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The CD69 gene encodes a C-type lectin glycoprotein with immune regulatory properties
which is expressed on the cell surfaces of all activated hematopoietic cells. CD69
activation kinetics differ by developmental stage, cell linage and activating conditions,
and these differences have been attributed to the participation of complex gene
regulatory networks. An evolutionarily conserved regulatory element, CNS2, located
4kb upstream of the CD69 gene transcriptional start site, has been proposed as the
major candidate governing the gene transcriptional activation program. To investigate
the function of human CNS2, we studied the effect of its endogenous elimination via
CRISPR-Cas9 on CD69 protein and mRNA expression levels in various immune cell
lines. Even when the entire promoter region was maintained, CNS2-/- cells did not
express CD69, thus indicating that CNS2 has promoter-like characteristics. However,
like enhancers, inverted CNS2 sustained transcription, although at a diminished levels,
thereby suggesting that it has dual promoter and enhancer functions. Episomal
luciferase assays further suggested that both functions are combined within the CNS2
regulatory element. In addition, CNS2 directs its own bidirectional transcription into two
different enhancer-derived RNAs molecules (eRNAs) which are transcribed from two
independent transcriptional start sites in opposite directions. This eRNA transcription
is dependent on only the enhancer sequence itself, because in the absence of the
CD69 promoter, sufficient RNA polymerase II levels are maintained at CNS2 to drive
eRNA expression. Here, we describe a regulatory element with overlapping promoter
and enhancer functions, which is essential for CD69 gene transcriptional regulation.

Keywords: CD69, immune regulation, enhancer, promoter, enhancer-derived RNA (eRNA), transcriptional
regulation

INTRODUCTION

Gene expression is coordinated by an interplay among different regulatory regions, which
work together to determine precisely when, where, and how they are transcribed. The
orchestration of gene transcriptional programs relies on two main players: promoters and
distal regulatory elements. Whereas promoters are located immediately upstream of gene
transcriptional start sites (TSS), distal regulatory elements act over long genomic distances
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in an orientation-independent manner. Promoters are thought
to be sufficient to recruited RNA polymerase II (POLR2A) and
establish the start site and directionality of transcription. Basal
expression from promoters is modulated by a combination of
signals from distal regulatory elements, which determine the final
transcriptional output.

Traditionally, enhancers and promoters have been considered
to be two different regulatory elements on the basis of
chromatin characteristics, such as DNase hypersensitivity and
chemical modification of histone tail residues. Promoters are
characterized by open chromatin regions bearing H3K4me3
whereas H3K27ac, H3K4me1 and P300 are often associated with
enhancers (Heintzman et al., 2007; Visel et al., 2009). High-
throughput screens have revealed many similarities in structure
and functionality between both regulatory features. Indeed, well
known enhancer elements can act as promoters (De Santa et al.,
2010; van Arensbergen et al., 2017) and many gene promoters
display distal effects on the regulation of different genes (Dao
et al., 2017; Diao et al., 2017), thus behaving as enhancers.
Consequently, current trends support a unique regulatory feature
with varying degrees of overlap of promoter and enhancer
potential (Andersson and Sandelin, 2020).

Distal regulatory elements control promoter activity, but
the mechanisms underlying this functional interaction remain
unclear. Described enhancer roles include pre-initiation complex
activation, promoter chromatin remodeling, and the transition
of paused to active POLR2A or its direct recruitment (Beagrie
and Pombo, 2016). Recently, RNA molecules transcribed
from enhancers, termed enhancer-derived RNAs (eRNAs), have
been found to play an active role in the development of
the enhancer function (Lam et al., 2014). Enhancers are
frequently bidirectionally transcribed into non-coding RNAs
with short half-lives, which are generally not spliced or
polyadenylated, and are typically short (1–2 Kb) and retained
in nuclear fractions (Lewis et al., 2019). These molecules,
in addition to be markers of active enhancers (Andersson
et al., 2014a), act in cis or trans (interchromosomally) (Tsai
et al., 2018) in regulating the expression of target genes.
Depletion of eRNAs often results in downregulation of
nearby gene expression and, although different mechanisms
of action have been proposed (Lewis et al., 2019), several
studies support that this effect is due to the inhibition
of chromatin looping, which brings promoters and distal
regulatory elements into contact, as revealed by proximity
ligation techniques (3C, 4C and HiC) (Hsieh et al., 2014;
Pnueli et al., 2015).

CD69 is an immune regulatory protein that is present
on the surfaces of all hematopoietic cells after activation.
This membrane molecule modulates immune responses
through controlling cytokine and chemokine production,
and regulates lymphocyte egress from lymphoid organs via
S1PR1 posttranscriptional downregulation (Bankovich et al.,
2010; Notario et al., 2018). In vivo studies in CD69 KO mouse
models have demonstrated an important role of CD69 in
the pathogenesis of different inflammatory and autoimmune
diseases (Radulovic and Niess, 2015; Cibrian and Sanchez-
Madrid, 2017), and a critical function in the anti-infectious

(Vega-Ramos et al., 2010; Notario et al., 2016, 2019), anti-
tumoral (Esplugues et al., 2003, 2005; Mita et al., 2018) and
airway inflammatory responses (Hayashizaki et al., 2016;
Kimura et al., 2017).

