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Complex diseases are believed to be the consequence of intracellular network(s)
involving a range of factors. An improved understanding of a disease-predisposing
biological network could lead to better identification of genes and pathways that
confer disease risk and therefore inform drug development. The group difference in
biological networks, as is often characterized by graphs of nodes and edges, is
attributable to effects of these nodes and edges. Here we introduced pointwise mutual
information (PMI) as a measure of the connection between a pair of nodes with either
a linear relationship or nonlinear dependence. We then proposed a PMI-based network
regression (PMINR) model to differentiate patterns of network changes (in node or edge)
linking a disease outcome. Through simulation studies with various sample sizes and
inter-node correlation structures, we showed that PMINR can accurately identify these
changes with higher power than current methods and be robust to the network topology.
Finally, we illustrated, with publicly available data on lung cancer and gene methylation
data on aging and Alzheimer’s disease, an evaluation of the practical performance of
PMINR. We concluded that PMI is able to capture the generic inter-node correlation
pattern in biological networks, and PMINR is a powerful and efficient approach for
biological network analysis.

Keywords: biological networks, pointwise mutual information, regression, lung cancer, Alzheimer’s disease

INTRODUCTION

A complex disease is understood to be the consequence not of abnormality involving a single
biomolecule (e.g., RNA, protein, metabolite) but of their network(s) and possibly a variety of other
factors (Barabási et al., 2011). Biomolecules interact with each other in such network(s) which
underpin the disease pathogenesis and progression. Specific types of networks (e.g., protein–protein
interaction networks) are often used to represent a given type of biological processes, each
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containing information about levels and inter-relationships
among specific biomolecules (Albert, 2005). A recent gene
set analysis method has also emphasized the importance of
incorporating network or pathway information (Li et al., 2019).
Indeed, it is uncommon to observe that a significant gene-
disease association disappears when studied within a network or
pathway, and vice versa. Consequently, there is a framework of
“think globally, act locally” in great need to develop statistical
methods to detect whether specific biological network is strongly
associated with the disease outcome. It is thus more appropriate
to investigate how the biological networks vary with disease
status, rather than analyze factors individually. A greater
understanding of the role of biological network(s) in disease
etiology and treatment should lead to better identification of
disease-related genes and pathways, and consequently to more
precise targets for drug development.

A biological network is commonly described as a graph such
that nodes (or vertices) are used to represent biomolecules and
edges to represent consequences or physiological interactions
between vertices. In general, both the node effects (e.g., the
magnitude of each gene’s expression in regulation network) and
the edge effects (e.g., the strength of connection) can contribute
to the disease. A given biological network is characterized
with respect to what the nodes represent and what the nature
of the interactions is between these nodes (edges) (Sonawane
et al., 2019). For instance, a protein–protein interaction network
describes proteins as well as physiological interactions between
them, while a gene co-expression network involves genes and
their expression patterns. For the latter, the impact of a specific
genetic abnormality is unrestricted to the activity of a single gene
in question but able to spread along its connections with other
genes and propagate through interactions to involve other genes
in the network. The graph abstraction has greatly facilitated the
study of networks.

It is particularly challenging to quantify inter-node connection
strength precisely with a unified metric, especially when
involving group (e.g., patients versus healthy controls) differences
in biological networks (Gambardella et al., 2013; Yates and
Mukhopadhyay, 2013; Ruan et al., 2015). In an attempt to
accommodate changes in nodes and edges which lead to
network differences, we previously developed statistics to test
the group difference for weighted biological networks (Ji et al.,
2016), for pathways with chain structure (Ji et al., 2015; Yuan
et al., 2016a) and for directed biological networks (Yuan et al.,
2016b). Nevertheless, these methods have little capacity to
adjust for potential confounding factors and covariates (e.g.,
age, sex, batch effect), which served as a motivation for
the current investigation into network regression techniques
to infer the effect of a biological network as a whole (i.e.,
treating the whole network as the independent variables),
accounting for the potential confounders through a regression
model. As will soon become clear, this is furnished via two
steps, the first of which is to find an appropriate metric
to measure the inter-node connection that can better reflect
the underlying relationships among the network nodes, to
be followed at the second step by a unified regression
framework involving both the nodes and the edges; together

they bring dependence structures into inference and achieve high
statistical efficiency.

