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Hepatocellular carcinoma (HCC) is one of the most lethal cancers globally. Hepatitis B
virus (HBV) infection might cause chronic hepatitis and cirrhosis, leading to HCC. To
screen prognostic genes and therapeutic targets for HCC by bioinformatics analysis
and determine the mechanisms underlying HBV-related HCC, three high-throughput
RNA-seq based raw datasets, namely GSE25599, GSE77509, and GSE94660, were
obtained from the Gene Expression Omnibus database, and one RNA-seq raw dataset
was acquired from The Cancer Genome Atlas (TCGA). Overall, 103 genes were up-
regulated and 127 were down-regulated. A protein—protein interaction (PPI) network
was established using Cytoscape software, and 12 pivotal genes were selected as
hub genes. The 230 differentially expressed genes and 12 hub genes were subjected
to functional and pathway enrichment analyses, and the results suggested that cell
cycle, nuclear division, mitotic nuclear division, oocyte meiosis, retinol metabolism, and
p53 signaling-related pathways play important roles in HBV-related HCC progression.
Further, among the 12 hub genes, kinesin family member 11 (KIF11), TPX2 microtubule
nucleation factor (TPX2), kinesin family member 20A (KIF20A), and cyclin B2 (CCNB2)
were identified as independent prognostic genes by survival analysis and univariate and
multivariate Cox regression analysis. These four genes showed higher expression levels
in HCC than in normal tissue samples, as identified upon analyses with Oncomine.
In addition, in comparison with normal tissues, the expression levels of KIF11, TPX2,
KIF20A, and CCNB2 were higher in HBV-related HCC than in HCV-related HCC tissues.
In conclusion, our results suggest that KIF11, TPX2, KIF20A, and CCNB2 might be
involved in the carcinogenesis and development of HBV-related HCC. They can thus
be used as independent prognostic genes and novel biomarkers for the diagnosis of
HBV-related HCC and development of pertinent therapeutic strategies.
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INTRODUCTION

Liver cancer is the most common type of cancer across the
world, accounting for 8.2% of cancer deaths (Bray et al,
2018). Hepatocellular carcinoma (HCC) is the most common
primary liver malignancy and the leading cause of liver
cancer-related deaths globally (Venook et al, 2010). HCC
is difficult to diagnose at an early stage and challenging
to treat. It can be caused by several risk agents, such as
chronic infection with hepatitis B virus (HBV) or hepatitis
C virus (HCV), and exposure to alcohol and aflatoxins
(Wang et al, 2002; El-Serag and Rudolph, 2007). In Asian
countries, most cases of HCC are associated with chronic
HBV infection (Beasley et al., 1981). HCC is associated with
high recurrence and drug resistance; thus, it is urgent to
identify potential biomarkers during chronic HBV infection
to precisely predict HCC progression and to determine
better therapeutic targets. HBV-induced HCC involves a
complex, gradual process and includes the integration of
HBV DNA into host cell DNA (Wang et al, 2017). HBV
proteins, including HBx and MHBSt, have oncogenic potential
themselves; in addition, some oncogenes in hepatocytes are
potentially regulated by HBV proteins via protein-protein
interactions, participating in the initiation and progression
of HBV-induced HCC (Levrero and Zucman-Rossi, 2016).
However, the molecular mechanisms underlying the initiation,
progression and metastasis of HBV-induced HCC remain far
from being fully understood.

In recent vyears, the exploration of genes related to
carcinogenesis and development of HCC by bioinformatics
methods have been increasing. TP53 (Kan et al., 2013), UBE3C
(Jiang et al., 2014), SHP-1 (Wen et al, 2018), COL1Al (Ma
et al, 2019), CD5L, and SLC22A10 (Zhang et al, 2019)
have been reported to be potential therapeutic targets of
HCC by high-throughput sequencing-based bioinformatics
analysis. The NCBI Gene Expression Omnibus (GEO)
and the Cancer Genome Atlas (TCGA) databases, which
provide comprehensive profiles of gene expression data, have
been extensively applied to investigate the carcinogenesis
of HCC by bioinformatics mining. Further, the potential
molecular mechanisms underlying HBV-related HCC can
be speculated via hub genes identification by bioinformatics
analysis. In the present study, three high-throughput RNA-
Seq-based raw datasets from the GEO database and one
dataset from TCGA were downloaded, and these included
97 normal, 47 HBV-related HCC, and 374 HCC specimens.
We identified 230 differentially expressed genes (DEGs)
and 12 hub genes. Among the 12 hub genes, kinesin
family member 11 (KIF11), TPX2 microtubule nucleation
factor (TPX2), kinesin family member 20A (KIF20A),
and cyclin B2 (CCNB2) were found to be independent
prognostic markers of HBV-related HCC. We believe
that our results should help us better comprehend the
mechanisms underlying HBV-related HCC and facilitate
the identification of potential targets for the diagnosis and
treatment of HCC.