The CD69 gene is located on human chromosome 12 as
part of the NK complex, together with many other genes
encoding lectins with varying cell-type specific functions in
the immune system. The CD69 proximal promoter contains
the canonical TATA box and binding sites for early response
inducible transcription factors, such as NFκB and AP1 (Santis
et al., 1994; Lopez-Cabrera et al., 1995). Analysis of the
CD69 5′ region has revealed conservation at four genomic
domains denoted as CNS1-4 (Conserved Non-coding Sequence)
relative to the promoter. These four elements display DNase
hypersensitivity and bear regulatory cell-type specific histone
marks that undergo changes during development and activation
(Vazquez et al., 2009). Transient transfection and transgenesis
assays have suggested a major role of the CNS2 element, located
4kb upstream of the human CD69 TSS, which is occupied
by dense clusters of transcription factors (Laguna et al., 2015;
Fontela et al., 2019) and has strong in vivo regulatory potential
(Mumbach et al., 2017; Simeonov et al., 2017).

In this study we further characterize the human CNS2
regulatory element, which displays both promoter and enhancer
functions, and can direct its own transcription independently
of the activity of its target gene. By using the CRISPR-Cas9
technology to delete or invert the endogenous CNS2 element,
we identified its promoter function and its ability to potentiate
transcription, which is partially retained when it is present
in an inverted orientation. As a promoter, CNS2 recruits
POLR2A and directs its own transcription into two different
eRNAs, independently of the presence of the CD69 promoter
or its activity.

MATERIALS AND METHODS

Cell Culture and Flow Cytometry
Jurkat T cells and C1R B cells were cultured in RPMI medium
supplemented with 10% fetal calf serum, 1% L-glutamine and
100 U/ml of penicillin-streptomycin (Gibco). Cells were cultured
under standard conditions (37◦C, 5% CO2).

To determine the CD69 surface expression levels in different
assayed conditions, we cultured 106 cells with or without
10 ng/ml PMA and 500 ng/ml ionomycin for 24 h. After
incubation, cells were stained with PE-conjugated mouse anti-
human CD69 antibody (clone FN50, Biolegend, 310906) for
20 min at 4oC and analyzed with a FACSCanto flow cytometer
(Becton, Dickinson, Franklin Lakes, NJ, United States) and
FACSDiva software (Becton, Dickinson). Data were analyzed in
FlowJo (TreeStart Inc., Ashland, OR, United States).

Luciferase Assays
DNA was isolated from Jurkat T cells with 10% SDS-containing
buffer followed by ethanol purification. The CD69 promoter and
CNS2 region were PCR amplified with NZYTaq II 2x Colorless
Master Mix (NZY; MB357). The primer sequences used are
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TABLE 1 | PCR primers used for CD69 promoter or CNS2 insertion into pGL3b
plasmid using Gibon Assembly Master Mix.

Name Sequence (5′-3′)

pGL3b_promoter_fw ggtactgttggtaaagccaccatggTCCAAAAACCAATT
CGTAGCTTTC

pGL3b_promoter_rw tttatgtttttggcgtcttccatgGTGAGGCTCTGA
GGCATC

pGL3b_promoter_inv_fw ggtactgttggtaaagccaccatggGTGAGGCT
CTGAGGCATC

pGL3b_promoter_inv_rw tttatgtttttggcgtcttccatggTCCAAAAACCAATTC
GTAGCTTTC

pGL3b_CNS2dir_ fw ggtactgttggtaaagccaccatggTATGGTACATTTGCTAT
TTTCAC

pGL3b_CNS2dir_ rw tttatgtttttggcgtcttccatggACCTCTTTATAAAACA
CAGATG

pGL3b_CNS2inv_ fw ggtactgttggtaaagccaccatggACCTCTTTATAAAACA
CAGATG

pGL3b_CNS2inv_ rw tttatgtttttggcgtcttccatggTATGGTACATTTGCT
ATTTTCAC

pGL3B-prom-CNS2dir_fw cgagatctgcgatctaagtaTATGGTACATTTGCTAT
TTTCAC

pGL3B-prom-CNS2dir_rw ccaacagtaccggaatgccaACCTCTTTATAAAACAC
AGATG

pGL3B-prom-CNS2inv_fw cgagatctgcgatctaagtaACCTCTTTATAAAACA
CAGATG

pGL3B-prom-CNS2inv_rw ccaacagtaccggaatgccaTATGGTACATTTGCTA
TTTTCAC

listed in Table 1. The CD69 promoter or CNS2 amplification
products were cloned into the pGL3b plasmid (Promega; E1751)
upstream of the luciferase ORF with Gibson Assembly 2x
Master Mix (NEB; E2611), according to the manufacturer’s
instructions. NcoI-digested pGL3b plasmid and PCR-amplified
fragments containing vector-overlapping ends, were mixed 1:1
with Gibson Assembly Master Mix and incubated for 10 min
at 50◦C. The CNS2 region was cloned into the pGL3b-CD69
promoter-containing vector via the HindIII restriction site.
Cloning products were transformed into DH5α competent E. coli
cells (NZY; MB004). Vector integrity and fragment directionality
were confirmed by Sanger sequencing. The plasmids with the
correct sequence were purified with Qiagen Mini Kit and used
for transfection.

