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Isolation of phloem-specific promoters is one of the basic conditions for improving the
fiber development and resistance of ramie phloem using genetic engineering. In this
study, we isolated a ramie endogenous promoter (named PPSP1-BnPSP-1) and analyzed
the function of its truncated fragments in Arabidopsis. The results show that PPSP1-
BnPSP-1 can drive the GUS reporter gene to be specifically expressed in the veins
of Arabidopsis. After hormone and simulated drought treatment of the independent
Arabidopsis lines carrying PPSP1-BnPSP-1 and its truncated fragments, only PPSP1−5-
BnPSP-1 (−600 to −1 bp region of PPSP1-BnPSP-1) is stably expressed and exhibits
phloem specificity. Our findings suggest that PPSP1−5-BnPSP-1 can be used as a
phloem specific promoter for further research.

Keywords: tissue-specific, promoter, UFW cloning, GUS expression, ramie [Boehmeria nivea (L.) Gaud.]

INTRODUCTION

Promoters play a vital role in the initiation and regulation of gene transcription. Constitutive
promoters have been used earlier and widely in genetic engineering, and have played an important
role in plant disease resistance engineering. However, it has gradually been confirmed that there are
unavoidable defects behind their high expression-poor temporal and spatial specificity, which can
cause foreign sources Gene silencing (Charrier et al., 2000) increases plant energy consumption and
reduces biomass, which affects plant yield (Krishna et al., 2016), and the appearance of additional
disease symptoms reduces plant resistance (Quan et al., 2018). The specific expression promoters
that are gradually isolated and verified to meet the target requirements can alleviate such problems
to a certain extent.

Bast fiber crops are the most productive main fiber plants among the natural fiber sources, and
their yield and quality are directly affected by the growth and development of sclerenchymatous
fibers in the plant phloem (Pari et al., 2015). The expression of genes related to phloem
development is inseparable from the regulation of upstream promoters and developing endogenous
phloem-specific promoters from plants has significant application prospects in improving the
developmental characters of phloem fibers. Since the first maize sucrose synthase-1 (SH1) promoter
was isolated and proved to drive the specific expression of the GUS fusion gene in tobacco phloem
(Yang and Russell, 1990), more and more phloem-specific expression promoters were identified
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and verified from plants. In recent years, more studies have
applied them to improve plant resistance and other aspects.
Scholars constructed a binary vector with an Arabidopsis
sucrose-H homologous gene (AtSUC2) promoter expression
cassette to target phloem-specific expression, driving the reporter
gene to be specific in the phloem of the leaf, petiole, and root of
the transgenic plant Expressed, and the transgenic plants showed
resistance to plant protozoa (mycoplasma-like prokaryotes)
(Zhao et al., 2004). The study in tomato cytosolic fructokinase
FRK1 suggest that SlFRK1 is involved in vascular tissue
development and hydraulic conductivity in tomato plants and
that SlFRK1 is important for normal phloem fiber development,
together with SlFRK2 (Stein et al., 2017). Research on the
identification of the phloem-specific activity of the poplar PtrDP3
promoter found that the transgenic Arabidopsis plants are not
affected by abiotic stress or exogenously applied plant hormones
(Nguyen et al., 2017). This study provides evidence of a strong
phloem-specific promoter that is suitable for phloem-specific
biotechnological modifications in plants. Related research on the
promoter of the poplar tissue-specific gene xylosyltransferase
gene provides a tool for changing the content of xylan covering
the cellulose matrix (Porth et al., 2018). The development and
verification of multiple uses makes the application of phloem-
specific promoters possible.

Ramie has been used as a fiber crop in the world for more
than 6,000 years. The fabrics made from its fiber are light
and breathable, occupying an important position in the textile
industry (Paiva Junior et al., 2004). However, disadvantages such
as poor crease-resistance and difficulty in dyeing restrain the
utility of ramie fiber (Sun, 2004). The directional improvement of
ramie fiber quality by combining phloem-specific (preferentially
expressed) promoters with fiber development-related genes is a
promising approach. The endogenous promoters of ramie that
have been reported so far include mannanase gene promoter
(Ma et al., 2018), phloem protein 2 (PP2) gene promoter (Guo
et al., 2018), germacrene D synthase promoter, shoot apical
meristem-specific regulator promoter (Guo et al., 2019a), and
sucrose synthase 1 (BnSUS1) gene promoter (Guo et al., 2019b),
but BnSUS1 is the only one that drives specific expression
in vascular tissues. There are many ways to clone flanking
sequences, and we isolated promoters via Universal Fast Walking
method (UFW) (Myrick and Gelbart, 2002). Compared with
Y-connector and TAIL-polymerase chain reaction (TAIL-PCR),
the UFW method is characterized by strong specificity and low
costs (Chen et al., 2015). Guo et al. (2018, 2019b) used this
method to successfully obtain the promoter sequences of ramie
SUS1, PP2, germacrene D synthase, and shoot apical meristem-
specific regulator.