MATERIALS AND METHODS

Raw RNA-seq Dataset Collection

For screening DEGs, three high-throughput RNA-seq-based raw
datasets, namely GSE25599 (Huang et al, 2011), GSE94660
(Yoo et al, 2017), and GSE77509 (Yang et al, 2017), which
comprised patients with HBV infection, were downloaded from
the NCBI GEO database'. GSE94660 (21 paired normal and
HBV-related HCC tissue samples) and GSE77509 (16 paired
normal and HBV-related HCC tissue samples) were established
using GPL16791 Illumina HiSeq 2500 (Homo sapiens), while
GSE25599 (10 paired normal and HBV-related HCC tissue
samples) was established using the GPL9052 Illumina Genome
Analyzer. RNA-seq raw data and clinical data of 50 normal
samples and 374 HCC samples® were downloaded from TCGA®.
For the validation of independent prognostic genes, a dataset
named LIRI-JPY, including 202 normal and 243 HCC tissue
samples, was downloaded from the International Cancer Genome
Consortium (ICGC)’. For comparing the expression levels
of independent prognostic genes between HCV- and HBV-
related HCC, the GSE69715 dataset [66 normal and 37 HCV-
related HCC tissue samples established using GLP570 (HG-
U133_Plus_2)] was downloaded from the GEO database.

Data Processing and DEGs Screening

Gene expression profile matrix files of GSE25599, GSE77509,
and GSE94660 were obtained from raw datasets using Perl (de
Hoon et al., 2004). Nevertheless, the gene expression profile
matrix data of TCGA was acquired using the “TCGAbiolinks”
R package (Colaprico et al,, 2016) and Perl. Genes that were
differentially expressed between normal and HBV-related HCC
tissue samples were screened by the limma R (Ritchie et al,
2015) and edgeR R packages (Robinson et al., 2010). | Loga(FC)
> 1.0, p-value < 0.05, and FDR < 0.05 were set as the cutoff
criteria for DEGs screening after background correction and data
normalization. Overlapped DEGs among GSE25599, GSE77509,
GSE94660, and TCGA were identified using the VennDiagram
R package (Chen and Boutros, 2011). The heatmaps of DEGs,
which could be divided into up- and down-regulated groups,
were drawn using the “pheatmap” R package (Galili et al., 2018).

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Enrichment Analyses

The names of DEGs were translated into gene IDs using the R
programming language. To investigate the biological pathways
that might be involved in the occurrence and development
of HBV infection and HCC, candidate DEGs were segregated
into up- and down-regulated groups and subjected to pathway

"http://www.ncbi.nlm.nih.gov/geo
Zhttps://portal.gdc.cancer.gov/repository
3https://portal.gdc.cancer.gov/
*https://dcc.icgc.org/projects/LIRI-JP
Shttps://dcc.icgc.org/releases/current/Projects
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enrichment analysis. Gene Ontology (GO) analysis, which
involved three categories, namely molecular functions (MF),
cellular components (CC), and biological processes (BP), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were performed with the threshold of FDR-
value < 0.05 using the clusterProfiler R package (Yu et al., 2012),
which facilitated biological terminology classification and gene
cluster enrichment.

Protein-Protein Interaction (PPI) Network
Analysis and Hub Gene Screening

A protein-protein interaction (PPI) network of DEGs was
constructed using STRING® (Szklarczyk et al, 2019) and
visualized with Cytoscape v3.6.1 (Shannon et al., 2003). DEGs
that consisted of several important nodes with many other
interaction partners were analyzed using Molecular Complex
Detection (Bader and Hogue, 2003) and CytoHubba (Chin et al,,
2014; Tang et al., 2019). Subnets of the vast protein interaction
network were extracted by calculating the degree of nodes,
and highly connected nodes with a degree score of >45 and
p-value < 0.05 were identified as hub genes.