Jurkat T cells were transfected with 100 ng of each construct
and 2 ng of the Renilla plasmid (pRL-TK, Promega),
which was used as an internal control for transfection
efficiency. Electroporation was performed with the Neon
transfection System (Thermo Fisher) according to the
manufacturer’s instructions. One day after electroporation,
cells were stimulated with 10 ng/ml phorbol 12-myristate
13-acetate (PMA) and 500 ng/ml ionomycin for 24 h. The
cells were then lysed and luciferase activity was measured
with a Dual luciferase kit (Promega E1941, Madison, WI,
United States) and an Orion II microplate luminometer
(Berthold 11300010, Bad Wildbad, Germany). The activity
of each vector was expressed as the ratio between firefly
and Renilla luciferase luminescence. Data are presented as
mean ± SEM of three different experiments, each with two
technical duplicates.

CRISPR-Cas9 Deletions
The CRISPR-Cas9 system was used to eliminate the promoter
and the CNS2 sequences by deletion. Two simultaneous double
strand breaks resulted in a loss of the intervening DNA sequence
without large insertions/deletions via non-homologous end-
joining repair (Zheng et al., 2014). Sequences upstream and
downstream of the promoter and the CNS2 regions were
analyzed for CRISPR-Cas9 targets with the CRISPR Design
tool available on-line at https://benchling.com/. The selected
sequences and their genomic positions are listed in Table 2 and
shown in Figure 1A.

Specific crRNAs, tracrRNA, and Cas9-3NLS were ordered
from Integrated DNA Technologies. To produce guide-RNAs, we
mixed crRNA and tracrRNA, heated them at 80◦C for 10 min
and cooled them to room temperature. To generate CRISPR-Cas9
ribonucleoproteins, we incubated sgRNAs with Cas9 protein
at 1:1 ratio for 20 min. For each transfection, approximately
2 × 105 cells were co-transfected with Prom 3′sgRNA and
Prom 5′sgRNA or CNS2 3′sgRNA and CNS2 5′sgRNA with
the Neon Transfection System (Torres-Ruiz et al., 2017). The
electroporation parameters used for each cell type are described
in Table 3. Single cell clones were isolated and screened via
PCR using primer pairs mapping inside and outside the deleted
region. Several homozygous, heterozygous, inverted and wild-
type clones were selected for further analysis.

RNA Extraction and RT-qPCR
RNA from CRISPR-Cas9-deleted cell lines was isolated with
NZY total RNA isolation kit (MB13402). cDNA synthesis
was performed with a combination of random hexamers
and oligodT primers with an NZY First Strand cDNA
Synthesis Kit (MB125). Gene expression was evaluated by
probe-based qPCR analysis [NZY qPCR Probe Master Mix
(2x), MB227] on QuantStudio3 (Thermo Fisher) by using a
predesigned qPCR assay from Integrated DNA Technologies
(IDT) (Assay ID: Hs.PT.58.20340459). Human β2microglobulin
(assay ID: Hs.PT.58v.18759587) mRNA expression was used for
normalization. Relative gene expression was calculated with the
1Ct method.

eRNA Analysis by qPCR
Total RNA was obtained with Trizol (Thermo Fisher, 15596026).
After extraction, the RNA was treated with RQ1 RNase-free

TABLE 2 | Sequence and genomic position of each sgRNA used for promoter or
CNS2 CRISPR-Cas9 deletion.

Name Sequence (5′-3′) Genomic position
(GRCh37/hg19)

Prom_5′_gRNA1 GGATGCTGTCATG
AGAACAC

Chr12:9912818-
9912838

Prom_3′_gRNA2 CATAGCAGCTAGAA
CCATTG

Chr12:9914667-
9914687

CNS2_5′_gRNA1 CGGTACTAATCAATA
CTTGT

Chr12:9916938-
9916958

CNS2_3′_gRNA2 TGTGTGCACCTAACA
TACCT

Chr12:9918359-
9918379
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FIGURE 1 | Deletion of the CNS2 regulatory element impairs CD69 mRNA and protein expression. (A) Vista browser tracks (http://pipeline.lbl.gov/cgi-bin/gateway2)
showing conservation between the human and mouse CD69 gene locus (GRCh37/hg19 assembly, chr12:9,905,077-9,920,582). Blue = untraslated regions,
Purple = exons, Pink = conserved non-coding regions. Boxes indicate the deleted regions. (B,D) Flow cytometry analysis of CD69 surface expression in Jurkat T
Cells (B) or C1R B cells (D) Left. Representative histograms of the expression profiles for Promoter or CNS2 deletion in cells stimulated (dotted line) or not stimulated
(gray line) with PMA/IO for 24 h. Right. Mean fluorescence intensity (MFI) of different wild-type (squares), 1Promoter (circles) or 1CNS2 (triangles) clones, either
unstimulated (empty) or stimulated (filled). (C). CD69 mRNA levels in basal conditions and after 3 h PMA/IO stimulation in WT, 1Promoter, and 1CNS2 conditions.
Data represent the mean ± SEM of three experiments using three different clones. ns: non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

DNAse (Promega, M6101) for 1 h at 37◦C with 1 µl of DNase
per µg RNA in a total volume of 50 µl. The RNA was then
re-purified with phenol/chloroform and precipitated with 70%
ethanol. A total of 3–5 µg of RNA was reverse-transcribed in a
total volume of 20 µl with random primers and SuperScript II

reverse transcriptase (Thermo Fisher) for 1 h. Because eRNAs
do not undergo splicing, an identical reaction of each sample,
with the same quantity of RNA, but without RT enzyme (-
RT control), was used to evaluate DNA contamination. The
cDNA was diluted to 100 ng/µl on the basis of the initial RNA
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TABLE 3 | Electroporation conditions used for CRISPR-Cas9 system transfection.