In the present study, we explored and cloned three genes
which are specifically or predominantly expressed in the phloem
of ramie, then fused GUS and transformed into Arabidopsis to
determine the expression site and the expression level of GUS
reporter genes. Moreover, the position of internal regulatory
elements of the promoters and their roles in different treatments
were studied, which providing a basis for subsequent molecular
biological studies on ramie, a tool for ramie molecular breeding
and new tissue-specific promoters for genetic engineering.

MATERIALS AND METHODS

Experimental Materials
Ramie cultivar Huazhu No. 5 was obtained from the Ramie
Germplasm Nursery in Huazhong Agricultural University. Wild-
type Arabidopsis (Columbia ecotype) lines were used for
experimentation.

The fresh shoots of Huazhu No. 5 (about 15 cm in length)
were selected and disinfected with 1h KMnO4 solution for
30 min, followed by cutting in a black plastic cup and culture
in an incubator at diurnal temperature of 26◦C/22◦C and under
photoperiods of 16 h/8 h. When the hydroponic roots grew
to about 7 cm in length, 2–6 cm root samples were obtained.
The specific sampling positions are shown in Supplementary
Figure 1. The tissues obtained were cut into pieces, placed
into centrifuge tubes and stored in an ultra-low-temperature
refrigerator at−70◦C until RNA extraction.

DNA and RNA Extraction
Ramie genomic DNA was extracted from fresh leaves of Huazhu
No. 5 using a genomic DNA extraction kit (OMEGA bio-tec,
CA, United States). The genomic DNA obtained was used for
PCR amplification. From the tissues mentioned above, total RNA
was extracted using RNAprep Pure Plant Kit (Polysaccharides
and Polyphenolics-rich) (Tiangen Biotech, Beijing, China). Then
use it to obtain cDNA by reverse transcription using the
GoScript Reverse Transcription System (Promega, Madison, MI,
United States).

Quantitative Real-Time PCR (qRT-PCR)
Analysis
The 120 candidate genes obtained from previous studies (Huang
et al., 2014) were screened by semi-quantitative PCR based on
their expression in five tissues of ramie, namely, bark, vein, leaf,
middle stem, and root. only those expressed in the bark and
vein were selected for subsequent experimental verification.
Seven candidate genes were selected, gene IDs: comp37997_c0
(BnPSP-1), comp34113_c0 (BnPSP-2), comp23939_c1 (BnPSP-
3), comp34130_c0 (BnPSP-4), comp23939_c3 (BnPSP-5),
comp23939_c2 (BnPSP-6), and comp38891_c0 (BnPSP-7).

The qRT-PCR was performed on a Bio-Rad iQ5 Real-Time
PCR System (Bio-Rad, CA, United States), with GAPDH gene
as a reference gene (Huang et al., 2014). The relative expression
levels of genes were calculated based on the methods in previous
studies (Livak and Schmittgen, 2001). Statistical analysis was
performed using one-way analysis of variance (SPSS, Chicago,
Illinois, United States).

Isolation and Predictive Analysis of
Promoter Regions
Probable promoter region fragments were cloned by the UFW
method (Myrick and Gelbart, 2002). From the start to the end
of UFW cloning, the prepared system was temporarily stored at
4◦C and then added into A for reactions according to the detailed
operation processes (Supplementary Table 1). The primers for
UFW were designed according to those in the method mentioned
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above, and the primer sequences are shown in Supplementary
Table 2. The remaining primers (Supplementary Tables 3, 4)
were designed according to the following methods. The promoter
sequences were analyzed in detail online by PlantCARE1 for
predicting their cis-acting elements (Magali Lescot et al., 2002).

Construction of Promoters- and
Truncated Fragments-GUS Reporter
Constructs
Based on the distribution of cis-acting elements, a series of 5′
truncated fragments were generated for the screened BnPSP1,
BnPSP2, and BnPSP4. The primers applied are shown in
Supplementary Table 3.

The target fragments were then introduced into the binary
vector pBI121 (Supplementary Figure 2) to replace CaMV 35s
promoter. The primers use dare provided in Supplementary
Table 4. The recombinant vectors were confirmed via sequencing.
Subsequently, the corresponding plasmids were transformed into
Agrobacterium tumefaciens GV3101 for later use.