Survival Analysis of Hub Genes

Survival analysis were primarily performed using clinical data
from TCGA to predict the prognostic value of hub genes.
Kaplan-Meier survival curves of hub genes were plotted using
the survival R package’ and differences in survival rate were
evaluated with a log-rank test threshold of p-value < 0.05. To
evaluate the accuracy of the survival curves, receiver operating
characteristic (ROC) curves were then constructed using the
“survival ROC” R package (Huang et al., 2017) with the threshold
of AUC > 0.6. Next, Cox proportional-hazards models were
used to estimate the effects of prognostic factors on survival
using the survival R and “survminer” R packages® with the
threshold of p-value < 0.05. Univariate Cox analysis was first
performed to screen for genes significantly associated with overall
survival rate, and multivariate Cox analysis was then performed
to identify independent prognostic genes (Orimo et al., 2008;
Uemura et al., 2009).

Expression Analysis of Independent
Prognostic Genes for HCC Using TCGA
Dataset

To validate independent prognostic genes for HCC screened
by survival analyses, the aforementioned TCGA clinical data
were used to analyze individual gene expression levels between
normal and HCC tissue specimens at different stages of tumor
progression using the “ggpubr” R package’. Data pertaining to
normal and HCC tissue samples were compared using Wilcoxon
test, and those pertinent to multiple samples from different stages
of tumor progression were compared using the Kruskal-Wallis
test, with the threshold of p-value < 0.05.

Chttp://string-db.org/
"https://CRAN.R-project.org/view=Survival
Shttps://CRAN.R-project.org/package=survminer
“https://CRAN.R-project.org/package=ggpubr

Validation of Potential Prognostic
Biomarkers in HCC Using a Dataset
From the International Cancer Genome
Consortium (ICGC)

To further evaluate the clinical value of the independent
prognostic genes, a dataset of patients with HCC was downloaded
from the ICGC portal (see text footnote 4) for survival and ROC
curve analyses; for this purpose, we used the survival R package,
survival ROC R package, and Perl. Ultimately, a meta-analysis of
the independent prognostic genes in Oncomine'” (Rhodes et al.,
2004), a cancer-profiling database containing published data and
listing differential gene expression analyses, were performed to
verify their expression levels in patients with HCC using four
published data (Chen et al., 2002; Wurmbach et al., 2007; Roessler
et al., 2010).

Correlation Analysis of Potential
Prognostic Biomarkers in HCC

To analyze the potential relationships among the four
independent prognostic genes in HCC occurrence and
development, TCGA dataset was subjected to correlation
analyses using the corrplot' R software. The correlation
coeflicient (Cor), ranging from —1 (perfect negative correlation)
to +1 (perfect positive correlation), indicated how closely data in
a scatterplot were arranged along a straight line. p-value < 0.05
for the coefficients indicates a statistically significant relationship.

Expression Levels of Potential
Prognostic Biomarkers in HCV- and
HBV-Related HCC

Since viral Hepatitis B and Hepatitis C are the most commonly
implicated risk factors for HCC, to compare the expression
levels of the independent prognostic genes between HCV-
related HCC and HBV-related HCC, the GSE69715 dataset
for HCV and the GSE94660 dataset for HBV were analyzed
using gglpot2"?, cowplot”, and ggpubr'* package. The relative
expression levels (i.e., fold change) of these four genes in the
tumor tissues comparing with normal tissues were calculated.
Wilcoxon test was carried out between the HCC and normal
tissues. p-value < 0.05 indicate statistical significance.

RESULTS
Identification of DEGs

Differentially expressed genes were identified from three
raw datasets, namely GSE25599, GSE94660, and GSE77509,
downloaded from the NCBI GEO database and one downloaded
dataset from TCGA database using the limma R package and
edgeR R package. The cutoff criteria were | log,(FC)| > 1.0,

Ohttps://www.oncomine.org/resource/login.html
https://github.com/taiyun/corrplot
Rhttps://github.com/tidyverse/ggplot2
Bhttps://github.com/wilkelab/cowplot/issues
“https://rpkgs.datanovia.com/ggpubr/
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GSET7509

Up-regulated DEGs

Down-regulated DEGs

FIGURE 1 | Venn diagram and cluster heatmap of differentially expressed genes. (A,B) Venn diagram showing overlapping DEGs. DEGs were screened based on
the following criteria: | Loga (FC)| > 1.0, p-value < 0.05, and FDR < 0.05. In total, 230 DEGs were overlapping among the GSE25599, GSE94660, GSE77509, and
TCGA datasets; of these, 103 genes were up-regulated and 127 were down-regulated. (C-F) Cluster heatmaps of DEGs in the four datasets. Colors indicate gene
expression levels. Red represents up-regulated genes, and green represents down-regulated genes. For GSE25599, GSE94660, GSE77509 datasets, all of the
samples are shown in the heatmaps. However, for TCGA dataset, 46 samples (23 normal and 23 HCC tissue samples) were randomly selected from 424 samples

for display convenience.

