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Pedigree information is incomplete by nature and commonly not well-established
because many of the genetic ties are not known a priori or can be wrong. The
genomic era brought new opportunities to assess relationships between individuals.
However, when pedigree and genomic information are used simultaneously, which
is the case of single-step genomic BLUP (ssGBLUP), defining the genetic base is
still a challenge. One alternative to overcome this challenge is to use metafounders,
which are pseudo-individuals that describe the genetic relationship between the base
population individuals. The purpose of this study was to evaluate the impact of
metafounders on the estimation of breeding values for tick resistance under ssGBLUP
for a multibreed population composed by Hereford, Braford, and Zebu animals.
Three different scenarios were studied: pedigree-based model (BLUP), ssGBLUP, and
ssGBLUP with metafounders (ssGBLUPm). In ssGBLUPm, a total of four different
metafounders based on breed of origin (i.e., Hereford, Braford, Zebu, and unknown)
were included for the animals with missing parents. The relationship coefficient between
metafounders was in average 0.54 (ranging from 0.34 to 0.96) suggesting an overlap
between ancestor populations. The estimates of metafounder relationships indicate that
Hereford and Zebu breeds have a possible common ancestral relationship. Inbreeding
coefficients calculated following the metafounder approach had less negative values,
suggesting that ancestral populations were large enough and that gametes inherited
from the historical population were not identical. Variance components were estimated
based on ssGBLUPm, ssGBLUP, and BLUP, but the values from ssGBLUPm were
scaled to provide a fair comparison with estimates from the other two models. In general,
additive, residual, and phenotypic variance components in the Hereford population were
smaller than in Braford across different models. The addition of genomic information
increased heritability for Hereford, possibly because of improved genetic relationships.
As expected, genomic models had greater predictive ability, with an additional gain for
ssGBLUPm over ssGBLUP. The increase in predictive ability was greater for Herefords.
Our results show the potential of using metafounders to increase accuracy of GEBV, and
therefore, the rate of genetic gain in beef cattle populations with partial levels of missing
pedigree information.
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INTRODUCTION

Pedigree information is incomplete by nature and commonly not
well-established because many of the genetic ties existent between
genealogical information on individuals are not known a priori
or can be wrong (Junqueira et al., 2017). Nonetheless, pedigrees
are usually available for livestock species and have been widely
used in genetic evaluations to improve the accuracy of breeding
value estimation.

New opportunities to assess relationships between individuals
arose in the genomic era. As expected, genomic-based
relationships are independent of pedigree information and,
therefore, are not affected by missingness or incorrect pedigree
recording. Several genomic prediction methods are available
in the literature (Meuwissen et al., 2001; VanRaden, 2008;
Aguilar et al., 2010; Fernando et al., 2014). Some of the methods
(i.e., BayesX, SNP-BLUP, and GBLUP) implicitly assume that
pedigree structure is absent (Christensen, 2012), and the
extension to several populations, including multiple breeds,
is not straightforward because it requires that pedigree and
genomic information is compatible (Harris and Johnson, 2010;
Misztal et al., 2013). The challenge under genomic approaches
is the correct inference of the genetic base population. Usually,
the base population for genomic models is assumed to be
the available set of genotyped individuals, which is mainly
composed of recent animals. In models that combine genomic
and pedigree relationships, i.e., ssGBLUP (Aguilar et al., 2010),
the compatibility between the pedigree and the genomic base is
crucial to avoid bias in GEBV (Vitezica et al., 2011). However,
taking care of this compatibility does not solve the issue of limited
pedigree recording. Because pedigrees for animal populations
only started being recorded recently, the fact that animals could
be related before that is ignored.

When multiple breeds are combined in the same evaluation,
there is usually no pedigree information between breeds.
However, Porto-Neto et al. (2013) and Decker et al. (2014b)
showed that cattle populations had common founders.
Christensen (2012) provided some insights on how to estimate
founder relationships. His suggestions are valid when a single
population is assumed a priori; however, inference extensions
to several founder populations were not exploited. Legarra et al.
(2015) reported a metafounder theory to consider relationships
within and across founder populations; this theory provided a
generalization of unknown parent groups and the developments
shown by Christensen (2012). The metafounder concept relies
on the definition of pseudo-individuals that add some level of
genetic relationship between base individuals in the population
(i.e., founders). In this context, we aimed to evaluate the impact
of metafounders on the estimation of breeding values for tick
resistance under a ssGBLUP model for a multibreed population
composed by Hereford, Braford, and Zebu animals.