Transformation of Arabidopsis and
Detection of Transgenic Plants
Wild-type Arabidopsis was used for transformation through
the Agrobacterium-mediated floral dip method (Clough and
Bent, 2010). The harvested seeds were surface sterilized, and
kanamycin was used as a resistance screen. Normally grown
Arabidopsis seedlings were transplanted into sterile soil to
harvest T1 lines.

Genomic DNA was extracted from Arabidopsis with DNA
extraction kit. The positive plants were identified by PCR. Next,
the positive plants were grown individually to self-fertilize to T2
homozygous lines, and then T3 were obtained through the same
process. T3 generation seeds of more than three independent
transgenic Arabidopsis lines (genetically unique) were selected
for each target construct.

Histochemical Assay of GUS Activity
The GUS solution [50 µmol·L−1 phosphate buffer (pH = 7),
50 µmol·L−1 EDTA·2Na, 0.5 µmol·L−1 K3[Fe(CN)6], 0.5
µmol·L−1 K4[Fe(CN)6,] ·3H2O, 0.1% Triton X-100, 20%
CH3OH and 2 µmol·L−1 X-gluc] was modified and prepared
based on the methods of Jefferson et al. (Jefferson et al., 1987).

Seedlings (1, 3, 5, 7, and 10 days after germination) of
each transgenic line of wild-type and T3 transgenic Arabidopsis
were immersed in GUS staining solution and placed in a dark
incubator at 37◦C for 12 h. The corresponding mature tissues
or organs (leaf, flower and silique) are also stained as above.
Later, the GUS staining solution was removed, and the samples
were decolorized with 75% ethanol in an incubator at 37◦C for
12 h, during which the 75% ethanol was replaced two to three
times. The whole images were generated by stereo fluorescence
microscopy (SZX16, Olympus, Japan), the specific expression
sites were observed, and their images were collected.

1http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

Measurement of GUS Activity
Target T3 Arabidopsis seeds were surface sterilized and grown on
1/2 MS medium supplemented with kanamycin (40 ng/µL) for
hormone and simulated drought treatment experiments. After
12 days, the seedlings with consistent growth were transferred
intoculture dishes with filter paper and treated with dH2O
(control), 10 µmol·L−1 GA3, 10 µmol·L−1 indoleacetic acid
(IAA), 100 µmol·L−1 abscisic acid (ABA), 20% PEG6000, 200
µmol·L−1 CuSO4 and 100 µmol·L−1 6-BA for 6 h at 22◦C under
white light. After the surface liquid has dried, approximately
100 mg of the treated sample was collected into a centrifuge tube
and frozen in liquid nitrogen.

GUS protein was extracted from all treated samples using
GUS protein extraction buffer (50 mM NaH2PO4, pH 7.0,
10 mM EDTA,0.1% sodium lauryl sarcosine, pH 8.0, 10 mM
β-mercaptoethanol, 0.1% Triton X-100). After centrifugation at
12,000 × g and 4◦C for 10 min, the supernatant was collected,
and protein concentration of the extract was determined by
the method of Bradford (1976). The enzyme reaction assay and
fluorogenic reaction were performed as reported (Jefferson et al.,
1987). The fluorescence intensity of the reaction solution was
measured using a multifunctional microplate reader (EnSpire,
PerkinElmer, United States) with different wavelengths of 365 nm
(excitation) and 455 nm (emission). The concentration of 4-
methylumbelliferyl glucuronide was calculated according to a
standard curve. Finally, the GUS activity in transgenic plants was
obtained (Jefferson et al., 1987). SPSS 20.0 was employed for data
analysis, and Graph Pad Prism 5.0 was used for charting.

RESULTS

Screening of Genes Preferentially
Expressed in Ramie Bark
According to the results of semi-quantitative PCR screening,
seven genes meet the requirements that preferentially expressed
in the bark and vein. The corresponding genes were named as
BnPSP-1, BnPSP-2, BnPSP-3, BnPSP-4, BnPSP-5, BnPSP-6, and
BnPSP-7 and used for the follow-up verification experiments.
In order to identify these seven genes, we aligned these seven
sequences (BnPSP-1, BnPSP-2, BnPSP-3, BnPSP-4, BnPSP-5,
BnPSP-6, and BnPSP-7) with the NR database using blastx. It was
found that BnPSP-1 and BnPSP-7 were two-component response
regulator (ARR) genes in the cytokinin signaling pathways. The
alignment results showed that the BnPSP-1 (B-ARR) and BnPSP-
7 shared 85.16 and 84.23% sequence similarity with mulberry
homologous genes, respectively. BnPSP-4 was identified as an
IAA gene and its sequence was 81.00% identical to the sequence
of indole-3-acetic acid-amide synthetase gene of mulberry.
BnPSP-2, BnPSP-3, BnPSP-5, and BnPSP-6 are AUX/LAX auxin
transport genes.