p-value < 0.05 and FDR < 0.05. In total, 230 DEGs were
overlapping among the four datasets, of which 103 were up-
regulated (Figure 1A) and 127 were down-regulated (Figure 1B).
Cluster heatmaps showing the expression levels of the 230 DEGs
in each of the four datasets were generated (Figures 1C-F).
Details of the top 20 up- and 20 down-regulated DEGs in HBV-
related HCC are shown in Supplementary Table S1.

Pathway Enrichment Analysis of DEGs

To investigate the functional annotation of DEGs, GO, and
KEGG pathway enrichment analyses were performed. The results
were considered to be statistically significant if FDR value was
<0.05. The top 15 GO terms of up-regulated genes are listed
in Supplementary Table S2. As evident from Figure 2A and
Supplementary Table S2, in the MF, CC, and BP categories,
the up-regulated genes were significantly enriched in nuclear
division, organelle fission, and mitotic nuclear division; spindle,
chromosomal region, and spindle pole; and protein kinase
binding, enzyme binding, and chromatin binding, respectively.
Further, KEGG pathway analysis of the up-regulated genes
indicated that they were primarily enriched in cell cycle,
p53 signaling pathway, and oocyte meiosis (Figure 2C and
Supplementary Table S3).

As evident from Figure 2B,D and Supplementary Tables
S4, S5, in the MF, CC, and BP categories, the down-
regulated genes were mainly involved in small molecule catabolic
process, organic acid catabolic process, carboxylic acid catabolic
process, extracellular matrix, collagen-containing extracellular
matrix, collagen trimer, cofactor binding, iron ion binding, and

monooxygenase activity, respectively. Moreover, KEGG pathway
analysis of the down-regulated genes indicated that they were
enriched in retinol metabolism, arachidonic acid metabolism,
and drug metabolism-cytochrome P450.

PPl Network Construction of DEGs and

Identification of Hub Genes

A PPI network of DEGs (Figure 3A) containing 230 nodes
and 1189 edges was constructed by STRING and visualized by
Cytoscape, which provides critical assessment and integration
of protein-protein interactions, including direct (physical) and
indirect (functional) correlations. Pivotal modules of the network
were obtained using Molecular Complex Detection, and the
degree of nodes was calculated using CytoHubba. In the PPI
network, the number of edges involved determines the degree
score of nodes; the nodes with high degree scores were considered
to be hub genes (Chin et al., 2014). 54 DEGs with a degree
score of >10 and p-value < 0.05 are listed in Supplementary
Figure S1. There were 39 genes with degree scores of >30, 24
genes with degree scores of >40, 12 genes with degree scores
of >45, and only one gene with degree score of >50, and all
of these genes meet the requirements of p-value < 0.05. The
modules with 39 nodes and 698 edges (degree score >30 and
p-value < 0.05) were extracted to construct a subnet (Figure 3B).
The most significant modules of 12 genes (degree score >45 and
p-value < 0.05; Figure 3C) were identified as hub genes. The
names, abbreviations, and scores of hub genes are summarized in
Supplementary Table S6. The top five hub genes with the highest
interaction node degrees were CDK1, CCNB1, CCNA2, BUBI1B,
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FIGURE 2 | Functional GO and KEGG pathway enrichment analysis of DEGs. DEGs were subjected to GO and KEGG pathway enrichment analyses with the criteria
of FDR <0.05. (A,B) Plots of significantly enriched GO terms of up- and down-regulated genes for molecular function (MF), cellular components (CC), and biological
processes (BP). (C,D) Significantly enriched KEGG pathway terms of up- and down-regulated genes. The y-axis shows GO category or KEGG pathway, and the
x-axis shows gene ratio for each individual category. Count represents the number of genes enriched in the corresponding category. —log10 (FDR) represents the
logarithm of adjusted p-value. The smaller the FDR, the deeper the red color; and the larger the FDR, the deeper the blue color.
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and CCNB2, implying their potential roles in the development of
HBV-related HCC.