MATERIALS AND METHODS

Approval of Animal care and use committee was not needed
because this study used existing datasets historically collected

by the animal breeding program. The raw data cannot be made
public available because they are property of the Braford and
Hereford producers, Embrapa, and GenSys Consultants (i.e.,
data are commercially sensitive). For research purposes, the data
requests should be forwarded along with the research proposal
to fernando.cardoso@embrapa.br.

Phenotype, Genotype, and Pedigree
Information
The data used for investigating the inclusion of metafounders
in genomic evaluations were provided by Conexão Delta G
Breeding Program (Rio Grande do Sul, Brazil). Hereford and
Braford animals from eight herds had log-transformed tick
counts recorded. Braford is a breed resultant of a crossing
between Hereford and Zebu (e.g., Nellore, Brahman, Guzerá).
A detailed descriptive statistic for the log-transformed tick count
is in Table 1. Animals were between 326 and 729 days old
at the time of recording. The contemporary groups combined
farm, gender, year of birth, management group, and tick count
date. Contemporary groups discarded from the dataset had less
than five animals and tick counts above or below 3.5 standard
deviations from the mean. After editing, 146 contemporary
groups remained for further analysis. The phenotypic data
included records from 4,363 animals (928 Hereford and 3,425
Braford) raised under extensive conditions, and the pedigree file
included 12,755 animals. A total of 35.68% of the animals in
pedigree had both parents known, 20.10% of the animals had
unknown sire, 0.24% had unknown dam, and 43.98% had both
parents unknown (i.e., base animals). Among all phenotyped
individuals, 2,188 (525 Hereford and 1,663 Braford) had three
subsequent tick counts, 1,934 (391 Hereford and 1,543 Braford)
had two counts, and 241 (12 Hereford and 229 Braford) had
only one count. Therefore, a total of 10,673 tick counts were
recorded on 2,369 Herefords, and on 8,304 Brafords that had a
maximum of 3/4 of Zebu proportion. The Zebu breed proportion,
heterozygosity, and recombination loss effects were calculated as
proposed by Cardoso and Tempelman (2004) and included as
linear covariates in the model.

TABLE 1 | Descriptive statistics of the log-transformed tick count records for
Hereford and Braford.

Descriptive statisticsa Breed

Hereford Braford

N 2,369 8,304

Minimum 0.0004 0.0004

Q25 1.18 1.11

Mean 1.45 1.33

Median 1.46 1.38

Q75 1.74 1.60

Maximum 2.73 2.72

SD 0.47 0.43

aN, number of observations; Q25, quantile 25%; Q75, quantile 75%; SD, standard
deviation.
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In total 130 sires were genotyped with a high-density SNP
panel (BovineHD—Illumina bead chip with 777,962 SNPs),
whereas the BovineSNP50 Illumina panel (54,609 SNPs) was
used to genotype 3,591 animals. A total of 41,045 overlapping
SNPs were selected for quality control. The quality control
criteria adopted for SNP exclusion were the Hardy–Weinberg
equilibrium chi-square test (p = 10−7), genotype call rate (CR)
(<98%), minor allele frequency (MAF) (<3%), near-perfect
collinearity with other SNPs (r > 0.98), and SNPs in the
same physical position. The criteria adopted to reject samples
were CR < 90%, heterozygosity deviation above three standard
deviations, gender identification errors, and identical genotypes
between different individuals (more than 99.5% of similarity for
all markers). After quality control, a total of 3,591 samples (666
Braford and 2,862 Hereford) and 39,550 markers were retained
for further analysis. Aiming to build a complete 39,550 marker
panel, missing genotypes (0.89% of all genotypes) were imputed
across breeds according to the sliding window method using
FImpute (Sargolzaei et al., 2011).