Cell type Pulse voltage (V) Pulse width (ms) Pulse number

Jurkat (JJ) 1325 10 3

C1R 1450 10 3

Primay T cells 1600 10 3

TABLE 4 | Primers sequences used for sense and antisense eRNA quantification.

Name Sequence (5′-3′)

β2microglobulin_fw GGACTGGTCTTTCTATCTCTTGT

β2microglobulin_rw ACCTCCATGATGCTGCTTAC

antisenseRNA_fw TCAAGAAAACACTGCAATCAAAA

antisenseRNA_rw TGTCAATGTGGCAAGTTGTG

senseRNA_fw TGCAAGAGCCTGAACTTGTTG

senseRNA_rw GCATGTGTCAGCTAGGACAGT

input. A volume of 1 µl of diluted cDNA was used in a 10 µl
qPCR reaction with NZY qPCR Green Master Mix 2x (MB221).
Quantification was performed on QuantStudio3 (Thermo Fisher)
with the primers listed in Table 4. Human β2microglobulin was
used for normalization. The average of two technical duplicates
was used for all quantifications. Relative gene expression was
calculated using the 1Ct method.

Chromatin Immunoprecipitation (Chip)
ChIP experiments were performed with a Chromatrap Pro
A Chip-seq Sonication 24 column kit (Chromatrap; 500189),
according to the manufacturer’s recommendations. Briefly,
1 × 107 cells, treated for 30 min with PMA + IO, washed and
fixed with 37% paraformaldehyde for 10 min. The cross-linking
reaction was quenched with 1,375 M glycine before cell lysis.
For chromatin sonication, 20 pulses of 30 s were applied
with Bioruptor Next Generation instrument (Diagenode).
Sheared chromatin was incubated with 10 µg of the following
antibodies: anti-RNA polymerase II CTD repeat YSPTSPS
(phospho S2) (ABCAM, ab5095); antiH3K4me3 (ABCAM,
ab8580) and anti-IgG (Cell signaling, 2729); at 4◦C overnight.
Chromatrap Spin Columns were used for immunoprecipitation.
DNA from the eluted immunocomplexes was purified with a
QIAquick PCR Purification Kit (Qiagen) columns. Real-time
PCR analysis was performed with QuantStudio3 (Thermo
Fisher) and NZY qPCR Green Master Mix, ROX plus
(NZY MB222). The Ct values of IgG controls were used for
normalization. Primer sequences (Table 5) were designed
with Blast Primer and validated via qPCR with DNA from
1PROMOTER and 1CNS2 DNA to avoid non-specific
amplification. Amplicons verified with melting curve analysis
and gel electrophoresis.

RACE Reactions
Characterization of CNS2 non-coding transcripts was performed
with a GeneRacer RACE kit from Thermo Fisher Scientific
according to the manufacturer’s instructions. In brief, 5 µg of
total RNA from 30 min stimulated Jurkat T cells was treated
with tobacco acid phosphatase to remove 5′cap and expose 5′

TABLE 5 | Primers sequences used for Chip analysis.

Name Sequence (5′-3′)

CNS2Chip_fw TGTAGAATCCAGGGTGAGACG

CNS2Chip_rw AGAGATGAGCAGTTTGTCTCCG

CD69promChip_fw GCTGGAGCTCTTGTTGAGTCT

CD69promChip_rw CAAGCAAGTAGGCGGCAAGA

TABLE 6 | Primers sequences used for the analysis of sense and
antisense eRNA 3′ end.

Name Sequence (5′-3′)

eRNA_antisense_F_rw TGGTACATTTGCTATTTTCACACCA

eRNA_antisense_I_rw TGTCAATGTGGCAAGTTGTG

eRNA_antisense_J_rw TTCGACCCTTCTCCCCAATC

eRNA_antisense_K_rw GGATGAAAGCTTAAAGGGGC

eRNA_antisense_L_rw AGCCATTAGGGAAATGCAAA

eRNA_antisense_M_rw TTAGTGTGGGGGCAGAATCTT

eRNA_antisense_N_rw TTTGATTGGCTTTGCCTCTT

eRNA_antisense_O_rw TGCATCCACTACACTGTTCAGA

eRNA_sense_1_fw CTGTCCTAGCTGACACATGC

eRNA_sense_2_fw TGCAAGAGCCTGAACTTGTTG

eRNA_sense_3_fw ATCAGTACTTGGGTGCGTGG

phosphates, thus enabling the ligation of the GeneRacer RNA
Oligo with a known specific sequence. cDNA was generated
by reverse transcription with SuperScript II RT and either
random hexamers or GeneRacer Oligo dT primer. A 1 µl
volume from a 1/5 dilution of the RACE product was used
in PCRs with GeneRacer 5′ Primer annealing to 5′ GeneRacer
RNA Oligo and different gene specific 3′ primers in a 20 µl
total reaction. To avoid non-specific bands, we re-amplified
1µl of PCR product with GeneRacer 5′ Nested Primer and
a second inner specific primer. Only cDNA containing the
GeneRacer RNA oligo was amplified. A similar procedure
was followed for 3′ end characterization, with GeneRacer 3′
primer and GeneRacer 3′ Nested primer. Amplification bands
were analyzed by Sanger sequencing. Specific primer sequences
used for sense and antisense-RNA characterization are listed
in Table 6.