QRT-PCR was performed for parts of ramie to explore the
expression patterns of selected genes. As shown in Figure 1,
the relative expression levels of BnPSP-1-BnPSP-7 genes were
different. And the relative expression levels of the same gene
in different tissues or organs are also different. Specifically, the
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FIGURE 1 | QRT-PCR results of seven ramie endogenous genes in different organs or tissues. BnPSP-1, BnPSP-2, BnPSP-3, BnPSP-4, BnPSP-5, BnPSP-6, and
BnPSP-7, in eight different organs or tissues, respectively. Data were presented as the mean ± SE of three separate measurements for each independent line. Le,
Leaf; Ve, Vein; Ls, Petiole; Ba, Bark; Wo, Wood; Pi, Pith; Sf, Cotton pulp; Ro, Root.

relative expression level of BnPSP-1 was the highest in the
external stem, 14 times greater than the second-highest tissue
of petiole. The relative expression level of BnPSP-2 was also
highest in the external stem, 6 times that of the next highest,
vein. The relative expression level of BnPSP-4 was 43.40 in the
xylem, 3 times that of the level in the bark. These results suggest
that BnPSP-1 and BnPSP-2 are preferentially expressed in the
bark, and BnPSP-4 has the highest relative expression level and
is preferentially expressed in the wood. The relative expression
levels of BnPSP-3, BnPSP-5, and BnPSP-6 are low, and BnPSP-7
does not have preferential expression. Finally, BnPSP-1, BnPSP-2,
and BnPSP-4 were confirmed as the downstream target genes of
the cloned promoters for the follow-up experiments.

Cloning and Sequence Analysis of
Candidate Promoters
We isolated the promoter regions of BnPSP-1, BnPSP-2, and
BnPSP-4 using the UFW method. According to the cloning

results (Figure 2), TA cloning was performed on the PCR
products with multiple bands at appropriate temperatures, and
the initial promoter sequence was obtained after sequencing.
Next, this sequence was applied to design the cis-specific primer,
and the genomic DNA sequence-specific primer served as the
trans-primer. After verification by sequencing, 1,621, 2,299, and
2,254 bp sequences upstream of corresponding start codons
were obtained successfully, which contained the promoters of
BnPSP-1, BnPSP-2, and BnPSP-4 and named as PPSP1, PPSP2,
and PPSP4, respectively (GenBank accession numbers: MT136746;
MT136747; MT136748).

The promoter length of the known sequences was predicted
online2. The results (Supplementary Figure 3) predicted that
the transcription start site (TSS) of PPSP1 was located −491 bp
upstream of the start codon, PPSP2 at −1,755 bp upstream,
and PPSP4 at −259 bp upstream, consistent with 5′-untranslated
regions in the upstream of the start codons. Therefore, the

2http://linux1.softberry.com/
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FIGURE 2 | Products of Ramie promoters. (A) PCR product of PPSP1; (B) PCR product of PPSP2; (C) PCR product of PPSP3; M: 4,500 bp Ladder; 1: Annealing
temperature 55◦C; 2: Annealing temperature 56◦C; 3: Annealing temperature 57◦C; 4: Annealing temperature 58◦C; 5: Annealing temperature 59◦C; 6: Annealing
temperature 60◦C.

targeted analysis was performed for such sites in subsequent
verification tests. The Genome Information Database System
from the Institute of Crop Science of the Japanese National
Agriculture and Food Research Organization3 was used to
discover putative cis-acting elements.

The cis-acting elements in PPSP1 included hormone-
responsive elements, Cu2+ responsive elements,
dehydration-induced and darkness-induced responsive
elements and S responsive elements. Deletion analysis was
used to verify the function of predicted elements. The detailed
name, sequence information and site of the elements are
shown in Supplementary Table 5. For PPSP2, there were
cis-acting elements such as hormone-responsive elements,
dehydration-induced and darkness-induced responsive elements,
drought-responsive elements, photo-responsive elements, ion
responsive elements and sucrose responsive elements. The
detailed information is shown in Supplementary Table 6.
The cis-acting elements on PPSP4 included photo-responsive
elements, ion responsive elements, dehydration-induced and
darkness-induced responsive elements and hormone-responsive
elements (Supplementary Table 7).