Metafounder Relationships
The metafounder relationship used in this study was derived
from the methodology proposed by Legarra et al. (2015). In
summary, their approach is a general framework that considers
each ancestral population containing a finite-sized pool of
gametes. Conceptually, that assumption contrasts with the
classical population genetics supposition and suggests that several
ancestral populations might be genetically related, and therefore,
connected. In the aforementioned paper, the authors presented
modifications to the pedigree-based relationship matrix for
populations under different structures (i.e., single and multiple
base populations). The concept of metafounder relies on the
definition of pseudo-individuals to add some level of within
and/or across genetic relationships between base (i.e., founder
or ancestral, γ = 1/Ne) individuals in the population. It is
assumed that every individual from any population might have
some degree of known or unknown relationship due to a
common ancestor. From the perspective of founder individuals,
their relationship can be derived by the use of metafounders,
constructing a modified pedigree relationship matrix, A(0).
The 0 matrix contains the relationship between metafounders
(composed by at least one γ), and its simplest form is exhibited
when the ancestral population is composed of only one breed,
indicating that 0 is a scalar. In cases where the founder
population is composed of several populations and eventually,
with crossbred animals, it is possible to build an extended and
more complex 0. The latter is exactly the case of the population
used in this study, which is composed of Hereford and Braford
(an admixture between Hereford and Zebu) animals.

A total of four metafounders were defined based on breed of
origin, with one metafounder assigned to Hereford, another one
for Braford, and a third one for Zebu. The fourth metafounder
was assigned to the remaining base animals with an unknown
breed of origin. The description of each metafounder group is
in Table 2. Recursive computations of A(0) followed usual rules
(Emik and Terrill, 1949; Karigl, 1981; Aguilar and Misztal, 2008).
The only required modification to include metafounders is the

assumption of γ as the self-relationship for founders. Note that
self-relationship for base animals is traditionally assumed to be
zero due to lack of historical pedigree information. The 0 matrix,
which is composed by within- and across-founder relationships,
was estimated using SNP markers under a generalized least
square (GLS) approach (Garcia-Baccino et al., 2017). In our
study, 0 was a 4 × 4 (co)variance matrix between means across
markers and breeds. Below is a description of the GLS linear
model fitted in this study where the breeding values are split into
within- and across-breed components:

mi = Qµi +
∑
b

Wbub
i +

∑
b,b′ ,b>b′

Wb,b
′

ub,b
′

i + ei,

where mi is a vector of gene contents in the form [0, 1, 2]
from locus i, Qk,b is a matrix, the rows of which sum to 1, and
contains the fraction of ancestry b in individuals k, µi is a vector
for the average of each population, Wb is an incidence matrix
relating individuals from b group in the pedigree to observed
genotypes, with partial relationship matrices for vectors ub

i ∼

N
(

0, Ab (2pi (1− pi
)))

and ub,b
′

i ∼ N
(

0, Ab,b
′ (

2pi
(
1− pi

)))
,

and Ab
(
b,b
′
)

the matrix of pedigree-based relationships among
individuals in population b. The residual term can be defined
as e ∼ N

(
0, σ2

ε

)
. The BLUE of µi can be obtained and then the

variance and covariance between means for markers within and
across populations

(
6̂
)

are estimated. Finally, 0 was estimated as

0 = 26̂ = 2


σ2

µB
σµBµH σµBµZ σµBµu

σ2
µH

σµHµZ σµHµU

σ2
µZ

σµZµU

sym σ2
µU

, where σ2
b and σµbµ

b′

are the variance and covariance parameters for each Hereford
(H), Braford (B), Zebu (Z), and unknown breed of origin (U).

Statistical Models
Three different models were tested in this study, aiming to
evaluate the gain in prediction accuracy due to the inclusion of
metafounders in genetic evaluations. The first model contained
only relationships based on pedigree information (BLUP); the
second model was the single-step genomic BLUP (ssGBLUP),
which combines pedigree and genomic information; the third
model was the ssGBLUP with metafounders (ssGBLUPm). No
restrictions were imposed on the approach to avoid or minimize
inbreeding, and because of that, a total of 130 inbred individuals

TABLE 2 | Number of males and females included in pedigree in each
metafounder constructed based on breed of origin and within (diagonal) and
across (off-diagonals) gamma values (0) estimated using generalized least square.

