpretations of
estimates have varied across methods. For example, linear
regression estimated the GBC of an individual by adjusted
regression coefficients of coded genotypes of each animal as
the progeny on the ancestral allele frequencies (Chiang et al.,
2010; Kuehn et al., 2014; VanRaden and Cooper, 2015). The
regression coefficients, however, have no precise interpretation
of GBC because they can be any real values, not bounded
between 0 and 1. Statistically speaking, linear regression is more
of a prediction method rather than an appropriate approach
for quantifying genomic causality relationships. When applying
the least squares, for example, the linear regression equation
is fitted by minimizing the discrepancy between the observed
dependent values and their fitted value given by the linear
equation. Hence, the usefulness of such an equation is that it gives
the best or closest prediction, independently of the meaning of
predictors, and it provides no exact indication on the causality
relationships of these variables. Likewise, estimated GBC using
a genomic prediction model is also based on estimated variable
effects, which is more of a prediction by its nature than of
causality (Akanno et al., 2017). Besides, a multiple regression
model is not robust to high correlations between independent
variables. In reality, however, modern cattle breeds are genetically
related to various extent (Ajmone-Marsan et al., 2010). Such
strong relationships between breeds give rise to the problem
of multicollinearity, which in turn leads to ill-estimated linear
regression coefficients, e.g., when obtained with least-squares.
Another approach for estimating GBC is the admixture model,

which postulates that an observed genotype is an instance of
a multinomial distribution with the genotype probability being
a mixture of those of their ancestors. In this case, the GBC
of an individual animal is estimated by the weights of the
admixture (Bansal and Libiger, 2015). Like in the case of the
linear regression approach, if ancestors are highly correlated, it
also imposes a challenge to precisely estimate the weights for the
admixture model.

Path analysis has been developed to model causal relationships
between variables. In the path analysis, exogenous (independent)
variables produce both direct and indirect path effects on one or
more endogenous (dependent) variables. The indirect path effects
due to the correlations between the exogenous variables are also
referred to as the correlational effects (Land, 1969). Path analysis
was initially developed by Sewall Wright in a series of general
essays (Wright, 1921, 1934, 1954, 1960a,b) as an analytical tool for
quantitative genetics to measure “ the direct influence along each
separate path in such a system and to find the degree to which
variation of a given effect is determined by each particular cause”
(Wright, 1921).

In the present study, we proposed the use of path analysis
to decompose the causality relationships between composite (or
crossbred) animals and their putative ancestors (or reference
breeds) and to estimate GBC of individual animals in terms of
the relative determination of respective ancestral (or reference)
breeds. Two measures of GBC were used, one accounting only
for the direct path effects of each reference breed, and the
other including both direct and indirect path effects for each
reference breed. The indirect path effects were attributable to the
correlations between the reference breeds. Estimated GBC from
the path analysis was compared with those obtained using the
linear regression and the admixture model, and their similarities
and dissimilarities were discussed as well.

MATERIALS AND METHODS

Animals, Genotypes, and SNP Panels
The genotypes of 150,676 animals sampled from two composite
breeds and eight reference breeds of beef cattle were used
in the present study (Table 1). The composites included
7,605 Beefmaster and 7,969 Brangus. The reference animals
included 45,396 Angus, 2,320 Brahman, 10,423 Hereford, 1,587
Shorthorn, 17,769 Gelvieh, 7,680 Limousin, 23,722 Simmental,
and 26,689 Wagyu before data cleaning. These animals were
genotyped on GeneSeek Genomic Profiler (GGP) LD V3 (GGP
30K) bovine SNP chip (32,179 SNPs), GGP bovine SNP 40K
chip (40,660 SNPs), and GGP bovine 50K bovine SNP chip
(49,463 SNPs), respectively (Neogen GeneSeek Operations,
Lincoln, NE). The GGP 40K bovine SNP chip included
common 31,901 SNPs with the GGP 30K. The GGP bovine
50K had 11,333 SNPs in common with GGP bovine 30K
SNP chip and 16,369 SNPs in common with GGP bovine
50K SNP chip. Data cleaning removed monomorphic SNPs
across all breeds, and SNPs with 10% missing in each breed.
After data cleaning, 10,226 common SNPs (referred to as
the 10K SNP panel) across the three GGP bovine SNP
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TABLE 1 | Number of genotyped animals and number of SNPs on GeneSeek Genomic Profiler (GGP) 30K (GGP 30K), 40K (GGP 40K), and 50K (GGP 50K) SNP chips
used in the present studya,b.

Type Breed GGP30K GGP40K GGP50K nAnim

nAnim nSNP nAnim nSNP nAnim nSNP Before DC After DC

Composite Beefmaster 23 32,179 300 40,663 7,282 49,463 7,605 7,605

Brangus 1,319 32,179 3,053 40,660 3,605 49,463 7,969 7,969

Ancestral Angus 6,839 32,179 18,198 40,660 20,359 49,463 45,396 45,367

Brahman – – 1,811 30,720 509 43,984 2,320 2,271

Hereford 4,000 32,179 4,000 40,660 2,423 49,463 10,423 10,414

Shorthorn – – 355 40,660 1,232 49,463 1,587 1,577

Non-ancestral Gelbvieh 2,763 32,179 5,498 40,660 9,508 49,463 17,769 17,735

Limousin 373 32,179 2,264 40,660 5,043 46,915 7,680 7,677

Simmental 3,130 32,179 5,838 40,660 14,754 49,463 23,722 23,697

Wagyu 1,463 32,179 1,506 40,660 23,720 49,463 26,689 26,364

Sum 19,910 42,823 88,435 152,160 150,676

anAnim = number of genotyped animals; nSNP = Number of SNPs on the chip;
bnAnim (Before DC vs. After DC) = Total number of animals BEFORE or AFTER data cleaning.

chips were retained. Then, from the 10K set, two sets: (1)
1,000 uniformly distributed SNPs (1K panel), and (2) 5,000
uniformly distributed SNPs (5K panel), were selected using
the selectSNP package (Wu et al., 2016). A map view of
the three SNP panels is shown in Supplementary Figure 1.
These three SNP panels were used to estimated GBC for the
composite animals.