GUS Expression Patterns in Transgenic
Arabidopsis
To investigate the expression pattern of the cloned promoters, the
promoter sequences were introduced into pBI121 to construct
expression vectors pBI121-PPSP1, pBI121-PPSP2, and pBI121-
PPSP4 (Figure 3). Then these vectors were transformed into
Agrobacterium GV3101 by electroporation and confirmed by
sequencing. We used Agrobacterium tumefaciens-floral dip
method to obtain transgenic lines carrying PPSP1, PPSP2, and
PPSP4 (CaMV35 promoter as the positive control, wild-type
as the negative control). The 1, 3, 5, 7, and 10-day-old
Arabidopsis seedlings were stained and observed (Figure 4).
PPSP1-driven GUS reporter gene was initially expressed at every
site of germinated Arabidopsis seeds but was only expressed
in the vein, stem and root of 3–10 days seedlings. PPSP2-
driven GUS reporter gene was also initially expressed at every
site of germinated seeds but was expressed in the cotyledon

3https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?lang=en

growth point and root of the seedlings at 3–10 days of
development.

GUS expression was also observed in the stem and petiole
of 5–10-day-old seedlings. PPSP4-driven GUS reporter gene
was expressed in all tissues of 10 days seedlings. To further
understand the expression of each promoter in mature plants,
transgenic plants were transplanted into soil. The leaves,
siliques and flowers of mature Arabidopsis were stained and
observed. According to the staining results (Figure 5), PPSP1-
driven GUS was only expressed in the vein and stem, PPSP2-
driven GUS expression was observed only in the floral organ,
and PPSP4-driven GUS expression was visible at the leaf,
stem, silique and flower. We integrated the staining results
of both seedlings and mature plants and confirmed that
PPSP1-driven GUS reporter gene was specifically expressed
in the phloem. Therefore, an in-depth study was focused
on this promoter.

Construction of Truncated Vectors of
Promoters and Functional Verification
According to the location of predicted cis-acting elements, the
PPSP1 was properly truncated into five fragments and introduced
into pBI121 to construct fusion vectors with GUS, respectively.
The construction results are provided in Figure 6, full-length
pBI121-PPSP1 was named PPSP1−1, and the other vectors were
named PPSP1−2, PPSP1−3, PPSP1−4, PPSP1−5, and PPSP1−6,
respectively. The bioinformatics analysis of PPSP1 predicted that
the TSS was located at −491 bp upstream of the initiation
codon, so we constructed the deletion vector PPSP1−2 with the
−1,621 to −492 bp region. The above vectors were transformed
into Arabidopsis, for which the staining results in different
development stages are shown in Figure 7. As for PPSP1−2, GUS
staining was visible in the outer edge of the leaves, stems and
roots of 1–5-day-old seedlings. All the new leaves of the 10-
day-old seedlings were stained, while other stained areas were
the same as those of PPSP1−1. In terms of PPSP1−3, all the
leaves and roots, instead of the stems, of 1–7-day-old seedlings
were stained. In 10-day-old seedlings, all the new leaves and
the outer edge of other leaves were stained, while the stems
lost expression. For PPSP1−4, all the leaves and roots, except
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FIGURE 3 | Construction of promoter vector. Rb and Lb are Terminal repeats, NPTII is Kanamycin resistance gene, tNOS is a Nopaline synthase terminator, GUS is
Reporter gene, Restriction sites of HindIII and BamHI, p35S is the original promoter, PPSP1, PPSP2, and PPSP4 are endogenous promoters of ramie.

the stems, of 1–7-day-old seedlings were stained. In 10-day-
old seedlings, only the leaf growth points were stained. As for
PPSP1−5, every tissue of 1–5-day-old seedlings was stained. In
7-day-old seedlings, the staining results for the leaf organs were
changed; that is, only the growth points and veins were stained,
and the remaining stained areas remained unchanged. In 10-
day-old seedlings, the staining results were the same as those
of PPSP1−1 and PPSP1−2. For PPSP1−6, all the sites except for
the stem of 1–7-day-old seedlings were stained, while only the
roots, leaves and growth points of new leaves of 10-day-old
seedlings were stained.

Staining analysis was also performed in mature organs
of Arabidopsis (Figure 8). In the lines carrying PPSP1−2
construct, GUS expression was detected in the veins, silique
tips, and floral organs. In the lines carrying PPSP1−3 construct,
weak GUS expression was detected in the outer edge of
leaves, silique tips and floral organs. In the lines carrying
PPSP1−5 construct, GUS activity was detected in the veins,
siliques and floral organs. In the lines carrying the PPSP1−6
construct, GUS expression activity was detected in the outer
edge of leaves and floral organs without the siliques. The
GUS staining results of the above promoters, except for

PPSP1−4, in the transgenic Arabidopsis lines were consistent
with the growth and development trends of the stained areas
of the seedlings.