0

Metafounders Males Females Hereford Bradford Zebu Unknown

Hereford 1,991 1,032 0.61 0.46 0.34 0.49

Braford 3,932 2,431 0.53 0.57 0.50

Zebu 34 34 Symm 0.96 0.52

Unknown 1,228 1,084 0.51
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out of 72,755 were defined by non-zero inbreeding coefficient.
The average inbreeding coefficient from inbred animals was
5.73%, with a maximum of 25%, and 0.06% for all 72,755 animals.

To reduce the computational time for variance components
estimation in average information REML (AIREML), the starting
values were estimated through pedigree-based model via Gibbs
sampling algorithm implemented in GIBBS2F90 (Misztal et al.,
2002). This software implements a Bayesian method using Gibbs
sampler via the Markov Chain Monte Carlo (MCMC) algorithm.
Thus, a Bayesian bivariate pedigree-based repeatability model for
tick count was defined as following data distribution:

yijkl|β, γ, c, a, d, R ∼ N
(

x1jkβ+ x2jkω+ x3jkc+ zka+ zkd, σ2
ek

)
where yijkl is the lth log-transformed phenotypic record for
breed k (1 = Hereford, 2 = Braford) in the jth animal, from
the ith contemporary group; β is a vector of systematic effects;
ω =

[
ωAk ωD

kk′
ωAA

kk′

]
is a vector of Zebu breed proportion,

heterozygosity, and recombination loss effects, represented
respectively by ωAk , ωD

kk′
, and ωAA

kk′
. Additionally, c|C ∼

N
(

0,

[
σ2

c1
σc12

σc21 σ2
c2

]
⊗ I

)
is a vector of random contemporary

group effects; a|Go, A ∼ N
(

0,

[
σ2

a1
σa12

σa21 σ2
a2

]
⊗ A

)
is a vector

of random direct additive genetic effects, where Go is the
additive genetic (co)variance matrix and A is the numerator

relationship matrix; d|D ∼ N

(
0,

[
σ2

d1
σd12

σd21 σ2
d2

]
⊗ I

)
is a vector

of random permanent environmental effects. Furthermore,
x1jk, x2jk, x3jk are known vectors, and zk is an incidence matrix
where the elements of x2jk in column order are follows: (1)
fk, defined as the proportion of alleles from the kth breed
and corresponding to ωAb ; (2) fkk′ being the probability that
a randomly chosen locus from an individual j, one allele is
derived from breed k and the other allele is derived from
breed k’, associated with ωD

bb′
; and (3) 2fkfk′ corresponding

to ωAA
bb′

(Cardoso and Tempelman, 2004). Finally, σ2
ek

is the residual variance for the kth trait. Inverted Wishart
prior densities are specified for the covariance components
as follows: C|6C, n ∼ IW(6C, n), G|6G, n ∼ IW(6G, n),
D|6D, n ∼ IW(6D, n), R|6R, n ∼ IW(6R, n), where 6q is the
respective scale matrix for each q effect and degrees of belief
parameter given by n. All effects were fitted using degree of belief
equals 1 and 6q →∞ aiming to fit a flat distribution.

A total of 100,000 iterations were generated, with the first
30,000 discarded as burn-in, and 1 every 10th sample was
stored for posterior analysis. Posterior means were then used
as starting values in AIREMLF90 (Misztal et al., 2002) using
the YAMS package for efficient sparse computations (Masuda
et al., 2014). AIREMLF90 calculates REML (co)variance estimates
with the Average-Information algorithm, which uses a second
derivative REML algorithm.