Gene Ontology and KEGG pathway enrichment analyses were
utilized to investigate the functional enrichment of the 12 hub
genes. In the MF, CC, and BP categories, these 12 hub genes were
mainly enriched in nuclear division, organelle fission, mitotic
nuclear division, spindle, spindle pole, condensed chromosome,
protein kinase binding, protein C-terminus binding, and protein
serine/threonine kinase activity, respectively (Figure 3D and
Supplementary Table S7). Further, KEGG pathway analysis
for the hub genes (Figure 3E and Supplementary Table S8)
indicated that they were primarily enriched in cell cycle,
progesterone-mediated oocyte maturation, and oocyte meiosis.

Survival Analysis of Hub Genes

It is noteworthy that all the 12 hub genes were up-regulated
in patients with HBV-related HCC. To explore their prognostic
importance, all of them were evaluated using the Kaplan-
Meier plot and ROC curve with clinical and expression data
from TCGA. As shown in Figure 4, based on their expression
levels, AUC values of the 12 hub genes (BUB1B, CCNA2,
CCNB1, CCNB2, CDC20, CDKI1, KIF11, KIF20A, MAD2LI,

PLK1, TOP2A, and TPX2), ranged from 0.6 to 0.7, while log-rank
test showed p-value < 0.05 in all of the survival curves. Therefore,
we considered that all the 12 hub genes appeared to be capable
of survival prediction with the thresholds of p-value < 0.05 and
AUC > 0.6. Patients with HCC and up-regulation of these genes
showed worse survival rate.

Further, univariate and multivariate Cox regression analyses
were performed to analyze their independent prognostic
importance in patients with HCC. As indicated in Table 1,
univariate Cox regression analysis showed that all the 12 hub
genes were high-risk genes (hazard ratio >1, p-value < 0.05);
however, multivariate Cox regression analysis suggested that
only KIF11, TPX2, KIF20A, and CCNB2 were independent
prognostic genes in case of patients with HCC (hazard ratio >1,
p-value < 0.05).

Validation of Potential Prognostic
Biomarkers
The Cancer Genome Atlas dataset of normal and HCC

tissue samples were subjected to Wilcoxon test; KIF11,
TPX2, KIF20A, and CCNB2 were found to have higher
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FIGURE 3 | Protein—protein interaction network construction and hub genes identification. (A) PPI network of 230 DEGs was visualized using Cytoscape. Red color
represents up-regulated genes, and blue color represents down-regulated genes. (B) A subnet with 39 nodes and 698 edges was extracted from the PPI network
using Molecular Complex Detection and CytoHubba based on the following criteria: degree score >30 and p-value < 0.05. (C) Hub genes and their co-expression
network. Twelve pivotal genes were identified as hub genes using CytoHubba, according to degree score >45 and p-value < 0.05. (D) GO enrichment analysis of
the 12 hub genes. (E) KEGG pathway enrichment analysis of the 12 hub genes.
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FIGURE 4 | TCGA dataset analysis showed all of the 12 hub genes are related to worse survival rate. Survival analysis of the 12 hub genes, including (A) BUB1B,
(B) CCNA2, (C) CCNBH1, (D) CCNB2, (E) CDC20, (F) CDK1, (G) KIF11, (H) KIF20A, (I) MAD2L1, (J) PLK1, (K) TOP2A, and (L) TPX2, was performed using
Kaplan—-Meier survival curves and ROC curves based on clinical data from TCGA dataset. Log-rank test p-value < 0.05 and AUC > 0.6 indicate a statistically
significant difference.

mRNA expression levels in HCC than in normal tissue revealed that in comparison with normal tissue samples, the
samples (Figures 5A-D). Furthermore, the expression levels expression levels of KIF11, TPX2, KIF20A, and CCNB2 were
of KIF11, TPX2, KIF20A, and CCNB2 in multiple samples higher at each stage of HCC (Figures 5E-H). These findings
from different stages (I-IV) of tumor progression were indicated the potential roles of these genes for diagnostic and
compared using the Kruskal-Wallis test, and the results prognostic prediction.

Frontiers in Genetics | www.frontiersin.org 6 September 2020 | Volume 11 | Article 555537


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Zeng et al.

Potential Biomarkers Screening in HBV-HCC

TABLE 1 | Univariate and Multivariate COX analysis of hub genes.