Quantification of GUS Activity in
Transgenic Arabidopsis Lines
Randomly selected transgenic Arabidopsis lines carrying PPSP1
and each truncated T3 (three independent lines for each
candidate gene) were used to assess the impacts of hormone and
simulated drought treatment on the activity of the PPSP1 series
of sequences. At the same time, the GUS activity of the samples
was measured under different exogenous hormones and drought
simulation conditions.

Compared to the control, the GA3 treatment affected the GUS
activity of the transgenic lines to a lesser extent (Figure 9A). The
IAA treatment of PPSP1−3 and PPSP1−6 significantly increased
the GUS expression level of each line (Figure 9B). PPSP1−6 was
also significantly induced by ABA (Figure 9C). PEG-simulated
drought stress (Figure 9D) had no significant effect compared to
the control on lines carrying the PPSP1−1, PPSP1−3, PPSP1−4, and
PPSP1−6 constructs. Treatments with CuSO4 and 6-BA resulted
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FIGURE 4 | Representative GUS histochemical assay staining in different development stages (1-, 3-, 5-, 7-, and 10-day after germination) of Arabidopsis seedlings.
CK+ indicated transgenic Arabidopsis seedlings carrying CaMV35S promoter construct; CK– indicated wild-type. PPSP1, PPSP2, and PPSP4 represent Arabidopsis
seedlings of three independent promoter vectors.

in no change or inconsistent changes in GUS expression levels
across all lines (Figures 9E,F). One exception was the copper
significantly decreased expression of all three lines of PPSP1−2.

DISCUSSION

Cloning and Application of
Phloem-Specific Promoters
Gene expression in higher plants is mainly regulated at the
transcription level, a process affected by the coordination
between multiple cis-acting elements in the promoter regions
and distal trans-acting factors (Kuhlemeier et al., 1987).
Constitutive promoters have many disadvantages for the genetic
improvement of crops. For example, they can cause extra
metabolic burden to the plants and induce gene silencing
(Shelton et al., 2001; Hsu et al., 2008). Therefore, tissue
specificity promoter has received more attention (Corrado
and Karali, 2009; Golan et al., 2013). During the discovery
of new phloem-specific promoters, more scholars focus on
the functional analysis of promoters and their application in

resistance to diseases and pests as well as plant nutrition. For
instance, the promoters applied for crop insect-resistant genetic
engineering include the enhanced pumpkin PP2 promoter (Guo
et al., 2004), the rice sucrose synthase gene RSs1 promoter
driving the expression of insecticidal proteins (Saha et al.,
2007), and phloem-specific promoters applied for resistance
against bollworm in cotton (Shah et al., 2011). Phloem-specific
promoters from Arabidopsis may be useful for engineering
phytoplasma-resistant transgenic strawberries (Zhao et al., 2004).
Dutt et al. (2012) confirmed phloem-specific expression in
Mexican lime from four transgenic promoters. Zou et al.
(2017) selected phloem-specific promoter GRP1.8 to drive
the expression of cecropin B, which lowered susceptibility
to Huanglongbing.

Studies on the application of phloem-specific promoters
are dominated by those on pest and disease resistance, with
promoters mostly verified in model crops. However, there are
studies on tissue-specific promoters in ramie. Ma cloned the
ramie mannanase BnMAN1 gene promoter and presumed based
on the types of response elements in the promoter that it may
participate in hormonal regulation (Ma et al., 2018). Guo cloned
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FIGURE 5 | Representative GUS histochemical assay staining in different mature organs of Arabidopsis. CK+ indicated transgenic Arabidopsis seedlings carrying
CaMV35S promoter construct; CK– indicated wild-type; PPSP1, PPSP2, and PPSP4 represent Arabidopsis lines of three independent promoter vectors. L, Leaf; S,
Silique; F, Flower.

15 ramie phloem protein 2 (BnPP2-BnPP215) genes (Guo et al.,
2018) and conducted promoter functional analysis in the model
organism Arabidopsis (Guo et al., 2019a). Developing phloem-
specific promoters has practical significance in the research
and application in fiber development and pest and disease
resistance of ramie.

Obtaining accurate sequence via cloning is a critical step
in studies on either specific promoters or corresponding gene
functions. In this experiment, we applied a laboratory-modified
UFW method to clone promoter fragments (Chen et al., 2015;
Guo et al., 2018), and three promoters (PPSP1, PPSP2, and PPSP4)
were obtained successfully. Although the upstream promoter
sequences of the target genes of plant materials without genomic
data can be successfully obtained using this method, it has
limitations of being time-consuming and having complicated
experimental procedures. The experimental procedures of
promoter cloning may be simplified by FPNI-PCR in the future
(Wang et al., 2011). Following the publication of genomic data of
ramie (Liu et al., 2017; Luan et al., 2018), promoter sequences of

ramie can be obtained directly by designing PCR primers based
on desired genome sequences. However, our approach still has
reference value for many species in which valid genomic data are
difficult to obtain.