In more detail, our approach is concerned about regression
methodology for assessing relationships between disease
outcome and a particular biological network with adjustment
for potential confounding factors. Below we first introduce
pointwise mutual information (PMI) to measure the strength
of connection between a pair of nodes in the network, as
currently PMI is commonly used in machine learning and
text mining (Turney, 2001; Read, 2004) to capture linear or
nonlinear relationships between two nodes. We then construct
the PMI-based network regression (PMINR) model for a given
network to identify differential patterns of network changes
(with respect to both nodes and edges) responsible for complex
traits or disease. Extensive simulations were conducted to
evaluate the performance of our model, including the robustness
and power of PMINR. Finally, publicly available data on lung
cancer and gene methylation data on aging and Alzheimer’s
disease from the Religious Orders Study and Memory and
Aging Project (ROSMAP) study were analyzed to evaluate the
practical performance of PMINR. Our focus here on logistic
regression for its broad applicability in biomedical research
can be easily extended to generalized linear models involving a
variety of outcomes.

MATERIALS AND METHODS

The PMI of two node variables X and Y can be defined as follows
(Church and Hanks, 1990):

PMI
(
x, y

)
= log

p
(
x, y

)
p (x) p

(
y
) (1)

where p
(
x, y

)
is the joint distribution of X and Y, p (x) and

p
(
y
)
their marginal distributions. Statistically, the stronger the

correlation between two nodes regardless of linear or nonlinear
relationship, the more deviation PMI from 0, when if and only
if X and Y are independent. Thus, PMI, to some extent, is a
non-independence metric. To make the estimator of the joint
density of two nodes variable more robust, we choose bivariate
kernel density estimation (BKDE) for PMI. Let X, Y be a bivariate
sample drawn from a common distribution described by the
density functionf . The BKDE is defined as

f̂H (z;H) =
1
n

n∑
i=1

KH (z− Zi) (2)

where z =
(
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)T and Zi = (Xi, Yi)
T , i = 1, 2 , . . . , n, and

H is the bandwidth (or smoothing) 2× 2 matrix which is
symmetric and positive definite; K is the bivariate kernel
function which is a symmetric multivariate density and KH (z) =
|H|−1/2 K

(
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)
. For the present study, we use the bivariate

normal kernel:
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Assume that we have a biological network with p nodes measured
over individuals. For individual l

(
l = 1, 2, . . . , N

)
, Let

Yl =

{
0 l ∈ group 0
1 l ∈ group 1

be the binary response variable, Zs (s = 1, . . . , S) be the
covariates (e.g., age, gender). The PMINR is defined as:

logit (P(Y=1))=β0+

s∑
s=1

αsZs+

p∑
i=1

βixi +

p∑
i=1

p∑
j>i

IijγijEij (4)

where xi denotes the ith node,

Iij =

{
0 xi and xj are unconnected in the network
1 otherwise

is an indicator variable, Eij denotes the estimator of PMI
between node xi and node xj using BKDE, respectively.
The regression coefficients are denoted by αs, βi and γij.
Here, we use the cubic- and quadratic-spline interpolation to
construct the BKDE-based estimator of PMI. PMINR naturally
decomposed the change of the whole network into the node
changes and edge changes. Using a likelihood ratio test, it
can test whether the whole network is significantly associated
with the response variable, and using a Wald test it can
detect identify which nodes or edges are related to the
response variable.

Simulation
To make our simulation more realistic, we set as our model
network the topological structure from the pathway of insulin
resistance downloaded from Kyoto Encyclopedia of Genes and
Genomes (KEGG) including 26 nodes and 37 edges (Figure 1).
Four simulation scenarios under different sample sizes and
variable inter-node correlation patterns (see the details below),
were designed to assess the type I error and statistical power.
Specifically, we used Wald test to assess the type I error for testing
one randomly selected node without any effect (node test), or one
randomly selected edge without any effect (edge test). We used
Wald test to assess the power for testing the effecting node, or
the effecting edge, or the effecting pairs of node and edge. We
compared PMINR with three other methods, including

• the product moment network regression (PMNR) which
uses the common linear correlation to represent the
between-node connection strength.
• the DGCA method which is differential gene correlation

analysis (i.e., edge effect) to assess the difference in gene-
gene regulatory relationships under different conditions
(McKenzie et al., 2016).
• the RANK method which can detect the whole pathway due

to either correlations or mean changes (Alvo et al., 2010).

Each scenario included four situations: (1) only nodes of
network having the effect, (2) only edges of network having
effects, (3) both nodes and edges having effects, with the nodes
not hanging on the edge (e.g., node X6 and edge E4,10 in

Figure 1), (4) both the nodes and edges having the effects,
with the nodes hanging on the edge (e.g., X4 and E4,10 in
Figure 1).