Data cleaning on reference animals was conducted following
He et al. (2018). Briefly, the likelihood that an animal belonged to
a specific breed was computed based on a Bayesian multinomial
model, assuming independence between SNP loci. Then, outliers
with the negative two times the likelihood being greater than
two were excluded in each reference population. After data
cleaning, 135,102 reference animals from eight breeds remained
as the reference animals. Of the eight reference cattle breeds,
Brahman is the only Bos taurus indicus breed, and it had the
most remote relationships with the seven Bos taurus taurus
cattle breeds. The relationships between the eight reference
breeds were depicted by a hierarchical clustering analysis
(Murtagh and Legendre, 2014) using the 5K SNP panel and
shown in Supplementary Figure 2. All composite animals were
included in the subsequent analyses because they were test
animals and not used as the reference. Histograms of allele
frequencies for the 10K SNPs for the eight reference breeds
and the two composite breeds are shown in Supplementary
Figure 3. The distributions of allele A frequencies for these
breeds (except Brahman) were approximately “bell-shaped,” but
they were not typical of a normal distribution. They mostly
had “thick” tails, representing SNPs with small minor allele
frequencies (MAF). In particular, the distribution of allele
A frequencies for Brahman had “outstanding” proportions
of SNPs with MAF. These GGP bovine SNP chips (30K,
40K, and 50K) were primarily designed for Bos Taurus cattle,
not for Bos indicus cattle. Possibly, many SNPs could have
small MAF or even be monomorphic. It is also possible that
there existed population mixture or stratification with this
Brahman dataset.

The genomic breed composition (GBC) was estimated
in the two composite breeds. Brangus was developed to
combine the desirable traits of Angus and Brahman cattle
(Briggs and Briggs, 1980). Angus cattle are known for their
superior carcass qualities. Moreover, Angus cows are well known
for their excellent fertility and their capability for milking. The
Brahman has gone through rigorous natural selection and has
developed disease resistance, and overall they have hardiness
and outstanding maternal instincts. For official registration,
a Brangus animal needs to be genetically stabilized at 3/8
Brahman and 5/8 Angus by pedigree, be solid black or red,
and polled, and both sire and dam must be recorded with
the International Brangus Breeders Association (IBBA) (San
Antonio, TX). The Beefmaster was developed in the early 1930s
from a crossing of Hereford cows and Shorthorn cows with
Brahman bulls (Briggs and Briggs, 1980). The original intention
was to produce cattle that could produce economically in the
challenging environment of South Texas. Nowadays, these cattle
are regarded as a versatile, multipurpose breed because they
can be used for both milk and beef production. The exact
mixture of the foundation cattle is unknown but is generally
thought to be about 25% Hereford, 25% Milking Shorthorn,
and 50% Brahman.

Statistical Methods
Linear Regression and the Likelihood-Based
Admixture Model
These two models served as the benchmark for comparison
in the present study. In the linear regression approach, the
genotypes of a crossbred animal are coded to be the proportion
(or frequency) of say allele A in the genotype for all involving
SNPs across the genome. Then, the coded genotypes are regressed
to the corresponding allele A frequencies of SNPs for a set
of reference populations (Chiang et al., 2010; Hulsegge et al.,
2013; Kuehn et al., 2014). Let AA = 1, AB = 0.5, and BB = 0,
which can also be interpreted to be the allele A frequencies
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at the individual level. Denote yi to be a M × 1 vector of
genotypes pertaining to animal i, where M is the number of
SNPs involved, and denote xj to be an M × 1 vector of allele
A frequencies of the M SNPs genotype in reference population
or breed j, for j = 1, . . . ,K where K is the number of breeds.
Then, the GBC is estimated based on the following linear model:

yi = 1µ+

K∑
j=1

bjxj + ei (1)

where µ is an intercept, and bj is the regression coefficient
pertaining to population or breed j, and ei is a vector of
residuals. Because regression coefficients are not bounded
between 0 and 1 by nature, some adjustments are necessary
to restrict the sum of the regression coefficients for each
animal to be 1 (VanRaden and Cooper, 2015; He et al.,
2018).

For crossbred animals whose ancestors originated in different
populations, their genetic composition exhibits multiple
ancestries associated with multiple different genetic clusters or
populations, which therefore can be described by the admixture
model (Pritchard et al., 2000; Tang et al., 2005; Alexander et al.,
2009; He et al., 2018). The admixture model estimates GBC as
the weights for an underlying admixture distribution, which
governs the realization of genotypes for individual animals,
and each component in the admixture corresponds to the allele
frequency of each reference breed. Consider M SNPs, each
with two alleles A and B. Let there be T reference or putatively
ancestral populations with allelic frequencies of these SNPs
assumedly to be known. Denote xij to be the allele frequency
of the allele A at the ith SNP in the jth population. Following
Bansal and Libiger (2015), we estimated the allelic frequencies of
SNPs a priori and then treated them as known in the admixture
model. Let wj represent the admixture proportion for the jth
population and W = [w1, w2, . . . , wk ]

′ be the vector of
admixture coefficients. Then, weighted allele frequency at SNP
i given the allele frequencies and the admixture proportions

was calculated to be fi =
k∑

j=1
xijwj, where xij was the allele A

frequency of the ith SNP in the jth reference breed. Assuming
Hardy-Weinberg equilibrium (HWE) at each SNP locus, the
probability of observing genotype yi at locus i is:

Pr
(
yi|fi

)
=


f 2
i if yi = 2
2fi(1− fi) if yi = 1

(1− fi)2 if yi = 0
(2)

For a given vector of admixture proportions, the log-likelihood of
the observed genotypes g for an individual was defined as:

L (W) =

M∑
i=1

ln(Pr
(
yi|fi

)
(3)

Alternatively, the above likelihood can be written as:

L (W) =

M∑
i=1

[yi ln(fi)+ (2− yi) ln(1− fi)] + C (4)

where C =
M∑
i=1

ln
(

2
yi

)
. Given the matrix of allele frequencies

xij (1 ≤ i ≤ M and 1 ≤ j ≤ K) for k populations, our goal
was to determine the vector W = [w1, w2, . . . , wK]

′ of
admixture proportions that maximize L (W) subject to

the constraints wj ≥ 0 and
K∑
j=1

wj = 1.Optimization of (4),

however, is challenged by the constraint on the admixture

proportions, that is wj ≥ 0 and
K∑
j=1

wj = 1. Alexander et al.

(2009) used sequential quadratic programming combined
with a quasi-Newton acceleration method to optimize the
likelihood function. This method, however, involves the
manipulation and inversion of a possibly large matrix, which
can be computationally intensive. Following Bansal and
Libiger (2015) and He et al. (2018), we utilized the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method to optimize the
likelihood function (4). The BFGS algorithm is a popular
quasi-Newton method for solving non-linear optimization
problems, which utilizes the first derivatives of the likelihood
function and approximates the Hessian matrix of the second
derivatives (Nocedal and Wright, 2006). The constraint
K∑
j=1

wj = 1 is handled by scaling the individual admixture

coefficients by their sum, that is, replacing wj with wj∑K
j=1 wj

in the

likelihood function.