Circular RNA
To determine the 3′ end of the different eRNA species transcribed
from the CNS2 region, we used a previously described RNA
circularization method (Couttet et al., 1997; Kim et al., 2010).
Briefly, 5µg of DNase treated RNA were incubated with 0.5
units of tobacco acid pyrophosphatase (Thermo Fisher) at
37◦C for 1 h to expose the phosphates at the 5′ ends of all
RNAs. Decapped RNA was purified and circularized with 5
units of T4 RNA ligase, which catalyzed phosphodiester bond
formation between the generated 5′ phosphate and the 3′
hydroxyl group. cDNA synthesis from circularized RNA was
performed with SuperScript III and random hexamers with the
following program: 25◦C for 5 min, 50◦C for 1 h and 70◦C
for 15 min. After reverse transcription, 1µl of cDNA was used
to amplify 5′-3′ junctions with primer pairs specifically design

Frontiers in Genetics | www.frontiersin.org 5 October 2020 | Volume 11 | Article 552949

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-552949 October 21, 2020 Time: 20:6 # 6

Redondo-Antón et al. Duality of Human-CD69 Regulatory Region

to that end (Supplementary Figure 1A). For sequencing, PCR
products were cloned with TOPO-TA cloning kit (Thermo Fisher,
K4575J10) according to manufacturer’s instructions.

Statistical Analysis
All data was represented and analyzed with GraphPad Prism
7 software. Significant differences between the different assayed
conditions were tested with an unpaired two-tailed t-test.
Differences with p < 0.05 were considered as statistically
significant: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.
Non-significant differences are indicated as ns.

RESULTS

The CNS2 Regulatory Element Is
Necessary but Not Sufficient for CD69
Expression
On the bases of transient transfection experiments and
transgenesis assays, we previously defined four non-coding
regions upstream of the CD69 promoter as key regulatory
elements required for proper gene transcriptional regulation
during T cell development and activation (Vazquez et al., 2009).
ENCODE data, together with our recent work (Fontela et al.,
2019) and that of others (Mumbach et al., 2017; Simeonov et al.,
2017) suggest that CNS2, located 4 kb upstream of human CD69
TSS, as the major candidate governing the gene transcriptional
activation program.

To further investigate CNS2 function, we applied CRISPR-
Cas9 technology to delete 1432 bp of DNA containing the entire
conserved CNS2 region (chr12:9916938-9918379; human Feb
2019). We obtained several cell lines with homozygous deletion
of the CNS2 element (CNS2-/-) and also produced cell lines
with a promoter deletion (chr12:9912818-9914687; PROM-/-) as
a negative control for CD69 expression (Figure 1A).

To assess the effects of CNS2 deletion on CD69 expression,
we measured surface protein levels in basal conditions and
at their peak after activation with PMA/IO for 24 h. For
Jurkat T cells (Figure 1B), very low levels of CD69 protein
were detected in unstimulated conditions (MFI = 408), whereas
PMA/IO treatment led to a 60-fold increase over basal conditions
(MFI = 26900). As predicted, promoter-deleted clones displayed
lower basal CD69 levels (MFI = 117) and an inability to respond
to stimulation (MFI = 125). Unexpectedly, the effects of the
lack of the CNS2 regulatory region resembled those of promoter
deficiency, in which CD69 expression was abolished both in
the basal state (MFI = 114) and after PMA/IO stimulation
(MFI = 185). In agreement with the protein data, only residual
levels of CD69 mRNA were detected in both cases at steady
state and after 3 h stimulation (Figure 1C). When we analyzed
the effect of CNS2 deletion in the C1R B cell line (Figure 1D),
which constitutively expresses CD69, we observed not only the
loss of response to stimulation but also an inability to sustain
basal expression.

Together, these results indicate that CNS2 acts as part of
the promoter and theirs cooperative function is necessary for

transcription, since none of them can act on their own to induce
CD69 expression.

The CNS2 Element Has Overlapping
Promoter and Enhancer Functions
To further investigate the role of CNS2 in CD69 transcriptional
activation we assayed its ability to work independently of
its orientation, as traditionally described for distal regulatory
elements. Thus, we examined whether an inverted CNS2 might
enhance CD69 promoter activity in a luciferase reporter assay
(Figure 2A). The CD69 promoter alone directed low levels
of luciferase expression and conferred a 3-fold increase in
expression under stimulation conditions. Addition of CNS2
induced promoter activity increases of 2-fold and 10-fold in
the basal and stimulated states, respectively. The inverted CNS2
retained basal activity and upregulated CD69 after activation up
to half the expression level reached with its regular orientation.
We also tested the ability of CNS2 to direct promoter-less
luciferase expression in both directions. The CNS2 regulatory
element itself directed luciferase expression at similar levels to
those of the promoter alone. In contrast to the results for the
CD69 promoter, the inverted CNS2 element alone completely
retained its activity.