A two-trait repeatability animal model was used to estimate
breeding values. The model can be seen as an incomplete version
of the development proposed by Wei and Van der Werf (1994)

because records from one of the purebreds (Zebu animals) were
not available. Notations hereafter follow Wei and Van der Werf
(1994). The model can be defined as:[

yH
yB

]
=

[
XH 0
0 XB

][
βH
βB

]
+

[
ZH 0
0 ZB

] [
aH
aB

]
+

[
ZH 0
0 ZB

] [
dH
dB

]
+

[
eH
eB

]
where yi is the vector of log-transformed tick counts in the ith
breed – Hereford (H) and Braford (B); Xi, and Zi, are incidence
matrices that relate phenotypes to its respective fixed, direct
additive, and permanent environmental effect levels, respectively.
The vector of fixed effect (βi) was composed by an overall
mean and contemporary groups as cross-classified variables; zebu
breed proportion, heterozygosity, recombination loss, and linear
and quadratic effects of age at tick counting were considered
as covariables. The vector of permanent environmental effect

was defined as d ∼ N

(
0,

[
σ2

dH
σdHB

σBH σ2
dB

]
⊗ I

)
; and the residual

vector as e ∼ N
(

0,

[
σ2

eH
0

0 σ2
eB

]
⊗ I

)
Moreover, the vector of

direct additive effects for BLUP was defined as
[

aH
aB

]
∼

N
(

0,

[
σ2

H σHB
σBH σ2

B

]
⊗ A

)
; where σ2

H and σ2
B are the additive

variances for the Hereford and Braford traits, respectively, and
σHB is the additive covariance between breeds.

For ssGBLUP and ssGBLUPm, the A matrix was replaced by
H and H(0), respectively, where H is the realized relationship
matrix and 0 is a matrix of relationships among metafounders.
The H−1 can be defined as following:

H−1
= A−1

+

[
0 0
0 (0.95G+ 0.05A22)

−1
− A−1

22

]
where A−1

22 is the inverse of the pedigree relationships for
genotyped animals. The inverse of the realized relationship
matrix with metafounder, H(0)−1, was also constructed using the
same approach, however, the pedigree-based relationship matrix
was constructed as A(0) instead of A; likewise, A22 was replaced
by A22(0). The genomic relationship matrix (G), was constructed
as:

G =
(M− P) (M− P)

′

2
∑s

j=1 pj(1− pj)
,

where M is the matrix of SNP genotypes for each animal, P is a
matrix of two times the frequency of the second allele p at locus
j (pj), and s is the number of SNP markers. The denominator
is a scaling factor for G. Under ssGBLUP, G was constructed
using realized allele frequencies in the genotyped data, whereas
0.5 allele frequency was used for all loci in ssGBLUPm. VanRaden
(2008) suggests the use of allele frequencies from base animals
(i.e., unselected population) to create the genomic matrix.
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However, SNP markers are not available for base animals
and approximations needs to be used. In those circumstances,
allele frequencies from current population are used to build
genomic matrix and scaling diagonal and off-diagonal elements
of G are required to ensure A, A22, and G compatibility in
single-step approach (Chen et al., 2011; Forni et al., 2011).
The use of 0.5 allele frequency in ssGBLUPm refers to the
population with maximum heterozygosity. All 0 computations
were performed using a new software (GAMMAF90) being
developed by BLUPF90 group1. The software was written in
Fortran 95 and it is integrated in the new BLUPF90 software.

Scenarios
The BLUP model was fitted using the regular relationship matrix
constructed based on Henderson (1976) rules. The relationship
matrix used in ssGBLUP and ssGBLUPm was described in the
previous section.

To compare the estimated variance components and genetic
parameters between models, ssGBLUPm parameters needed
to be adjusted corresponding to (co)variances among the
unrelated breeds (scaled) (Legarra et al., 2015). More specifically,
the scaled genetic variances for Hereford (Braford) were
σ2

aH(B)

(
1− γH(B)

/
2
)
; the scaled genetic covariance for crossbred

performance was σaHB

(
1− γHB

/
2
)
. Note the γH and γB

represents the metafounder genetic relationship within Hereford
and Braford, respectively, and γHB represents the across
metafounder genetic relationship between Hereford and Braford.
Heritabilities were calculated using these scaled (co)variance
components. The genetic correlation between Hereford and

Braford was calculated as ra =
σaHB

(
1−γHB/2

)
√

σ2
aH

(
1−γH/2

)
σ2

aB

(
1−γB/2

) . Finally,

repeatability for Hereford and Braford was calculated as rH =
σ2

aH

(
1−γH/2

)
+σ2

dH
σ2

pH
and rB =

σ2
aB

(
1−γB/2

)
+σ2

dB
σ2

pB
, respectively. The

same formulas were used to compute heritability, genetic
correlation, and repeatability for BLUP and ssGBLUP models,
using the (co)variances estimated by AIREML.