Univariate Cox analysis

Multivariate Cox analysis

Gene HR HR.95L HR.95H p-value Gene HR HR.95L HR.95H p-value
BUB1B 1.000874808 1.000446406 1.001303393 6.25E-05 BUB1B 1.00006296 0.998838802 1.001288621 0.919751733
CCNB1 1.000422356 1.00026182 1.000582918 2.15E-07 CCNBH1 0.99987269 0.999416831 1.000328765 0.584250641
CCNA2 1.000071977 0.999965794 1.000178172 0.183996138 CCNA2 1.00003697 0.999894372 1.000179596 0.611349315
CDC20 1.000309776 1.000189157 1.000430411 4.80E-07 CDC20 1.000161 0.999873377 1.000448709 0.272621039
CDKA1 1.000378834 1.000185759 1.000571947 0.000120059 CDKA1 1.00055335 0.999944421 1.001162648 0.074908843
KIF11 1.000641363 1.000273012 1.001009849 6.42E-04 KIF11 0.99882365 0.997724432 0.999924087 0.036162815
KIF20A 1.001021556 1.000695409 1.00134781 8.19E-10 KIF20A 1.0013795 1.000549474 1.002210223 0.001120655
MAD2LA 1.000530847 1.000204046 1.00105783 3.76E-03 MAD2LA 0.99979487 0.998893726 1.000696819 0.655658215
PLKA1 1.000116506 1.000414122 1.000955415 7.04E-07 PLKA1 1.00043079 0.999673949 1.001188201 0.264671652
TOP2A 1.000641889 1.000049283 1.000183733 0.000681365 TOP2A 0.99987989 0.999683667 1.00007614 0.230289833
TPX2 1.000313957 1.000196027 1.000431901 1.83E-07 TPX2 1.00047491 1.000131646 1.000818286 0.006691495
CCNB2 1.000580374 1.000212605 1.000948277 1.98E-03 CCNB2 0.9981437 0.997060681 0.999227895 0.000795237
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FIGURE 5 | mRNA expression levels of four independent prognostic genes in the HCC tissue samples. TCGA dataset of paired normal and HCC tissue samples
(A-D) and multiple samples from different stages (I-IV) of HCC progression (E-=H) were used to investigate mMRNA expression levels of four independent prognostic
genes, namely KIF11, TPX2, KIF20A, and CCNB2, in patients with HCC. A p-value less than 0.05 is statistically significant.

Another dataset with RNA-Seq mRNA expression data and
clinical pathological data were obtained from the ICGC portal
as an independent validation cohort to verify the prognostic
potential of KIF11, TPX2, KIF20A, and CCNB2 in HBV-related
HCC. Overall survival rate analysis of these four genes was
performed using the Kaplan-Meier plot and ROC curves. The
results were consistent with those obtained from TCGA datasets,
revealing that patients with up-regulated KIF11, TPX2, KIF20A,
and CCNB2 genes showed worse survival rate (Figures 6A-
D, p-value < 0.05 and AUC > 0.6). Notably, as indicated
in Figure 6, AUC values calculated using ICGC data were a
little higher (from 0.7 to 0.8) compared with those using the
TCGA data. In general, an AUC of 0.7 to 0.8 is considered
to be acceptable (Mandrekar, 2010). In addition, meta-analysis
in Oncomine showed that KIF11, TPX2, KIF20A, and CCNB2
were highly expressed in HCC comparing with normal tissues

samples (Figure 6E-H, p-value < 0.05). Correlation analyses
(Supplementary Figure S2) revealed the potential relationships
among these four independent prognostic genes, implying that
these four genes have combined effects in HCC occurrence
and development.

Potential Prognostic Biomarkers

Showed Lower Relative Expression

Levels in HCV-Related HCC Than in
HBV-Related HCC

To deternmine whether KIF11, TPX2, KIF20A, and CCNB2 are
specific to HBV-induced HCC comparing with HCV-induced
HCC, HCV-related HCC (GSE69715) and HBV-related HCC
(GSE94660) datasets were used to analyze the relative expression
levels (i.e., fold change) of these 4 genes in HCC and normal tissue
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FIGURE 6 | Validation of four independent prognostic genes in the ICGC dataset by survival curves and Oncomine expression analysis. (A-D) Kaplan-Meier survival
curves and ROC curves of KIF11, TPX2, KIF20A, and CCNB2 genes in the HCC patients from the ICGC dataset. Log-rank test p-value < 0.05 and AUC > 0.6
indicate a statistically significant difference. (E-H) Oncomine analysis of mMRNA expression levels of KIF11, TPX2, KIF20A, and CCNB2 in HCC tissue samples
compared with those in normal tissue samples using four sets of published data (p-value < 0.05).