We also measured the effect of CNS2 inversion in its original
genomic context, by analyzing CD69 expression in different
CNS2-/ + edited clone, which were found to contain the
remaining CNS2 copy in an inverted position (Figure 2B). We
detected this rearrangement with a forward primer annealing
outside the deleted region and a second forward primer annealing
inside it. Sanger sequencing confirmed the CNS2 inversion
between both CRISPR-Cas9 targets. Approximately, 30% of
activation-induced CD69 expression was retained when only
one CNS2 copy drove transcription (CNS2 ±). When in
heterozygous conditions, the CNS2 element was in an inverted
position (+ INV/-), the expression was 70% lower than that
in wild-type ± counterparts. Consequently, even when CNS2′s
orientation-independent activity was maintained, its ability to
activate transcription in these circumstances was diminished.

Therefore, a combination of experiments in genomic
and episomal contexts supports the convergence of
traditional promoter and enhancer properties in the CNS2
regulatory element.

Bidirectional Transcription of CNS2
Regulatory Element
High-throughput analysis of gene regulatory regions have
revealed that distal elements, preferentially those marked
with H3K4me1 and H3K27ac, are commonly transcribed
bidirectionally into a newly described class of RNA molecules.

In agreement with a putative promoter function of CNS2,
publicly available data show overlapping RNA-seq peaks,
H3K4me1 and H3K27ac marks and POLR2A binding
within this region, which may indicate transcriptional
activity (Figure 3A). In addition, Cap Analysis of Gene
Expression (CAGE) experiments revealed three potential TSS
within the CNS2 sequence; the first, henceforth referred to as
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FIGURE 2 | CNS2 activity is partially orientation-independent. (A) Jurkat cells were transfected with luciferase constructs bearing the CD69 promoter and/or CNS2
regulatory elements in the indicated positions and orientations with respect to the luciferase ORF. Bars and error bars denote the mean ± standard error of the mean
(SEM), respectively, of relative luminescence units from three individual experiments, being the value of each experiment the mean of two technical duplicates. (B)
Left. Histograms of CD69 surface expression 24 h post-activation in representative CNS2 ± (dark gray) and CNS2 + inv/- (light gray) clones. Histograms of
non-activated and activated wild type controls are represented as dashed lines. Right. MFI of CD69 surface expression in two independent CNS2 ± clones and four
CNS2inv/- clones in basal conditions (white) or 24 h post-activation (black). Mean ± SEM of CD69 MFI of the various assayed clones are shown. ns: non-significant,
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

sense- TSS (GRCh37/hg19 chr12:9917412-9917425), initiates
negative strand transcription toward the CD69 gene coding
sequence; the others (GRCh37/hg19 chr12:9917527-9917543
and chr12:9917895-9917913), antisense-TSSs, transcribe
the positive strand in the opposite direction (Figure 3A;
Andersson et al., 2014a).

Together, these data suggest that the CNS2 element might be
transcribed into at least three eRNAs molecules. To explore this
possibility we performed 5′ and 3′ Rapid Amplification of cDNA
Ends (RACE) reactions on total RNA from 30 min-stimulated

Jurkat T cells. 3′ RACE reactions did not reveal transcript 3′
ends, thus suggesting that none of the potential transcripts were
polyadenylated, in agreement with evidence indicating a lack of
polyadenylation in this type of RNA molecules (Kim et al., 2010).
However, 5′ RACE analysis demonstrated the production of two
different RNAs from two TSS, separated by 61 bp, in opposite
directions. The position of the sense TSS was identical to that
predicted, whereas the antisense TSS was shifted 45 bp upstream
of its reported position. Then, to assess its complete length, we
used a primer extension PCR assay combining 5′ RACE oligo
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FIGURE 3 | CNS2 displays promoter activity in its genomic context. (A) ENCODE data (GRCh37/hg19 assembly, chr12:9,905,077-9,920,582) for transcription
levels (from RNA-seq data), and binding of H3K4me3, H3K4me1, H3K27ac and POLR2A at the CD69 locus. The locations of the different TSS and mapped
CAGE-reads are also represented. (B) Locations of the different primers used to assay sense and antisense eRNA lengths with respect to the different TSS within the
CNS2 region. (C) Agarose gel of the PCR products obtained from the amplification of RACE-treated RNA from 30 min PMA/IO activated Jurkat T cells with 5′RACE
oligo and primers annealing at different distances along CNS2 for antisense-eRNA. Sequence from one of the PCR products depicts the beginning of the
antisense-eRNA molecule, defining its TSS.

with specific primers at different positions with respect to the
TSS (Figure 3B). We stablished the approximate length of each
non-coding transcript determining whether a PCR product could

be obtained with a primer at a certain position (forward eRNA
analysis in Figure 3C). In that way, we observed that the reverse
eRNA was between 886–1089 bp long; whereas the forward eRNA
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was 3522–3762 bp in length. eRNA sequencing confirmed that
none of the transcripts underwent splicing. We did not detect
activity from the second forward TSS. With a circular RNA
method, we detected two sense-RNA species of 896 and 739 bp
arising from the same TSS (Supplementary Figure 1A).