Within-Breed Predictive Ability
In this study, the within-breed predictive ability was used to
measure the model ability to predict unknown phenotypes. For
that, we used a forward validation approach. The selection of
animals to compose the validation set in the forward validation
was based on year of birth. Therefore, training animals were born
from 2008 to 2010, and validation animals were born in 2011.
A total of 198 and 766 animals were part of validation sets for
Hereford and Braford, respectively.

The predictive ability was defined as the correlation between
phenotypes adjusted for fixed effects (ŷ∗i = yi − Xiβi) from a
model using all data where ŷ∗i is the adjusted phenotype for
animals in the ith breed (Hereford and Braford) and fixed effects
as defined in AIREML model. The predictive ability for Hereford
was calculated as cor (ŷ∗H, âH) using information only for the
validation animals. Similarly, the predictive ability for Braford

1http://nce.ads.uga.edu/wiki/doku.php?id=documentation

was computed as cor (ŷ∗B, âB). Standard error for the predictive
ability was generated from 5,000 non-parametric bootstrapping
replicates. All computation was implemented using boot function
from boot R package (Canty, 2002; Team, 2013). Regression of
phenotypes adjusted for fixed effects on (G)EBVs for Hereford
and Braford was used as a measure of the inflation (bias) of
the prediction method, where a regression coefficient of one
denotes no bias.

RESULTS AND DISCUSSION

Metafounder Relationship and
Inbreeding
A total of four metafounders were included in the ssGBLUPm
model. Three metafounders were defined based on breed of origin
(Hereford, Braford, and Zebu) and the last metafounder was
assigned to the remaining base animals with unknown breed of
origin. Table 2 shows the number of males and females included
in each metafounder group.

Self- and across- relationships (0) between Hereford, Braford,
and Zebu breeds estimated by generalized least squares are also
shown in Table 2. As previously defined by Legarra et al. (2015),
γ̂ can be seen as self-relationships. The relationship coefficient
between metafounders was greater than zero, suggesting a
degree of overlap between ancestor populations. The estimates of
metafounder relationships indicate that the Hereford and Zebu
populations in our study might have some ancestors in common.
However, as previously stated, there is no genomic information
for Zebu animals in this study; in fact, only a fraction of all zebu
descendants was used for computations. Thus, the population
under study is a special case of the metafounder theory (Legarra
et al., 2015) where records from one of the pure breeds is
unknown, but genomic information for crossbreds is available.
Moreover, the SNP panel used in this analysis is a blend of
different SNP-chips where the missing genotypes were imputed.
Our intention was not to draw any assumptions on how Hereford
and Zebu breeds have shared a certain portion of the alleles
over generations. For that purpose, there are other approaches
already published in the literature (Alexander and Lange, 2011;
Decker et al., 2014a).

The inbreeding coefficients calculated based on pedigree
and genomic information (with and without metafounders)
are shown in Figure 1. A detailed description of inbreeding
coefficients within breed compositions (i.e., Zebu, Hereford,
and Braford) are available in Supplementary Figure S1. Many
individuals used in this study had missing pedigree information.
Due to the lack of information, almost all the diagonal elements in
A without metafourders are equal zero. Because of the inclusion
of metafounders, an upward shift was observed in the inbreeding
coefficients calculated based on A and H. Additionally, a
few negative inbreeding coefficients were observed. This result
suggests that parents were less related than the average in
the base population (assuming allele frequencies of 0.5). The
classical quantitative genetics theory postulates that inbreeding
for individuals with known parents is a function of parent’s
relationships. Founder individuals are typically assumed to be
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FIGURE 1 | Inbreeding estimates obtained from the diagonal elements of the pedigree (A) and the realized (H) relationship matrices (with and without metafounders).

drawn from a large, unrelated, ancestral population mated
at random. Consequently, inbreeding coefficients for founder
animals are usually defined as zero due to the lack of information.
A different condition arises under the metafounder theory where
base animals are assumed to be related due to a common ancestral
population. In this case, the probability that identical gametes
are shared between individuals may increase; thus, inbreeding
coefficients are upward shifted (Figure 1).