Path Analysis
Intuitively, path analysis can be viewed as an extension
of linear regression in the form of standardized multiple
regression, yet with a focus on inferring causality (Wright,
1921). By centering yi and each xj on zero (i.e., subtracting
the expectation of each corresponding variable), and after
dividing both sides of equation (1) by the standard deviation
of y, the linear regression model can be expressed as:

yi − E(yi)
σyi

=

K∑
j=1

{
bj ×

xj − E
(
xj
)

σyi

}
+

ei − E (ei)
σyi

which can be further re-arranged as:

yi − E(yi)
σyi

=

K∑
j=1

{
bj ×

σxj

σyi
×

xj − E
(
xj
)

σxj

}
+

σei
σyi
×

ei − E (ei)
σei

(5)
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Now, Let y∗i =
yi−E(y)

σyi
, x∗j =

xj−E(xj)
σxj

, e∗i =
ei−E(e)

σei
, b∗j = bj

σxj
σyi

,

and b∗e = 1× σei
σyi

. Then, the above equation is simplified to be:

y∗i =
K∑
j=1

{
b∗j × x∗j

}
+ b∗ei × e∗i (6)

Here, y∗i , x∗j , and e∗i are standardized vectors for genotypes,
allele A frequencies, and residuals, respectively, and b∗j = bj ×
σxj
σyi

is a standardized regression coefficient for an exogenous
variable, which is also referred to as a path coefficient. That is,

pyixj = bj ×
σxj

σyi
(7)

In (6), b∗e is the path coefficient pertaining to the residual
term, which is also referred to as the coefficient of alienation
(Land, 1969). For the estimation of GBC, the presence of this
residual term is relevant for two main reasons. Firstly, Mendelian
sampling deviates the GBC of individual animals from their
expected values. Secondly, the allele frequencies of the ancestral
breeds are contemporary, which can be different from those of
the base populations when the crossbreeding for creating this
composite breed was initiated. Over the years, allele frequencies
of the ancestral breeds can change to a varying extent due to
selection, migration, and inbreeding. In what follows, we ignore
the superscript “∗” for the convenience of notation. If we replace
the standardized regression coefficients with the path coefficient
notation in (6), it gives:

yi =
K∑
j=1

{
pyixj × xj

}
+ pyiei × ei (8)

In the path analysis, a path coefficient measures the fraction
of standard deviation of standardized genotypes of a crossbred
animal for which each ancestor or ancestral breed is directly
responsible, in the sense of the fraction which would be
found if the allele frequencies of one ancestral breed varies
to the same extent as in the observed data while all other
variables (i.e., allele frequencies of the other ancestral breeds)
are constant.

The theory of path analysis states that the correlation between
y and xj is the sum of direct path coefficient plus a sum of terms
each quantifying a correctional or an indirect path effect:

ryixj = pyixj +
K∑
j′ 6=j

pyixj′ rxjxj′ (9)

Thus, a path coefficient represents the direct effect of an ancestor
or ancestral breed to be a cause on the genome of a crossbred
animal while the latter is assumed to be an effect, whereas the
correlation ryixj reflects the genomic similarity between them.
Then, the determination of an endogenous variable (genotypes of
a crossbred animal) on an exogenous variable (allele frequencies
of a reference population) is measured by the coefficient of
determination. For example, the coefficient of determination of xj

on yi is given by the sum of the squared direct path coefficient and
the terms representing the determination of all possible indirect
paths. That is,

dyixj = p2
yixj +

K∑
j′ 6=j

pyixjrxjxj′ pyixj′ (10)

The above is referred to as the coefficient of combined
determination for an exogenous variable (xj), which includes
correlational, indirect path effects. When the correlational effects
are zero or ignored, the above reduces to the coefficient of direct
determination of xj on yi,

dyixj = p2
yixj (11)

Hence, the coefficient of direct determination of an exogenous
variable to the endogenous variable, which is the squared path
coefficient, measures the proportion of the variance of the
endogenous variable for which an exogenous variable is directly
responsible. Then, it can be shown that the total variation
of the endogenous variable is entirely determined by a linear
combination of the exogenous and the residual variable(s).
That is,

K∑
j=1

p2
yixj +

K∑
j′ 6=j

pyxjrxjxj′ pyixj′

+ p2
yiei = 1 (12)

Thus, in view of genomic determination, GBC can be measured
by the relative ratio of the coefficients of either the direct or
combined determination. Hereafter, the former is referred to as
D-GBC and the latter C-GBC hereafter. That is,

D-GBC= p2
yixj/

K∑
j=1

p2
yixj (13)

C − GBC =

p2
yixj +

K∑
j′ 6=j

pyixjrxjxj′ pyixj′

/

K∑
j=1

p2
yixj +

K∑
j′ 6=j

pyixjrxjxj′ pyixj′

 (14) (13)

The sum of GBC for an individual animal is one when using
either of the above two formulas. The difference between the
above two measures of GBC is that correlational or indirect
path effects are included in the estimated C-GBC with (14) but
not in the estimated D-GBC with (13). From the viewpoint of
genetic determination, the correlational or indirect path effects
are attributable to genomic similarities. The proportion of the
variance of the endogenous variable that is not accounted for by
the set of exogenous variables in the system is then quantified to
be:

R = p2
yiei = 1−

K∑
j=1

p2
yixj +

T∑
j′ 6=j

pyixjrxjxj′ pyixj′

 (14)

Note that 1-R can be used as a measure of reliability say for
estimated C-GBC. Given two individuals having the same values
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of C-GBC but different R values, estimated C-GBC is more
reliable for the one with a smaller value of 1-R.

In the above, we have discussed the path analysis applied
to estimate GBC as a form of standardized linear regression,
in which standardized genotypes of each crossbred animal are
regressed on standardized allele frequencies of reference breeds.
The genotypes are coded as the portion of allele A in the
genotypes (i.e., AA = 1, AB = 0.5, and BB = 0), which can also
be viewed as the frequency allele A at the individual level. Put
in another way, the frequency of allele A at each SNP locus
for a given population can be viewed as the average genotype
for that population. Another approach is to obtain the path
coefficients using the correlations between them, as suggested by
the relationships shown in (9). If we extend each equation in (9)
for each of the crossbred animals, it gives:

pyix1 + rx1x2pyix2 + . . .+ rx1xTpyixK = ryix1

. . .

rxTx1pyix1 + rxTx2pyix2 + . . .+ pyixK = ryixT

(15)

where, for example, ryix1 is the correlation between the genotypes
of the crossbred animals and the corresponding SNP allele
frequencies in the first reference population. In matrix notation,
the above becomes:

pyxRxx = ryx (16)

where pyx =
(
pyix1 . . . pyxT

)′,ryx = ( ryx1 . . . ryxT
)′, and

Rxx =


1

rx2x1

. . .

rxTx1

rx1x2 . . .