Quantification and kinetics analysis of CNS2 transcription
was assayed with RT-qPCR. DNase-treated RNA was reverse-
transcribed with random primers and quantification was
performed with the primer pairs highlighted in red at Figure 3B.
eRNA expression was upregulated 50-fold within the first 30 min
of PMA/IO exposure, then gradually decreased in a time-
dependent manner. The expression kinetics was similar between
the sense and antisense transcripts but preceded the induction
of CD69 mRNA (Figure 4A), a finding that appears to reflect
independent transcription between the nearest coding RNA and
both eRNA species.

Autonomous Promoter Activity of the
CNS2 Regulatory Element
Because occupancy by POLR2A and H3K4me3 has been
described as a feature of regulatory elements with promoter
ability, we analyzed these parameters at the CNS2 region, as well
as how they affected by promoter deletion.

Chip experiments of POLR2A binding kinetic at CD69
promoter and CNS2 regulatory element showed a low occupancy
at both regions before 30 min of stimulation (Supplementary
Figure 1B). Chip experiments of 30 min stimulated WT, PROM-
/- and CNS2-/- cell lines are shown in Figures 4B,C. CNS2
occupancy by H3K4me3 was not strikingly affected by promoter
deletion (Figure 4B). However, although the absence of CNS2
reduced 9-fold POLR2A binding at the CD69 promoter, lack of
CD69 promoter did not affected the ability of CNS2 region to
recruit POLR2A (Figure 4C). These results indicate a synergistic
action of both elements in the recruitment of appropriate
POLR2A levels at CD69 promoter, in a manner that may be
dependent on the physical interaction between them.

Next, to explore whether the absence of the promoter affected
eRNA transcription at CNS2 region, we measured the forward
and reverse eRNA levels in the basal state and after a 30 min
induction with PMA/IO in WT, PROM-/- and CNS2-/- cell
lines. The detection was performed with qPCR using primer
pairs located outside the deleted CNS2 region (Figure 3B,
red lines). As shown in Figure 4D, the absence of CD69
promoter did not impair CNS2 bidirectional transcription. The
lack of amplification among CNS2-/- samples corroborates eRNA
beginning within CNS2 element and confirmed the absence of
DNA contamination.

Therefore, these results confirmed that CNS2 regulatory
element constitutes an independent transcriptional unit that
does not require the assistance of the promoter to produce its
own transcripts.

DISCUSSION

We previously reported a DNase hypersensitive site bearing
specific regulatory epigenetic marks and dense clusters of

transcription factor binding sites which acts as a potent
regulatory element in the context of episomal and transgenesis
assays. In this study we targeted the endogenous CNS2 element
by CRISPR-Cas9 deletion in various human cell lines and
primary T cells to evaluate its function in a native chromatin
context. Like promoters, the CNS2 regulatory region is necessary
for transcription initiation and promotion, but it displays
orientation-independent activity in driving and potentiating
transcriptional output, functions traditionally attributed
to enhancer elements. Combining promoter and enhancer
functions, the CNS2 element directs its own transcription into
two non-coding RNAs. eRNA production is not dependent on
the CD69 promoter or CD69 transcription, because sufficient
levels of POLR2A are reached at CNS2 element to maintain their
production; thus, this element acts as an independent structural
and functional transcriptional unit.

We found a positive regulatory function of CNS2 through
analyzing its role in the human genomic context. However, in
studying the CD69 mouse locus, we previously found that CNS2,
despite displaying enhancer properties in luciferase reporter
assays, inhibit transcription of the hCD2 reporter when it is
placed immediately upstream of the promoter in a transgenic
construct (Vazquez et al., 2009). In this case, CNS2 function
was evaluated in a non-endogenous context with an artificial
system that modifies the natural distances between CNS elements
and potential interactions with distal regulators, thereby shifting
the regulatory landscape. CNS2 has a crucial function in the
regulation of CD69 expression, because it is a requirement for the
activation of its transcription. However, it is not the only element
within the CD69 locus with potential regulatory properties.
DNase hypersensitivity and regulatory epigenetic marks have
also been detected for CNS3, CNS4 and a non-conserved DNase
hypersensitivity region located in intron 1 (Vazquez et al., 2009,
2012), which also have detectable bidirectional promoter activity.

We have studied the endogenous regulatory function of
CNS2 in T and B human cell lines since all the studies up to
date evaluating the regulatory role of the different conserved
non-coding elements contained within CD69 locus have been
carried out in the mouse genomic context and analyzed on
these cellular lineages. However, we would expect the function
of this element to be the same for those hematopoietic lineages
where CD69 expression occurs in an inducible manner, such
as NK cells, monocytes and macrophages; but also for tissue
resident immune cells that show constitutive expression, as
we here demonstrate that CNS2 is not only necessary to
activate gene expression upon induction but also to sustain
basal activity. Human primary T cells do not stand cloning
procedures upon nucleofection therefore future studies must rely
on different research approaches as the generation of a CNS2
deficient mouse model.