In scenario 1, we generated data using the linear correlation
to represent the network edge and evaluate the performance of
all these four methods. We randomly assigned the effecting node
and edge for the four aforementioned situations, respectively. The
simulated m-dimensional node variables were generated from
a multivariate normal distribution Nm (0, 6) with covariance
matrix 6 using the R package mvtnorm. We specified the
covariance matrix 6 =

(
Iijρij

)
m×m, where

Iij =

{
1, Eij ∈ E (G)

0, Eij /∈ E (G)

i 6= j,i, j = 1, 2, . . . , m is the indicator function, m = 26, ρij is
assigned by randomly choosing a number from 0.1 to 0.55 with a
step 0.05 and the eigenvalues are calculated to judge whether the
covariance matrix is positive definite. We generated the response
variable Y from binomial distribution with

P(Y = 1) =
exp

(
β0 +

∑m
i=1 βiXi +

∑m
i=1
∑m

j>i IijγijEij

)
1+ exp

(
β0 +

∑m
i=1 βiXi +

∑m
i=1
∑m

j>i IijγijEij

)
where Xiand Eij denotes the different vertices and edges between
two groups (case vs. control), βiandγij denote the corresponding
effect size on Y. We set the intercept to be zero to make the
two groups (case vs control) have equal sample size when the
global network has no effect on the response variable. The type I
error rate was assessed by setting all node and edge parameters to
be 0, βi = 0, γij = 0, i, j = 1, 2, . . . , m. We further assessed the
power by setting β = 0.3, γ = 0.2. Here, we randomly selected
an effecting node or an effecting edge, or an effecting pair of
node and edge in each replication to minimize the impact of
network structure, randomly selecting the effecting nodes and
edges can avoid subjectiveness of the design and make the results
more convincing.

We further considered three other patterns of nonlinear
relationships between the network nodes, Xj = X2

i (scenario 2),
Xj = sin Xi (scenario 3), Xj = (sin Xi)

2 (scenario 4). The data
were generated based on the pre-defined nonlinear relationship.
For instance, if we assign the sine relationship between node
X4 and node X10, then X10 = α ∗ sin X4 + ε, the parameter α

was used to represent the nonlinear connection strength between
X4 and X10. Note that the nonlinear sine relationship between
X4andX10can be depicted by the linear relationship between
sin X4 and X10. We set E4,10 = α ∗ sin X4 ∗ X10 to generate the
response Y. All regression coefficients were set to be 0 to assess
type I error. We further assigned β = 0.3, γ = 0.2 for scenario 2
and β = 0.3, γ = 0.6 for both scenario 3 and scenario 4 to assess
the power. Again, the effecting nodes and edges in these three
nonlinear scenarios were also randomly selected.

For each scenario, 1000 replicates were used to evaluate the
performance of type I error and power under different sample
sizes (300, 400, 500, 600, 1000). We further designed four other
scenarios under the same settings as above, except that the
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FIGURE 1 | The simulated network structure based on the Insulin resistance pathway from KEGG.

changing node and edges are fixed rather than randomly selected
for each replicate.

Applications
We first applied PMINR to analyze the gene expression data on
lung cancer, available from Gene Expression Omnibus (GEO)
with accession number GDS2771. Among the 187 smokers 97
were diagnosed with lung cancer and 90 were controls. The gene
regulatory network of lung cancer from KEGG database involves
20 genes and 23 edges. Many probe sets corresponding to the
same gene symbol were averaged to obtain gene-level expression
measurement. We aimed to determine whether the whole
pathway or gene or between-gene correlation can contribute to
lung cancer development in smokers.

We then applied PMINR to the gene methylation data
from the ROSMAP study as divided into two parts, ROS
(The Religious Orders Study) and The Memory and Aging
Project (MAP). The ROS is a longitudinal clinical-pathologic
cohort study of aging and Alzheimer disease (AD; Bennett