1 . . .

. . .

rxTx2

. . .

. . .

rx1xT
rx2xT
. . .

1

 (17)

Therefore, the vector of path coefficients is obtained as:

pyx = ryxR−1
xx (18)

Now consider only two exogenous variables, x1 and x2. The
solutions of the path coefficients are obtained as the following:

pyix1 =
(
ryix1 − rx1x2ryix2

)
/
(
1− r2

x1x2

)
pyix2 =

(
ryix2 − rx1x2ryix1

)
/
(
1− r2

x1x2

) (19)

In the above, pyix1 is also recognized as the semi-partial
correlation of x1 on yi, and pyix2 is the semi-partial correlation
of x2 on yi. Like a partial correlation, a semi-partial correlation
compares variations of two variables after certain factors are
controlled for. The difference between them is that, with a semi-
partial correlation, one holds the third variable (x2) constant for
either x1 or yi but not both, whereas with a partial correlation,
one holds the third variable constant for both (Baba et al.,
2004). In terms of their quantities, the absolute value of a semi-
partial correlation, say between x1 and yi, is always no greater
than that of the partial correlation between the two variables.
We used Pearson’s correlations of allele A frequencies in the
path analysis, though the distributions of allele A frequencies
were not exactly normal distributions, but taken to be so
approximately. Alternatively, Spearman’s correlations can be

used as well, which can better capture monotonic relationships.
Nevertheless, relational plots of allele frequencies between breeds
showed apparently linear relationships between a composite
breed and its ancestral breed, not monotonic relationships. That
was another reason for us to use Pearson’s correlations in the
present study. As we found later, both types of correlations gave
well comparable results.

A numeric example is shown in Figure 1, where the GBC is
computed for an Ultrablack, given the assumed GBC of Brangus.
The International Brangus Breeders Association has created an
appendix registry designation of Ultrablack (and Ultrared) for
animals, which are between 12.5 and 87.5% Brangus and the
remainder Angus (or Red Angus) (Waldrip, 2017). For the
convenience of discussion, we will use Ultrablack to represent
first-generation Ultrablack animals (1/2 Brangus × 1/2 Angus).
For the convenience of discussion, we assume that rAB = 0 (no
correlation between Angus and Brahman) and pCEC = 0 (no
residual effect) in this example. Let p2

CA = 0.625 and p2
CB =

0.375, which is equivalent to a causality interpretation that the
Angus origin and Brahman origin accounted for 5/8 (62.5%) and
3/8 (37.5%), respectively, of the genomic variation of Brangus.
Then, the GBC of a 1/2 UltraBlack Brangus is computed as
follows:

dDA = p2
DA +

(
pCA × pDC

)2
= 0.5+

(√
0.625×

√
0.5
)2
= 0.8125

dDB =
(
pCB × pDC

)2
=

(√
0.375×

√
0.5
)2
= 0.1875

In the above, AD is a direct path from Angus to an Ultrablack,
and ACD is an indirect path from Angus to an Ultrablack via
Brangus. Similarly, BCD is an indirect path from Brahman to an
Ultrablack via Brangus. Note that both indirect paths, ACD and
BCD, are two compound paths. The coefficient of a compound
path is the product of all component segments. Hence, under the
assumption of no correlation between the two ancestral breeds,
computed GBC of an Ultrablack agreed with pedigree-expected
ratios of genomic composition for an Ultrablack animal, which
is 81.25% Angus and 18.75% Brahman. Therefore, assuming

FIGURE 1 | Path diagram of the relationships between Brangus (and 1/2
UltraBlack) and two ancestral breeds, namely Angus and Brahman pyx = path
coefficient from x to y; rAB = correlation between Angus (A) and Brahman (B).

Frontiers in Genetics | www.frontiersin.org 6 October 2020 | Volume 11 | Article 546052

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-546052 October 28, 2020 Time: 12:3 # 7

Wu et al. Genomic Breed Composition for Composites

no correlation between the two ancestral breeds, the causality
interpretation of GBC agreed with the pedigree-expected GBC
for an Ultrablack animal.

RESULTS AND DISCUSSION

Estimated Genomic Breed Composition
for Brangus
The Brangus was highly correlated in terms of allelic frequencies
with Angus (0.671–0.714) and moderately correlated with
Brahman (0.442–0.481) because the Brangus was descended
from these two breeds (Table 2). The Brangus animals also had
moderate or high correlations with some non-ancestral breeds,
such as Simmental (0.585–0.628), Limousine (0.512–0.557), and
Shorthorn (0.452–0.520), due to the significant correlations
between Angus and these non-ancestral beef breeds. Also

based on allelic frequencies, Angus was highly correlated with
Gelbvieh (0.765–0.793), Limousine (0.628–0.792), Shorthorn
(0.552–0.611), and Simmental (0.776–0.812). The Brahman is
a Bos taurus indicus cattle breed, and it had low correlations
with the seven Bos taurus Taurus cattle breeds (0.035–0.239).
Thus, a high correlation between the Brangus and a reference
breed does not indicate the genomic causality but the genomic
similarity between them.

The path analysis estimated the genomic effects of these
reference breeds on the Brangus. With the eight reference breeds,
the estimated path coefficients for the two ancestral breeds were
the largest among the eight reference breeds, which were 0.510–
0.552 for Angus, and 0.396–0.407 for Brahman (Table 2). The
D-GBC for the two ancestral breeds was estimated to be 60.2–
63.4% (Angus) and 34.4–36.5% (Brahman), and the C-GBC
for the two ancestral breeds, which included both direct and
indirect path effects, was estimated to be 57.1–58.6% (Angus)

TABLE 2 | Path analysis using the correlation data for 7,969 Brangus animals with eight reference breeds and three SNP panels (1K, 5K, and 10K).