GUS Expression Pattern in PPSP1 and Its
Truncated Promoter
There is a two-component regulatory system constituted by
two kinds of transcription regulators [namely A-type ARR
(inhibit transcriptional activity) and B-type ARR (enhance
transcriptional activity)] in the cytokinin signaling pathway
of higher plants (Hwang and Sheen, 2001), which were first
reported in Arabidopsis (Lohrmann et al., 2001; Sakai and
Aoyama, 2010). With the development of genome sequencing
technology, C-type ARR (negative regulator) has been identified,
which has similar functions to A-type ARR and can inhibit
signal transduction (Gattolin et al., 2005). Sequence alignments
reveal that BnPSP-1 is the most homologous to ARR12 in
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FIGURE 6 | Schematic diagram of truncated fragments in the PPSP1 region.
The initiation codon was defined as +1. The number indicated the length of
the 5′-truncated fragments.

Arabidopsis, so it belongs to B-type ARR. In this study, real-time
fluorescence quantitative analysis and promoter cloning analysis
were performed for BnPSP-1 [cytokinin response regulator of
ramie (BnARR)], and the results showed that the gene could
be expressed in every tissue site (Figure 1), consistent with
the findings of ARR in Arabidopsis (Argyros et al., 2008),

Populus (Ramírez-Carvajal et al., 2009), and Oryza sativa (Cheng
et al., 2010). Promoter analysis by GUS reporter staining results
for transgenic Arabidopsis indicated that GUS activity can
be detected in the root, cotyledon and vein of mature leaf
of seedlings as well as the floral organ of the lines carrying
PPSP1−1, PPSP1−2, and PPSP1−5 constructs (Figures 7, 8),
which are in line with the studies on Arabidopsis (Yoshinori
et al., 2004) and lotus rhizome (Prasad Lohar et al., 2004).
We discovered the key elements related to phloem-specific
expression in the above promoter regions: (EBOXBNNAPA)
(Hartmann et al., 2005), (−300ELEMENT) (Colot et al., 1987),
and (OSE1ROOTNODULE) (Vieweg et al., 2004).

GUS was expressed in the root, leaf margin and floral organ
in transgenic Arabidopsis carrying PPSP1−3 construct, and its
expression activity was repressed compared with that in other
truncated vectors, suggesting that suppression elements may exist
in the −1,300 to −1,000 bp region of the promoter sequence.
However, no known repressor and other functional elements
were predicted in the region (Meagher et al., 2009). Our data
suggest that there are unidentified suppression elements in this
region, and in-depth studies are needed to determine the specific
information of the elements. GUS expression was only detected
in the root tip and leaf growth point of Arabidopsis seedlings
transformed with the PPSP1−4 construct. When the plants were
mature, the GUS expression could be detected in the vein,
silique and floral organ. The presumed reason may be that the
promoter-driven gene expression has spatiotemporal characters.
Promoters only drive the GUS expression at the growth points of
transgenic Arabidopsis seedlings, and its ability to drive the GUS
expression is enhanced as the plant is growing. It also conforms
to the character that some promoters have tissue specificity and

FIGURE 7 | Representative GUS histochemical assay staining in different development stages (1-, 3-, 5-, 7-, and 10-day after germination) of Arabidopsis seedlings.
CK+ indicated transgenic Arabidopsis seedlings carrying CaMV35S promoter construct; CK– indicated wild-type. PPSP1−1, PPSP1−2, PPSP1−3, PPSP1−4, PPSP1−5,
and PPSP1−6 represents PPSP1 and its truncated promoter transgenic Arabidopsis seedlings.

Frontiers in Genetics | www.frontiersin.org 9 December 2020 | Volume 11 | Article 553265

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-553265 December 10, 2020 Time: 20:47 # 10

Wang et al. Isolation a Novel Phloem-Specific Promoter

FIGURE 8 | Representative GUS histochemical assay staining in different mature organs of Arabidopsis. CK+ indicated transgenic Arabidopsis seedlings carrying
CaMV35S promoter construct; CKv indicated wild-type; PPSP1−1, PPSP1−2, PPSP1−3, PPSP1−4, PPSP1−5, and PPSP1−6 represents PPSP1 and its truncated
promoter transgenic Arabidopsis lines. L, Leaf; S, Silique; F, Flower.

spatiotemporal specificity at the same time (Zhao et al., 1994). In
addition, we could determine the specific site and stage of GUS
expression by sampling and observation of Arabidopsis during
the whole growth period, and observe whether the expression of
the promoters is spatiotemporal or inducible by some enzymes
through the treatment of the promoters with relevant enzymes
synthesized in certain stages.