samples. As indicated in Figure 7 and Table 2, log, (FC) of KIF11,
TPX2, KIF20A, and CCNB2 in the HBV-related HCC dataset
ranges from 1.38 to 2.66, while log,(FC) of these genes in the
HCV-related HCC dataset ranges from 0.09 to 0.35. Although all
of the p-values in the Figure 7 are less than 0.05 (p-value < 0.05),
which are statistically significant, we do not believe that they
are biologically significant, because the expression level of these
four genes in HCV-related HCC showed only a minor increase as

compared with that in HBV-related HCC.

DISCUSSION

Hepatocellular carcinoma is the most common malignant tumor
of the liver. The etiological factors of HCC include hepatitis

TABLE 2 | Compare four independent prognostic genes expression in the
HCV-related HCC and HBV-related HCC.

Log,(FC) p-value
Gene HBV-HCC HCV-HCC HBV-HCC HCV-HCC
CCNB2 2.666359727 0.098574137 3.07E-12 9.80E-07
TPX2 1.38249853 0.154570151 1.40E-09 0.00093
KIF20A 2.91389186 0.354370973 3.70E-12 1.60E-10
KIF11 1.875739772 0.275842814 3.70E-12 0.00052

B or C, aflatoxin, alcohol, and metabolic disorders. In HBV
endemic areas, chronic hepatitis B infection has been verified to
be closely associated with HCC carcinogenesis (Lavanchy, 2004).
Identifying potential biomarkers and elucidating molecular
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FIGURE 7 | Relative mRNA expression levels of the independent prognostic genes in the HCV-related HCC and HBV-related HCC. Datasets of HCV-related HCC
(GSE69715) and HBV-related HCC (GSE94660) were used to analyze relative mRNA expression levels of KIF11 (A), TPX2 (B), KIF20A (C), and CCNB2 (D) genes in
the tumor tissues comparing with normal tissues. p-values < 0.05 indicate statistical significance. The expression level of these four genes in HCV-related HCC,
however, only showed a minor increase as compared with that of those in HBV-related HCC.
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mechanisms of HCC progression are pivotal. Some researchers
have used comprehensive bioinformatics analysis to identify hub
genes from PPI networks constructed with DEGs, such as for
colorectal cancer (Guo et al., 2017), breast cancer (Yang et al.,
2019), and non-small-cell lung cancer (Ma et al., 2019). Notably,
with bioinformatics analysis, different research groups may
identify the same prognostic biomarkers using different datasets
(Yang et al., 2019; Nakamura et al., 2020), which may strengthen

the significance of data mining. Hepatocarcinogenesis is a
complex multifactorial process; in recent decades, bioinformatics
analyses of high-throughput data obtained upon using methods
such as microarray and new generation sequencing have become
common for exploring the mechanisms underlying HCC.

Gene Expression Omnibus is a public functional genomics
database and includes a large repository of high-throughput,
next-generation sequencing results and related information
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for over 200 organisms (Barrett et al., 2007). In the present
study, to investigate pivotal genes associated with the HBV-
related HCC, we used three high-throughput RNA-seq-based
datasets, namely GSE25599, GSE94660, and GSE77509,
downloaded from GEO, and information pertaining to
47 normal and 47 HBV-related HCC tissue samples was
used. At the same time, to reduce the number of DEGs
identified and improve accuracy, high-throughput RNA -
seq results and clinical information of 50 normal and 374
HCC tissue samples were downloaded from TCGA and used
for screening DEGs overlapping with GEO datasets and for
survival analysis. In addition, the HCC expression data in
the ICGC database were used to validate potential prognostic
biomarkers in HCC.

A total of 230 DEGs were identified, of which 127 were
down-regulated and 103 were up-regulated, and a PPI network
was then constructed. Twelve hub genes - BUBIB, CCNA2,
CCNB1, CDC20, CDK1, KIF11, KIF20A, PLK1, TOP2A,
MAD2L1, TOP2A, and TPX2 - were identified according to
a degree score of >45. GO and KEGG pathway enrichment
analyses of the 230 DEGs and 12 hub genes suggested that
HBV-related HCC occurrence and development are associated
with cell cycle, nuclear division, mitosis, p53 pathway, oocyte
meiosis, retinol metabolism, and organic acid catabolism.
Cell cycle abnormality evidently has a key role during the
process of liver cancer (Choi et al, 2001), and cyclin D1
degradation has been reported to inhibit HCC occurrence (Wu
et al, 2018). Further, p53, the most common abnormality
of dominant oncogenes in human tumors including HCC
(Wu et al, 2018), plays a critical role in cell cycle arrest
and apoptosis in response to DNA damage (Khemlina et al,
2017). Alterations in retinol metabolism play a pivotal role
in the process of liver fibrosis, and enzymes involved in
retinol metabolism are reportedly related to liver cancer
(Pettinelli et al., 2018).