Statistic Breed GGP 30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation with Brangus Angus 0.699 0.671 0.692 0.714 0.689 0.711

Brahman 0.442 0.451 0.475 0.444 0.456 0.481

Gelbvieh 0.635 0.606 0.627 0.647 0.622 0.645

Hereford 0.362 0.316 0.310 0.374 0.325 0.321

Limousin 0.532 0.512 0.541 0.546 0.527 0.557

Shorthorn 0.507 0.452 0.478 0.520 0.468 0.495

Simmental 0.610 0.585 0.611 0.624 0.602 0.628

Wagyu 0.278 0.311 0.344 0.288 0.318 0.353

Path coefficient Angus 0.527 0.510 0.539 0.538 0.520 0.552

Brahman 0.402 0.396 0.404 0.403 0.401 0.407

Gelbvieh 0.107 0.086 0.071 0.096 0.085 0.073

Hereford 0.019 0.031 0.008 0.023 0.032 0.009

Limousin 0.030 0.034 0.030 0.037 0.037 0.031

Shorthorn 0.087 0.060 0.051 0.091 0.068 0.058

Simmental −0.007 0.003 0.007 −0.005 0.006 0.007

Wagyu −0.029 0.008 0.003 −0.023 0.007 0.003

D-GBC Angus 60.2% 60.4% 62.9% 61.4% 60.7% 63.4%

Brahman 35.2% 36.5% 35.3% 34.4% 36.0% 34.6%

Gelbvieh 2.48% 1.71% 1.09% 1.94% 1.63% 1.09%

Hereford 0.07% 0.22% 0.01% 0.11% 0.23% 0.02%

Limousin 0.20% 0.28% 0.19% 0.29% 0.31% 0.20%

Shorthorn 1.64% 0.82% 0.56% 1.77% 1.03% 0.71%

Simmental 0.01% 0.00% 0.01% 0.00% 0.01% 0.01%

Wagyu 0.18% 0.02% 0.00% 0.12% 0.01% 0.00%

C-GBC Angus 56.9% 57.1% 56.7% 57.6% 57.2% 57.6%

Brahman 30.2% 32.2% 30.2% 29.4% 31.5% 29.4%

Gelbvieh 6.67% 5.13% 6.66% 5.87% 5.11% 5.87%

Hereford 0.59% 0.92% 0.59% 0.75% 0.95% 0.75%

Limousin 1.41% 1.60% 1.41% 1.75% 1.75% 1.75%

Shorthorn 4.34% 2.63% 4.34% 4.63% 3.08% 4.63%

Simmental 0% 0.16% 0% 0% 0.30% 0%

Wagyu 0% 0.22% 0% 0% 0.20% 0%

The Brangus animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.

Frontiers in Genetics | www.frontiersin.org 7 October 2020 | Volume 11 | Article 546052

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-546052 October 28, 2020 Time: 12:3 # 8

Wu et al. Genomic Breed Composition for Composites

and 29.6–32.2% (Brahman) (Table 2). It is noted that, with
the eight reference breeds, the estimated D-GBC and C-GBC
for the two ancestral breeds were both considerably below the
pedigree-expected ratios of 62.5% for Angus origin and 37.5%
for Brahman origin, regardless of the genotyping platforms and
SNP panels used. Hence, by including non-ancestral reference
breeds, it introduced noise (i.e., small estimated GBC for non-
ancestral breeds) in the estimation of GBC for the Brangus,
which in turn offset to a varying extent the estimated GBC for
the ancestral breeds. The estimated D-GBC for non-ancestral
breeds was mostly less than 1%, but the estimated C-GBC for
non-ancestral was large, which for example, was 5.11–6.72%
for Gelbvieh and 2.63–4.67% for Shorthorn, and 1.41–1.77%
for Limousine (Table 2). Estimated D-GBC and C-GBC by the
path analysis using the genotype data showed similar patterns
(Supplementary Table 1). Therefore, when the eight reference
cattle breeds were used, the small amounts of estimated GBC for
non-ancestral breeds offset the estimated GBC for the ancestral
breeds, thus leading to underestimated GBC for the ancestral
breeds, regardless of the models used.

The bias in the estimated GBC can be minimized by excluding
non-ancestral breeds from the reference breed panel based on
a priori information. Because Brangus cattle are descended
from Angus and Brahman, we estimated D-GBC and C-GBC
by including only the two ancestral breeds as the reference
breeds. Then, with these two reference breeds only, the estimated
D-GBC for the Brangus using the correlation data was 71.2–
72.0% Angus and 28.0–28.8% Brahman, and the estimated
C-GBC for the Brangus was 70.2–71.2% Angus and 28.7–
29.8% Brahman (Table 3). Pearson’s correlations were used by
path analysis throughout the present study, though the allele
frequencies of the SNPs were not exactly normal distributions.
Switching to using Spearman’s correlations, for example, led to
slightly different results, but they were well comparable to the
results obtained based on Pearson’s correlations. For example,
based on the Spearman’s correlations of allele A frequencies,
the estimated D-GBC was 69.4–74.1% of Angus and 25.9–
30.6% of Brahman. These values are within a comparable range
of those obtained based on Pearson’s correlations of allele
A frequencies. The estimated D-GBC from the path analysis
using the genotype data was 69.5–71.8% Angus and 28.2–
30.5% Brahman, respectively, and the estimated C-GBC were
68.2–70.9% Angus and 29.1–31.8% Brahman (Table 4). With
the genotype data, the admixture model suggested that the
Brangus were on average 68.8–70.3% Angus and 29.7–31.2%
Brahman, whereas the linear regression indicated that Brangus
was 68.6–70.4% Angus and 29.6–31.4% Brahman (Table 4). The
estimated D-GBC and the estimated C-GBC for the Brangus in
the path analysis agreed approximately with each other when
the correlation in allelic frequencies between the two ancestral
breeds was low (0.051–0.090). In other words, the correlational
indirect path effects between the ancestral breeds are trivial,
and thus the estimated D-GBC agreed well with the estimated
C-GBC. The estimated D-GBC and C-GBC from the path
analysis also corresponded well to the estimated GBC from
the admixture model and linear regression in this Brangus
population (Table 4). It also came to our attention that the

estimated GBC did not show significant differences between
different genotyping platforms and between three SNP panels
used (Tables 3, 4).

The estimated Angus compositions for these Brangus animals
by the three methods were all considerably higher than the
pedigree-expected Angus ratio (5/8 = 0.625) in Brangus. In the
path analysis using the correlation data, for example, the average
of estimate Angus GBC was 71.67% across the three genotyping
platforms and the three SNP panels. There are possibly two
reasons for the elevated Angus composition in these Brangus
animals. Firstly, Brangus animals have been selected toward
Angus type phenotypes for years, which in turn could have left
up the Angus genomic composition in Brangus. Secondly, these
Brangus animals included some UB individuals. The estimated
GBC for these 7,696 Brangus animals was plotted in ascending
order of their Angus composition (Figure 2). The mixture of the
UB animals was identified by the sharp increase of Angus GBC
on the right-hand side of the plot, which roughly accounted for
up to one-fourth of the Brangus animals. By roughly taking the
portion of 1/2 UB animals to be 25%, which have an average
of 81.25% Angus composition, we estimated that the actual
Angus composition of the Brangus (non-UB) animals could be
(71.67%− 81.25%∗0.25)/0.75 = 68.5%.