When the promoters were truncated to PPSP1−6, GUS was
expressed only in the root, cotyledon and mature leaf, illustrating
that there is tissue-specific promoter-related elements in the
−600 to−491 bp region of the promoter sequence. According to
the GUS expression results of PPSP1−2 and PPSP1−5 promoters,
we could construct truncated vectors or point mutant vectors in
the −600 to −492 bp region of PPSP1 sequence and transform
them into Arabidopsis to detect the GUS expression, thus
determining whether this sequence fragment is the key region

maintaining the tissue specificity of the promoters and providing
optimized results for subsequent studies. A 5′-untranslated
region was predicted in the BnPSP-1 gene (Supplementary
Figure 2). In this study, the PPSP1 fragment was truncated to the
491 bp region to obtain PPSP1−6 according to the distribution of
predicted elements, which could still drive the GUS expression
in Arabidopsis. The possible reason is that the core promoter
element (TATA-BOX) exists in the −491 to −1 bp region
of the sequence.

The Activity of PPSP1 and Its Truncated
Promoter Under Different Treatments
PPSP1 promoter function was further verified using a quantitative
analysis of GUS expression in transgenic lines under hormone
and simulated drought treatment. The exogenous application
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FIGURE 9 | GUS activities of transgenic Arabidopsis seedlings carrying different constructs under different treatments. CK means treated with dH2O. (A–F) Denoted
GUS activity of Arabidopsis seedlings carrying PPSP1−1, PPSP1−2, PPSP1−3, PPSP1−4, PPSP1−5, and PPSP1−6 constructs under GA, IAA, ABA, PEG, CuSO4, and
6-BA treatment, respectively. Each construct corresponds to three independent transgenic lines. The data were presented as the mean ± SE. *p < 0.05 and
**p < 0.01.

of cytokinin (6-BA), a type of plant regulator, can increase
AtARR1 and AtARR10 gene expression (Kristine et al., 2013).
In this study, however, the Arabidopsis lines carrying PPSP1 or
truncated fragments exhibited little response to 6-BA (Figure 9F).

There are two likely reasons: the variance between species
or promoter specificity is not completely consistent with the
function of downstream genes, which was also reported in
grapevine (Yu et al., 2017).
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Considering the presence of the auxin response factor (ARF)
(Yoshiaki et al., 2005), auxin (IAA) was applied to the transgenic
lines in this study. Auxin had effects on the activity of PPSP1−1,
PPSP1−3, and PPSP1−6 promoters, while other promoters were
insensitive (Figure 9B). PPSP1−2 promoter is insensitive to auxin
likely because it lacks the predicted auxin response element
that is located at the −304 bp region. However, auxin had
no effects on lines carrying PPSP1−4 and PPSP1−5 constructs.
The reason may be that there is an interaction between
auxin and cytokinin (Jirí et al., 2004; Cheng et al., 2013),
with elements responsive to auxin inhibition in the −1,300
to−600 bp region.

Only the PPSP1−6 promoter had a strong response to
ABA treatment (Figure 9C), potentially because of the ABA
response element (MYB1AT) (Hobo et al., 2010) in the −491
to −1 bp region. It is presumed that the repressor in the
−1,621 to −492 bp region inhibits the response to ABA.
The CuSO4 treatment was performed given the predicted
copper response element (CURECORECR) (Janette et al., 2005).
Copper induced the activity of PPSP1−2 while the remaining
promoters were insensitive (Figure 9E). It was inferred from
the results that the copper response element in the −491
to −1 bp region may activate the promoter, and activity
declines if the fragment is lost. However, the specific role of
the element needs to be identified in follow-up experiments.
The functional analysis of PPSP1 and its truncated fragments
displayed that PPSP1−1 and PPSP1−5 did not have strong
responses to various treatments but had the characters of tissue-
specific expression, so these two promoters can be explored
in follow-up.

CONCLUSION

In this study, we applied the modified UFW method to
clone three candidate endogenous promoters (PPSP1, PPSP2,
and PPSP4) preferentially expressed in ramie bark and
transformed them into Arabidopsis using Agrobacterium to
verify the expression pattern. One phloem-specific promoter,
PPSP1, was identified. Under various treatments, Arabidopsis
transformed with PPSP1−2 (−1,621 to −429 bp) and PPSP1−5
(−600 to −1 bp) truncated promoters had stable phloem
specificity. The isolation and identification of PPSP1−5-
BnPSP-1 not only provides candidate promoters for the
development of ramie molecular biology and targeted

improvement of fiber quality but also enriches the plant
promoter database.
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