et al., 2012a). Memory and Aging Project is a longitudinal,
epidemiologic clinical-pathologic cohort study of common
chronic conditions of aging with an emphasis on decline in
cognitive and motor function and risk of AD (Bennett et al.,
2012b). Both cohorts were run from Rush University. Alzheimer
disease status was determined by a computer algorithm based
on cognitive test performance with a series of discrete clinical
judgments made in series by a neuropsychologist and a clinician.
Methylation data was generated on prefrontal cortex samples
collected from deceased subjects from the ROS and MAP
studies using the Illumina HumanMethylation450 BeadChip.
These data have undergone a quality control analysis and
have been adjusted for age, sex, and experimental batch effect.
An extensive description of the QC and adjustment process
are provided (De Jager et al., 2014). We mapped the DNA
methylation data on the AD pathway (hsa05010) from KEGG,
including a total of 22 genes and 24 edges. The methylation
level for one specific gene was calculated by averaging the
corresponding beta value along this gene, including the gene
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body and upstream regions. Thus, for each individual, we had
22 gene methylation variables, the 267 cases are subjects with
diagnosed AD and no other causes of cognitive impairment,
and the 235 controls are those categorized as no cognitive
impairment. We aimed to determine whether the whole pathway
or gene methylation or between-gene methylation correlation can
contribute to AD development.

RESULTS

Simulation
Shown in Figure 2 are the estimated type I error rates
of the four methods. For detecting the effecting node,
the type I error rates of all methods are close to given
nominal level (α = 0.05) when the sample size is relatively

FIGURE 2 | Type I error of PMINR, PMNR, RANK and DGCA. (A) the result for detecting node under scenario 1, (B) detecting edge under scenario 1, (C) detecting
node under scenario 2, (D) detecting edge under scenario 2, (E) detecting node under scenario 3, (F) detecting edge under scenario 3, (G) detecting node under
scenario 4, (H) detecting edge under scenario 4.
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large, regardless of the correlation pattern being linear
(Figure 2A), quadratic (Figure 2C), sine (Figure 2E) or
the recombination of quadratic and sine (Figure 2G).
While all the methods are a little inflated for the small
sample size (e.g., 300). In addition, similar trends of type
I error rates can be found for detecting the effecting edge.
Note that when the nonlinear pattern is quadratic or sine,

DGCA has much higher type I error rates than any other
method in detecting the effecting edge (Figures 2D,F),
which is because DGCA can only capture the linear
relationship and may be unable to reflect the nonlinear
correlation. Similar trends of type I error rates can also
be found when the effecting node and edge are fixed
(Supplementary Figure 1).

FIGURE 3 | The statistical power of PMINR, PMNR, RANK and DGCA under scenario 1. (A) Only node changes. (B) Only edge changes. Both node and edge
change, with effecting node hanging on the edge, (C) the result for effecting node, (D) the result for effecting edge. Both node and edge change with node not
hanging on the edge, (E) the result of effecting node, (F) the result of effecting edge. Note that the power of DGCA to test the effecting node is not presented due to
DGCA conceptually only capture the effecting edge.
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Shown in Figure 3 are the power of the four methods under
scenario 1 when all the correlation patterns are linear. The power
of all methods increases with sample size. In detection of the
effecting node, PMINR and PMNR have the highest power than
the other methods regardless of only node effecting (Figure 3A)
or both node and edge effecting (Figures 3C,E). The RANK
method has relatively lower power possibly due partly to RANK

test as being essentially nonparametric and only able to give
the overall p value for the global network without little ability
to identify the specific effecting node or edge. To detect the
effecting edge, PMINR is expected to have lower power than
PMNR and DGCA in this case, both of which are the gold
standard and have comparable power under various situations
(Figures 3B,D,F).

FIGURE 4 | The statistical power of PMINR, PMNR, RANK and DGCA under scenario 2. (A) Only node changes. (B) Only edge changes. Both node and edge
change, with effecting node hanging on the edge, (C) the result for effecting node, (D) the result for effecting edge. Both node and edge change with node not
hanging on the edge, (E) the result of effecting node, (F) the result of effecting edge. Note that the power of DGCA to test the effecting node is not presented due to
DGCA conceptually only capture the effecting edge.
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Figures 4–6 show the power of all methods when the
correlation pattern is nonlinear (scenario 2, 3, and 4 in the
above simulation settings). In identification of the effecting
node, PMINR has the highest power regardless of whether
the nonlinear pattern is quadratic (Figures 4A,C,E), sine
(Figures 5A,C,E) or the recombination of quadratic and sine

(Figures 6A,C,E). Note that PMNR have the comparable power
in detecting the effecting node under almost all situations,
except when both node and edge change with the effecting node
hanging on the edge (Figures 5C, 6C). This is partly because
PMNR conceptually only captures the linear relationship, and
the nonlinear correlation on the edge can affect the power to