Estimated Genomic Breed Composition
for Beefmaster
The Beefmaster was highly correlated with the three ancestral
breeds: Brahman (0.544–0.570), Hereford (0.504–0.549), and
Shorthorn (0.443–0.558) (Table 5). There were also moderate
to high correlations (0.396–0.551) between the Beefmaster and
some non-ancestral beef breeds (e.g., Gelbvieh, Limousin, and
Simmental) (Table 5), which arose from the genomic similarities
between the ancestral breeds and the non-ancestral breeds.
A moderate to a high correlation in allelic frequencies between
the Beefmaster and a reference breed was no indication of the
genomic causality, but the genomic similarity between them.
Of the three ancestral breeds, the correlation was low between
Brahman and Hereford (0.035–0.059) and between Brahman and
Shorthorn (0.052–0.10), but it was moderate to high between
Hereford and Shorthorn (0.381–0.428).

With the correlation data and the eight reference breeds,
the path analysis gave the largest estimates of direct path
coefficients to the three ancestral breeds, which were 0.495–
0.522 (Brahman), 0.342–0.380 (Hereford), and 0.216–0.245
(Shorthorn). Accordingly, the estimated D-GBC for the
Beefmaster was 56.2–59.2% (Brahman), 27.5–31.3% (Hereford),
and 11.1–12.4% (Shorthorn), whereas the estimated C-GBC
for the Beefmaster was 42.6–51.3% (Brahman), 28.5–35.9%
(Hereford), and 13.5–15.6% (Shorthorn). Like in the case of
Brangus, with the eight reference breeds, estimated GBCs for
the ancestral breeds were offset by the small GBC components
for non-ancestral breeds (Table 5). The estimated GBC of
non-ancestral breeds in the Beefmaster were mostly less than
1% for D-GBC and all below 5% for C-GBC. Estimated D-GBC
varied only between different data types, and genotyping
platforms, and between the three SNP panels used. The same
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TABLE 3 | Path analysis using the correlation data for 7,969 Brangus animals with two ancestral breeds (Angus and Brahman) as the reference and three SNP panels
(1K, 5K, and 10K).

Statistics GGP30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation Brangus vs. Angus 0.699 0.671 0.692 0.714 0.689 0.711

Brangus vs. Brahman 0.442 0.451 0.475 0.444 0.456 0.481

Path coefficient Brangus < -Angus 0.668 0.645 0.654 0.678 0.663 0.673

Brangus < -Brahman 0.418 0.410 0.416 0.424 0.415 0.420

D-GBC Brangus < -Angus 71.9% 71.2% 71.2% 71.9% 71.8% 72.0%

Brangus < -Brahman 28.1% 28.8% 28.8% 28.1% 28.2% 28.0%

C-GBC Brangus < -Angus 71.2% 70.6% 70.2% 71.2% 71.1% 70.9%

Brangus < -Brahman 28.7% 29.3% 29.8% 28.7% 28.9% 29.1%

The Brangus animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.
The correlation of allele A frequencies between Angus (A) and Brahman (B) computed for the three SNP panels was rAB = 0.051 (1K), 0.062 (5K) and 0.090 (10K).

TABLE 4 | Comparison of estimated GBC for 7,969 Brangus with genotype data, obtained by the admixture model, linear regression, and path analysis techniques,
respectively, using only Angus and Brahman in the reference breed set.

Model Panel GGP 30K/GGP 40K GGP 50K

Angus Brahman Angus Brahman

Mean SD Mean SD Mean SD Mean SD

Admixutre 1K 69.9% 7.3% 30.1% 7.3% 70.3% 7.1% 29.7% 7.1%

5K 69.8% 6.8% 30.2% 6.8% 70.1% 6.8% 29.9% 6.8%

10K 68.8% 7.1% 31.2% 7.1% 69.1% 7.0% 30.9% 7.0%

Linear regression 1K 70.0% 7.6% 30.0% 7.6% 70.4% 7.6% 29.6% 7.6%

5K 69.5% 7.4% 30.5% 7.4% 69.8% 7.5% 30.2% 7.5%

10K 68.6% 7.5% 31.4% 7.5% 69.0% 7.6% 31.0% 7.6%

Path analysis (D-GBC) 1K 71.8% 11.9% 28.2% 11.9% 71.5% 12.3% 28.5% 12.3%

5K 69.6% 11.8% 30.4% 11.8% 70.2% 12.4% 29.8% 12.4%

10K 69.5% 11.7% 30.5% 11.7% 70.2% 12.3% 29.8% 12.3%

Path analysis (C-GBC) 1K 70.9% 11.7% 29.1% 11.7% 70.6% 12.1% 29.4% 12.1%

5K 68.7% 11.5% 31.3% 11.5% 69.3% 12.0% 30.7% 12.0%

10K 68.2% 11.3% 31.8% 11.3% 68.8% 11.8% 31.2% 11.8%

was true with estimated C-GBC (Table 5). These conclusions
coincided with what we had with the Brangus. When limited
to three ancestral breeds (Brahman, Hereford, Shorthorn) as
the reference, the estimated D-GBC agreed roughly with the
estimated C-GBC for the Beefmaster. The estimated D-GBC was
51.3–55.6% (Brahman), 28.6–33.0% (Hereford), and 14.5–17.2%
(Shorthorn), whereas the estimated C-GBC was 47.6–51.3%
(Brahman), 29.8–34.1% (Hereford), and 17.3–20.6% (Shorthorn)
(Table 6). The differences between the estimated D-GBC and the
estimated C-GBC for Beefmaster were relatively larger than those
observed for Brangus. Similar discrepancies were observed in the
results obtained from the path analysis with the genotype data
(Table 7). In Beefmaster, the discrepancies between the estimated
D-GBC and the estimated C-GBC in the path analysis arose
from some significant correlations in allelic frequencies between
the ancestral breeds (e.g., between Hereford and Shorthorn). In
general, the estimated C-GBC included correlational indirect
path effects, but the estimated D-GBC included direct path effects
only. The impact of correlations in allelic frequencies between

the ancestral breeds on the estimated C-GBC is explained
analytically as follows. In Figure 3 is the path diagram for the
relationships between the Beefmaster and the three ancestral
breeds. Let p2