Although promoters are highly similar to enhancer elements
in terms of architecture and functionality (Andersson and
Sandelin, 2020), they display directionality in defining TSS
and transcriptional progression. Enhancer removal often
substantially decreases target gene expression, and low
levels are retained, owing to basal activity driven by the
promoter. However, CNS2 deletion completely abolished
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FIGURE 4 | CNS2 eRNA production is independent of the CD69 promoter. (A) CD69 mRNA, sense and anti-sense eRNA kinetics measured in wild type Jurkat T
cells after activation were assayed by quantitative PCR. Mean ± SEM of the data of two different experiments is shown. (B) H3K4me3 at CNS2 region in WT and
1PROMOTER Jurkat T cells after 30 min stimulation with PMA/IO. C POLR2A binding at the CD69 promoter or CNS2 element after 30 min-stimulation assayed by
ChIP in Jurkat WT, 1PROMOTER and 1CNS2 cells. (B,C) Each analysis was performed with a mix of three different clones for 1PROMOTER and 1CNS2
conditions. Error bars denote the mean ± SEM of two different technical duplicates. (D) Quantification of sense and antisense eRNA levels in the basal state and
after 30 min-stimulation in WT, 1PROMOTER, and 1CNS2 cells. The results of three experiments using different clones are presented as mean ± SEM.ns:
non-significant, ∗p < 0.05, ∗∗p < 0.01.

CD69 expression, because the levels of protein or mRNA
in CNS2-/- mutants were identical to those found when the
promoter was deleted.

Thus, neither the CD69 promoter nor the CNS2 element
alone can direct gene expression; these results suggest that
both regulatory elements stablished a cooperative activity in
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promoting transcription of the CD69 gene. The promoter
function of the CNS2 element is also reinforced by its ability to
act alone in directing reporter gene expression in both directions,
in contrast to the promoter. This finding is in agreement with
published data in which the promoter activity of enhancer
elements in reporter assays has been found to be associated
with their ability to direct their own transcription into non-
coding RNA species bidirectionally in their endogenous genomic
context (Mikhaylichenko et al., 2018). In fact, the CNS2 element
overlaps with bidirectional CAGE tags, therefore, as previously
described, the ability to act as a promoter correlates with CAGE
tag frequency (Andersson et al., 2014a).

The CNS2 element has orientation independent properties, as
described for enhancers (Fromm and Berg, 1983; Kong et al.,
1997), although its ability to function in some orientations is
reduced. Several studies have revealed that enhancer capacity is
affected by inversion, owing to an altered chromosomal context.
Inversion can disrupt cohesion-mediated chromatin domains,
thereby altering the genome topology and, consequently,
decreasing enhancer or promoter function (Guo et al., 2015;
Tsujimura et al., 2015; Spielmann et al., 2018; Laugsch et al.,
2019). Although the effect on chromatin architecture can explain
the altered activity of CNS2 inversion in the CRISPR-Cas9 edited
clones, it is unlikely due to the reduced size of the deletion and the
fact that it cannot explain the observed activity of inverted CNS2
in transient transfection assays. One possible explanation may be
the presence of a region with unidirectional properties within the
CNS2 element, as described for conventional promoters.

Firstly described in 2010 for the β-globin locus, enhancer
transcription into non-coding RNA transcripts, termed enhancer
derived RNAs (eRNAs), has rapidly become a widely accepted
feature of all active enhancers (Andersson et al., 2014a), with
a higher validation rate than conventional criteria, as histone
modifications or DHSs (Lu et al., 2015). The CNS2 element
is transcribed into two different eRNAs whose expression
precedes CD69 promoter activation, thus resembling the kinetics
described for this type of RNA molecules in different cell
activation systems (Lewis et al., 2019). CNS2 eRNAs are not
processed or polyadenylated, although a minority of eRNAs
have been described to be processed and to have termination
sites (Koch et al., 2011; Andersson et al., 2014b; Tsai et al.,
2018). Circular RNA showed defined termination sites for sense-
RNA, thereby supporting the notion that every eRNA displays
two alternative 3′ ends arising from the same TSS (Carninci
et al., 2005; Kawaji et al., 2009).The transcription kinetics of
CNS2 peaked after 30 min of PMA/IO exposure, displaying a
longer half-life than tipically described eRNAs. The antisense
CNS2 transcriptions expands for at least 3,5 kb and consequently
is longer than reported lengths of non-coding transcripts of
this types. Certain eRNAs, generally those that are longer and
more stable, have been shown to be involved in complex gene
regulatory networks. For example, MUNC, a 2 kb non-coding
RNA transcript transcribed from an enhancer located 5 kb
from MyoD gene on mouse chromosome 7, regulates Myogenin,
located on chromosome 1, in trans (Tsai et al., 2018). In another
example, KLK3e, arising from androgen response element III,
regulates different Kallikrein genes at the same locus in cis

(Hsieh et al., 2014). However, whether these molecules should
be classified as eRNAs or as long non-coding RNAs is unclear
(Andersson et al., 2014b).

CNS2 transcription occurs bidirectionally from two
independent TSS at similar levels, with no gene direction
bias. We demonstrated that the induction of eRNAs precedes
CD69 mRNA expression, and their production is not dependent
on the presence of the promoter region or its activity. Thus,
as with the α-globin locus (Vernimmen, 2014), the ability of
CNS2 to induce self-transcription appears to be independent
of the enhancer sequence itself, whereas in other cases, eRNA
production appears to be dependent on the promoter (Kim
et al., 2010). Nevertheless, the decrease in POLR2A binding to
the promoter in the absence of CNS2 suggests an interaction
between both regulatory regions, thereby probably confirming
the observed synergistic cooperation between elements in
inducing CD69 transcription.
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