FIGURE 5 | The statistical power of PMINR, PMNR, RANK and DGCA under scenario 3. (A) Only node changes. (B) Only edge changes. Both node and edge
change, with effecting node hanging on the edge, (C) the result for effecting node, (D) the result for effecting edge. Both node and edge change with node not
hanging on the edge, (E) the result of effecting node, (F) the result of effecting edge. Note that the power of DGCA to test the effecting node is not presented due to
DGCA conceptually only capture the effecting edge.
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detect the effecting node hanging on itself. In detection of the
effecting edge, PMINR has the highest power under almost all
the situations, except when both node and edge change with
the effecting node not hanging on the edge under scenario
4 (Figure 6F). While in such cases, the power of the RANK
method is higher than that of PMINR. This may be partly

due to PMI having little ability to capture and reflect the
nonlinear relationship of the recombination of quadratic and sin.
In addition, both PMNR and DGCA substantially lose power
since they are unable to capture the nonlinear relationship. In
addition, similar phenomenon can be found when the effecting
node and edge are set to be fixed rather than randomly selected

FIGURE 6 | The statistical power of PMINR, PMNR, RANK and DGCA under scenario 4. (A) Only node changes. (B) Only edge changes. Both node and edge
change, with effecting node hanging on the edge, (C) the result for effecting node, (D) the result for effecting edge. Both node and edge change with node not
hanging on the edge, (E) the result of effecting node, (F) the result of effecting edge. Note that the power of DGCA to test the effecting node is not presented due to
DGCA conceptually only capture the effecting edge.
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(Supplementary Figures 2–5). Overall, the performance of
PMINR is at least comparable, and often superior, to that of
existing methods.

Applications
Shown in Table 1 are the results of lung cancer data based on the
non-small cell lung cancer (NSCLC) pathway. Consistent with
the simulation results, PMINR have successfully detected more
genes and edges than the other methods at a significance level
of 0.05. Both PMINR and PMNR have identified two common
genes (BAD and JAK3). In addition, one significant edge (CASP9-
AKT2) has been also identified by PMINR and DGCA. Again,
the RANK method can only present the overall p value for
the global pathway.

Shown in Table 2 are the results of the ROSMAP data based on
the AD pathway. At the significance level of 0.05, both PMINR
and PMNR have identified the same gene methylation nodes
(CDK5, MAPK1, GRIN2A), which indicated that, consistent with
the simulation results, PMINR and PMNR have the comparable
power to detect the node effects. The results for detecting the
edge effect are quite different from other methods. However, if
treating the DGCA method as the gold standard capturing the
linear relationship, we found that those edges with more linear
relationships can be almost significantly detected by PMINR, but
not vice versa. For example, the p values for FAS-FADD and
CAPN1-CDK5R1 are 0.018 and 0.027, respectively for DGCA,
and 0.059 and 0.062 for PMINR. The p values for CALM1-
PPP3CA and CASP12-CASP3 are 0.010 and 0.045, respectively for
PMINR, but 0.485 and 0.854, respectively for DGCA.

TABLE 1 | Lung cancer network regression of various methods with p
values in parenthesis.

Method Edge Node

PMINR ERBB2-TGFA (0.0069);
PIK3CD-EML4 (0.019);
PIK3CD-AKT2 (0.034);
ERBB2-PIK3CD (0.037);
RAF1-MAP2K1(0.047);
AKT2-CASP9 (0.049)

BAD (0.0003); JAK3 (0.019); AKT2
(0.031); EGF (0.035)

PMNR BAD (0.0057); JAK3 (0.015)

DGCA JAK3-STAT3 (0.0087);
AKT2-CASP9 (0.016)

RANK global network (0.022) global network (0.022)

TABLE 2 | AD network regression of various methods with p values in parenthesis.

Method Edge Node

PMINR CALM1-PPP3CA (0.0010);
CASP12-CASP3 (0.045)

CDK5(0.011); MAPK1(0.030);
GRIN2A (0.011)

PMNR CASP8-CASP3(0.013);
MAPT-CDK5 (0.024)

CDK5(0.0069); MAPK1(0.034);
GRIN2A (0.036)

DGCA FAS-FADD (0.018);
CASP8-CASP3(0.0058);
CAPN1-CDK5R1(0.027)

RANK global network (0.012) global network (0.012)

It should be noted that under Bonferroni correction, only BAD
is significant in lung cancer data, while no significantly effecting
nodes or edges can be found in ROSMAP data. It may not be
straightforward to correct for multiple comparison given the
high level of correlation between tests, and the commonly used
Bonferroni correction may be too stringent.