MB = 2p2,p2
MH = p2, and p2

MS = p2. Proportionally,
the relative direct genomic determination of the three ancestral
breeds on the Beefmaster is 50% Brahman, 25% Hereford, and
25% Shorthorn. Thus, when assuming zero correlations between
the ancestral breeds and no residual effects, the estimated
C-GBC is the same as the estimated D-GBC: 50% Brahman,
25% Hereford, and 25% Shorthorn. However, with non-zero
correlations between the ancestral breeds, estimated C-GBC can
deviate substantially from estimated D-GBC. For example, let
rBH = 0.10,rBS = 0.05, and rHS = 0.40. The estimated C-GBC
for each ancestral breed is computed to be a relative ratio of
combined determination coefficients for each ancestral breed:

C − GBCMB =

2p2
+ rBH ×

√
2p2 ×

√
p2 + rBS ×

√
2p2 ×

√
p2

2p2 + p2 + p2 + 2rBH ×
√

2p2 ×
√
p2 + 2rHS ×

√
p2 ×

√
p2 + 2rBS ×

√
2p2 ×

√
p2
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FIGURE 2 | Distribution of estimated genomic breed composition for 7,969 Brangus animals in ascending order of their Angus composition, obtained using three
statistical methods: (A) admixture model, (B) linear regression, and (C) path analysis (D-GBC).
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TABLE 5 | Path analysis using the correlation data for 7,605 Beefmaster animals with eight reference breeds and three SNP panels (1K, 5K, and 10K).

Statistic Breed GGP 30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation with Beefmaster Angus 0.384 0.339 0.385 0.436 0.381 0.434

Brahman 0.552 0.549 0.556 0.544 0.561 0.570

Gelbvieh 0.477 0.450 0.477 0.551 0.486 0.521

Hereford 0.511 0.504 0.504 0.549 0.548 0.543

Limousin 0.441 0.396 0.437 0.528 0.432 0.479

Shorthorn 0.485 0.443 0.483 0.558 0.477 0.520

Simmental 0.454 0.415 0.452 0.526 0.455 0.496

Wagyu 0.367 0.361 0.376 0.435 0.356 0.377

Path coefficient Angus −0.008 −0.030 −0.005 0.011 −0.007 0.023

Brahman 0.498 0.495 0.501 0.522 0.509 0.513

Gelbvieh 0.040 0.066 0.042 0.047 0.059 0.047

Hereford 0.347 0.345 0.342 0.380 0.379 0.363

Limousin 0.015 0.018 0.016 0.041 0.025 0.026

Shorthorn 0.230 0.216 0.227 0.245 0.228 0.235

Simmental 0.028 0.024 0.027 0.020 0.033 0.029

Wagyu 0.041 0.058 0.042 0.023 0.027 0.011

D-GBC Angus 0.02% 0.22% 0.01% 0.03% 0.01% 0.12%

Brahman 58.3% 58.3% 59.2% 56.5% 56.2% 57.9%

Gelbvieh 0.37% 1.02% 0.42% 0.47% 0.76% 0.49%

Hereford 28.3% 28.3% 27.5% 30.0% 31.3% 29.0%

Limousin 0.05% 0.07% 0.06% 0.34% 0.13% 0.15%

Shorthorn 12.4% 11.1% 12.2% 12.4% 11.3% 12.1%

Simmental 0.19% 0.13% 0.17% 0.08% 0.23% 0.19%

Wagyu 0.39% 0.80% 0.41% 0.11% 0.16% 0.03%

C-GBC Angus 0% 0% 0% 0% 0% 0%

Brahman 44.9% 51.3% 44.9% 42.6% 48.8% 42.3%

Gelbvieh 3.54% 3.00% 3.54% 4.82% 27.4% 4.82%

Hereford 33.6% 28.5% 33.6% 35.9% 31.2% 35.9%

Limousin 0% 0.63% 0% 0% 0.95% 0%

Shorthorn 15.5% 13.5% 15.5% 15.9% 14.1% 15.6%

Simmental 0% 0.89% 0% 0% 1.34% 0%

Wagyu 2.41% 2.15% 2.41% 1.11% 0.86% 1.11%

The Beefmaster animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.

=
2p2
+ 0.10×

√
2× p2

+ 0.05×
√

2× p2

2p2 + p2 + p2 + 2× 0.10×
√

2× p2 + 2× 0.4× p2 + 2× 0.05×
√

2× p2

=
2.212p2

5.224p2 = 0.423

C − GBCMH =
p2
+ rBH ×

√
2p2 ×

√
p2 + rHS ×

√
p2 ×

√
p2

2p2 + p2 + p2 + 2rBH ×
√

2p2 ×
√
p2 + 2rHS ×

√
p2 ×

√
p2 + 2rBS ×

√
2p2 ×

√
p2

=
p2
+ 0.10×

√
2× p2

+ 0.4× p2

2p2 + p2 + p2 + 2× 0.10×
√

2× p2 + 2× 0.4× p2 + 2× 0.05×
√

2× p2

=
1.541p2

5.224p2 = 0.295

C − GBCMS =
p2
+ rBS ×

√
2p2 ×

√
p2 + rHS ×

√
p2 ×

√
p2

2p2 + p2 + p2 + 2rBH ×
√

2p2 ×
√
p2 + 2rHS ×

√
p2 ×

√
p2 + 2rBS ×

√
2p2 ×

√
p2

=
p2
+ 0.05×

√
2× p2

+ 0.4× p2

2p2 + p2 + p2 + 2× 0.10×
√

2× p2 + 2× 0.4× p2 + 2× 0.05×
√

2× p2

=
1.571p2

5.224p2 = 0.282

Therefore, with non-zero correlations between the three
ancestral breeds as the reference, in particular when one or more
of the correlations are large, estimated C-GBC would deviate
considerably from the estimated D-GBC. Generally speaking, the
larger the correlation between the ancestral breeds, the larger the
deviation that it will generate.
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TABLE 6 | Path analysis using the correlation data for 7,605 Beefmaster animals with three ancestral breeds as the reference and three SNP panels.