To analyze the prognosis and clinical significances of the 12
hub genes in HBV-related HCC, clinical data from TCGA were
used for survival and ROC curve analyses. It was found that
patients in whom the expression levels of the 12 hub genes
were up-regulated showed worse survival rate, indicating their
prognostic value for HCC. To further analyze the prognostic
value of these genes, univariate and multivariate Cox regression
analyses were performed using the 12 hub genes and found
that KIF11, TPX2, KIF20A, and CCNB2 might be independent
prognostic genes and potential targets for the diagnosis of HBV-
related HCC. In addition, it was demonstrated that the expression
levels of these four genes were higher in HCC than in normal
tissue samples, and their expression levels were also higher at
different stages of HCC than those in normal tissue samples.
Data pertaining to patients with HCC from the ICGC database
further validated that KIF11, TPX2, KIF20A, and CCNB2 were
associated with worse survival rates in patients with higher
gene expression levels. Oncomine analysis demonstrated that the
expression levels of these genes were still higher in different
patients with HCC.

Through continuous data filtering using different procedures
and different sources of data, the number of candidate

genes reduced, making our results more credible. Besides,
correlation analyses of KIF11, TPX2, KIF20A, and CCNB2
indicated the potential relationships among them, and
suggested that they together promote the occurrence and
development of HCC.

The activation of KIF20A-Gli2 axis has been reported to
be crucial for hepatoma cell growth, indicating that KIF20A
plays a vital role in the development of liver cancer (Shi
et al., 2016). Further, an increase in the mRNA expression
level of KIF20A and its product MKLP2 has been related
to HCC invasion (Gasnereau et al., 2012). KIF11 is related
with the progression and prognosis of liver cancer, and its
overexpression has been related to low survival rate of patients
with liver cancer (Chen et al, 2017). A study reported that
CCNB2 overexpression induces the expression of karyopherin
subunit-a-2, promoting the cell cycle of HCC cells (Gao
et al, 2018). Other studies have reported that the positive
regulatory network of CCNB2 is involved in ubiquitination,
DNA repair, and cell proliferation in non-tumor hepatitis or
cirrhosis induced by HBV (Wang et al,, 2012), suggesting that
CCNB?2 plays a role in HBV-related diseases. Moreover, it was
observed that knocking down TPX2 in hepatocarcinoma cell
lines effectively reduced cell growth via G2/M blockage and
induced apoptosis (Hsu et al., 2017). TPX2 has also been reported
to promote HCC development by activating PI3K/Akt signal
(Huang et al., 2019).

Datasets of HCV-related HCC and HBV-related HCC were
used to compare the expression levels of these four genes
between HCV- and HBV-induced HCC. HCV-related HCC
showed only a minor increase in the expression levels as
compared with HBV-related HCC, indicating that KIF11,
TPX2, KIF20A, and CCNB2 might be specific to HBV-
induced HCC. But the underlying mechanisms how these
four genes may induce the HBV-related HCC need to be
turther elucidated.

In conclusion, KIF11, TPX2, KIF20A, and CCNB2 seem
to play a key role in HBV-related HCC. However, further
studies are warranted to explore the mutual influence of
these genes and HBV on HBV-related HCC carcinogenesis.
Further studies should also identify whether these four
genes are induced by factors other than HBV infection
in patients with HCC and whether HBV infection itself
causes aberrant expression of these genes and promotes
HCC  progression. =~ Whether =~ HBV-encoded proteins,
such as HBV X protein, can interact with intracellular
proteins via these four genes and lead to HCC remains
to be elucidated.

CONCLUSION

Our findings suggest that KIF11, TPX2, KIF20A, and CCNB2 are
involved in the carcinogenesis and development of HBV-related
HCC. Thus, they can be used as independent prognostic genes for
patients with HBV-related HCC and also as novel biomarkers for
the diagnosis of HBV-related HCC and development of pertinent
therapeutic strategies.
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