DISCUSSION

In recognition of the importance of biological networks as
in complex diseases (Barabási et al., 2011) and their use in
identification of high-risk genes and pathways therefore drug
development, we have developed PMINR to account for group
difference of biological networks due not only the effect of
nodes but the effect of edges. We first introduced PMI to
measure the connection between two nodes, then proposed
PMINR model to differentiate patterns of network changes (node
change or edge change) responsible for a disease outcome.
One strong argument is that besides Pearson correlation
many non-parametric and robust correlation measures such
as distance correlation, mutual information and maximal
information coefficient may also be chosen to depict the
network inter-node connection. Often for a given sample,
one can only calculate one unique correlation value using
these measures. Moreover, in regression framework, each
sampled individual should have its own correlation. PMI can
be used directly in regression, and more attractively capture
both linear relationships and nonlinear correlation. Extensive
simulations showed that PMINR has better performance than
other available methods.

Findings from the NSCLC dataset are consistent with earlier
reports. Increasing expression of BAD enhances apoptosis
and has a negative influence on cell proliferation and tumor
growth in NSCLC (Jiang et al., 2013). The JAK3 gene is
confirmed to be associated with lung cancer (Yoo et al.,
2007). Zyuz’kov et al. (2016) found a pronounced inhibition
of hematogenous spread of the pathologic process into
lungs, and blockade of JAK3 significantly elevated maturation
index of the tumor tissue. Moreover, Akt2 and CASP9
play an important role in lung cancer progression (Park
et al., 2006; Wang et al., 2006; Lou et al., 2007; Attoub
et al., 2015). In fact, increasing evidence points to the
functional importance of alternative splice variations in cancer
pathophysiology, and Shultz et al. (2010) found that oncogenic
factors activating the PI3Kinase/AKT pathway can regulate
alternative splicing of CASP9 via a coordinated mechanism
involving the phosphorylation of SRp30a. It implies that there
may be an interaction between CASP9 and AKT2 in the
progression of lung cancer.

The systemic failure of calmodulin degradation, and thus
of Ca(2+)/ calmodulin dependent signaling pathways, may
be important in the etiopathogenesis of AD. Both CALM1
and PPP3CA play essential roles in the transduction of
intracellular Ca(2+)-mediated signals, in that CALM1
encodes calcium binding protein which is a subunits of
phosphorylase kinase and can bind PPP3CA regulatory domain
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and causes a conformational change in removing PPP3CA
autoinhibitory domain from its catalytic site, i.e., activating
PPP3CA (Dunlap et al., 2013). In addition, Activated CASP3
may be a factor in functional decline and may have an
important role in neuronal cell death and correlation with
Alzheimer pathology (Su et al., 2001; Gastard et al., 2003). CDK5
has multiple roles in neuron development, neuronal survival,
phosphorylation of cytoskeletal proteins and synaptic plasticity.
Indeed, CDK5 is reported to be intimately associated with the
process of the pathogenesis of AD (Shukla et al., 2012; Liu et al.,
2016). MAPK1 encodes a member of the MAP kinase family.
MAPK1 is confirmed to be associated with the formation of
hyperphosphorylated tau protein early in the development of AD
(Gerschütz et al., 2014).

The apparent limitation in assuming known biological
network structure can actually be useful for learning network
structure which determines every possible edge with the highest
degree of data matching, and a joint probability distribution of
network nodes can reflect more than one network structure.
Often, most biologists can roughly describe more or less the
specific network for the corresponding biological process, and
facilitated by multiple databases (such as KEGG) to establish
the network structure. The inference of PMINR directly plugs
the estimate of inter-node correlation into the regression model
and fails to account for the uncertainty during inter-node
correlation estimate. It should be noted that such inference
procedure may lead to the biased estimate and power loss,
especially in smaller sample size. The p values at present study
are without accounting for the multiple testing. Often, the
node test and the edge test are often highly correlated, and
it is not straightforward to correct the p value or control
the false discovery rate. However, not taking the multiple
testing into account may make the interpretation of the results
unclear, given that the truth is often unknown in practice.
It is desirable to develop methods that can calculate the
effective number of independent tests, to further address the
multiple testing issue. In addition, caution should be used
against the interpretation of estimated individual node and edge
effects, given the potential for statistical mediation of effects
within the network.

In conclusion, PMI captures the general inter-node correlation
pattern in biological networks, and PMINR is powerful and
efficient for biological network analysis.
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