Statistics GGP30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation with Beefmaster Brahman 0.552 0.549 0.556 0.544 0.561 0.570

Hereford 0.511 0.504 0.504 0.549 0.548 0.543

Shorthorn 0.485 0.443 0.483 0.558 0.477 0.520

Path coefficient Brahman 0.513 0.514 0.517 0.536 0.522 0.526

Hereford 0.375 0.381 0.371 0.420 0.417 0.398

Shorthorn 0.275 0.263 0.276 0.310 0.282 0.298

D-GBC Brahman 54.9% 55.2% 55.6% 51.3% 51.9% 52.8%

Hereford 29.3% 30.3% 28.6% 31.5% 33.0% 30.2%

Shorthorn 15.7% 14.5% 15.8% 17.2% 15.2% 16.9%

C-GBC Brahman 50.1% 51.3% 51.0% 46.0% 47.6% 48.0%

Hereford 31.1% 31.5% 29.8% 33.4% 34.1% 31.4%

Shorthorn 18.8% 17.3% 19.2% 20.6% 18.3% 20.6%

The Beefmaster animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively. Correlations of allele frequencies
were 0.059 (1K), 0.045 (5K) and 0.035 (10K) between Brahman and Hereford, 0.052 (1K), 0.069 (5K) and 0.100 (10K) between Brahman and Shorthorn, and 0.460 (1K),
0.381 (5K) and 0.428 (10K) between Hereford and Shorthorn.

TABLE 7 | Comparison of estimated GBC for 7,605 Beefmaster animals with genotype data, obtained by the admixture model, linear regression, and path analysis
techniques, respectively.

Model Panel GGP 30K/GGP 40K GGP 50K

Brahman Hereford Shorthorn Brahman Hereford Shorthorn

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Admixutre 1K 35.9% 4.2% 37.3% 5.6% 26.8% 5.8% 34.2% 4.7% 38.0% 6.0% 27.8% 6.8%

5K 35.4% 3.3% 36.0% 3.3% 28.5% 3.7% 34.1% 3.9% 37.0% 3.4% 29.0% 4.9%

10K 36.3% 3.3% 34.8% 3.2% 28.9% 3.7% 35.2% 4.0% 35.3% 3.2% 29.5% 4.8%

Linear regression 1K 36.4% 4.7% 38.0% 6.1% 25.6% 6.1% 34.7% 5.4% 38.8% 6.6% 26.5% 7.7%

5K 36.8% 3.7% 36.2% 3.9% 27.0% 4.1% 35.2% 4.4% 37.4% 3.8% 27.4% 5.5%

10K 37.4% 3.7% 35.0% 3.6% 27.6% 4.1% 36.1% 4.5% 35.6% 3.6% 28.3% 5.5%

Path analysis (D-GBC) 1K 50.7% 9.8% 34.9% 10.4% 14.4% 7.2% 47.0% 11.1% 36.9% 11.1% 16.1% 10.9%

5K 54.7% 7.8% 30.3% 6.8% 15.0% 5.8% 51.1% 9.3% 32.8% 6.7% 16.0% 8.6%

10K 54.9% 7.7% 28.7% 6.2% 16.3% 6.2% 52.2% 9.5% 30.0% 6.2% 17.7% 9.1%

Path analysis (C-GBC) 1K 43.2% 9.0% 37.0% 8.5% 19.8% 6.8% 39.9% 9.9% 38.7% 9.0% 21.3% 9.5%

5K 47.5% 7.3% 32.4% 5.8% 20.0% 5.2% 44.3% 8.4% 34.6% 5.6% 21.0% 7.4%

10K 46.9% 7.1% 30.8% 5.3% 22.2% 5.4% 44.5% 8.4% 32.0% 5.1% 23.5% 7.5%

FIGURE 3 | Path diagram of the relationships between Beefmaster and three
ancestral breeds, namely Brahman, Hereford, and Shorthorn. pyx = path
coefficient from x to y; rxy = correlation between x and y.

In Beefmaster, the estimated GBCs from the admixture
model and the linear regression approach seemed to deviate
substantially from pedigree-expected values (i.e., 50% Brahman,

25% Hereford, and 25% Shorthorn). They did not correspond
to those obtained from the path analysis neither. The estimated
GBC of the Beefmaster obtained from the admixture model was
34.1–36.3% (Brahman), 34.8–38.0% (Hereford), and 26.8–29.5%
(Shorthorn). The estimated GBC of the Beefmaster obtained
from the linear regression was 34.7–37.4% Brahman, 35.0–
38.8% Hereford, and 25.6–28.3% Shorthorn. Relatively speaking,
the estimated GBC from the admixture model and the linear
regression were closer to the estimated C-GBC than the estimated
D-GBC, possibly because they all included correlational indirect
path effects except the estimated D-GBC. The distributions of the
estimated GBC for 7.605 Beefmaster animals in ascending order
of the Brahman composition obtained using the three statistical
models are shown in Figure 4.

In the linear regression approach, high correlations between
exogenous variables translate into strong multicollinearity, which
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FIGURE 4 | Distribution of the estimated genomic breed composition for 7,605 Beefmaster animals in ascending order of their Brahman composition, obtained
using three statistical methods: (A) admixture model, (B) linear regression, and (C) path analysis (D-GBC).
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imposes some challenges to the identification of the likelihood
in the admixture model. The problem of model identification
may not necessarily affect the prediction accuracy, but individual
parameters can be unidentified and cannot be estimated uniquely
or reliably. Similarly, high correlations between exogenous
variables can bring challenges for the admixture model to
precisely assess the weights for the underlying admixture
components, which in the admixture model were the allele
frequencies of ancestral breeds as random variables. Arguably,
the linear regression approach and the admixture model are
not appropriate for estimating GBC when the ancestral breeds
are highly correlated. Instead, estimated D-GBC from the path
analysis are robust to deviations due to correlational path effects.

CONCLUSION

We proposed a causality interpretation of genomic breed
composition implemented by the path analysis for composite
animals in the present study. Two measures of GBC using path
analysis were proposed in the present study. Of them, D-GBC
considered only direct path effects of each reference breed,
whereas C-GBC also included indirect path effects due to the
correlation between reference breeds. In Brangus, because the
two ancestors breeds are remotely related, or they have a close to
zero correlation, the estimated D-GBC agreed with the estimated
C-GBC in the path analysis, and they both agreed well with the
estimated GBC by the admixture model and linear regression.
However, when the ancestors are highly correlated, which was
the case with Beefmaster, the estimated D-GBC showed relatively
larger differences from the estimated C-GBC in the path analysis
because the latter included correlational effects due to genomic
similarity between ancestors. Relatively speaking, the estimated
GBC from the admixture model and linear regression were
closer to the estimated C-GBC by path analysis than the
estimated D-GBC. A possible reason is that the estimated GBC
from the admixture model and linear regression (and C-GBC
by path analysis) included correlational effects. Thus, path
analysis provides an alternative interpretation and an estiamation
method of GBC, which arguably has advantages when reference

(ancestral) breeds are highly genetically correlated. Finally,
estimated GBC varied only slightly between different genotyping
platforms (30K/40K vs. 50K) and between the three SNP panel
sizes (1K, 5K, and 10K) when subsets consisted of uniformly
distributed SNPs.
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