Additional information about the diagonal and off-diagonal
elements of all required matrices to create H and H(0) matrices
are available in Table 3. As previously stated, the inclusion
of metafounders in the numerator relationship matrix and the
assumption of allele frequency equals 0.5 causes an upward shift
on A22 and G.

Variance Components, Heritability, and
Genetic Correlations
Variance components, heritability, and genetic correlations
are available in Table 4. As previously described, variance

components from the metafounder model were scaled to provide
a fair comparison with BLUP and ssGBLUP models. Across
different models, it can be seen that additive genetic, residual, and
phenotypic variances estimated based on the Hereford data were
smaller than those based on Braford. Permanent environmental
variances were similar across models.

In general, variance components and heritabilities were
not considerably different between the genomic models. The
most remarkable difference is seen in the heritability estimates
on Hereford breed, where the inclusion of metafounders
led to an increase of heritability. On the other hand,
the inclusion of genomic information resulted in smaller
heritability estimates on Braford breed. Both conditions can be
attributed to improvements on additive genetic relationships, and
consequently, on permanent environment effects estimation. The
heritability shift observed between non-genomic and genomic
models suggests that incomplete pedigree information may led
to biased estimates on variance components, consequently, on
heritability. This effect was already reported by Junqueira et al.
(2017). A similar result was observed by Aldridge et al. (2020)
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TABLE 3 | Descriptive statistics for diagonal and off-diagonal elements of genomic
matrices required under genomic evaluations.

Parameter

Matrixa Mean Minimum Maximum Variance

Diagonal

A22 1.001 1.000 1.250 0.000

A22 (0 ) 1.258 1.200 1.447 0.000

G 1.001 0.838 1.204 0.002

G (0 ) 1.289 1.185 1.407 0.001

Off-diagonal

A22 0.002 0.000 0.750 0.000

A22 (0 ) 0.504 0.399 1.079 0.001

G 0.002 -0.228 0.678 0.002

G (0 ) 0.558 0.380 1.051 0.002

aA22, numerator relationship matrix of genotyped animals; G, genomic matrix; 0 ,
matrices using metafounder information.

when evaluating several traits in swine. The goal with the use of
metafounders is to make both pedigree and genomic information
more compatible (Legarra, 2016; Meyer and Swan, 2019). In
addition, van Grevenhof et al. (2019) argued that variance
components from a model with metafounders might be more
accurate after variance components rescaling, consequently the
estimation of more accurate breeding values are expected. In fact,
when pedigrees are well structured, the inclusion of genomic
information might not cause an increase in heritability. However,
the pedigree for the population used in this study has many
individuals with unknown parents. The different results between
genomic and non-genomic models come from a better estimation
of relationships through SNP, when pedigree is incomplete.
As observed by Junqueira et al. (2017), improved additive
relationships can cause changes of additive and permanent
environmental effects. In cases where a proper model is used and

variance components are better estimated, higher heritabilities
could be observed, which can benefit selection. This can help
to boost the annual genetic gain in breeding programs because
more reliable heritability estimate is translated into more accurate
prediction of breeding values.

Genetic correlations (ra) between Hereford and Braford were
0.67 (0.022), 0.45 (0.015), and 0.41 (0.017) for BLUP, ssGBLUP,
and ssGBLUPm models, respectively. Note that under genomic
models, the genetic correlation is lower than in BLUP. As
stated by Hidalgo et al. (2020), variance components and genetic
parameters based on A and H can be different if the population
is under genomic selection. In such a case, genomic information
is part of the selection process, and if the genomic information
is not included, variance components can be biased. The genetic
correlation is useful when designing breeding schemes and
defining breeding objectives. In the case of genetic correlation
between different breeds, our results show that some genomic
regions responsible for the control of tick resistance are being
expressed in both purebreds and crossbreds. This result indicates
that the selection of Hereford for tick count resistance may also
account for a positive impact on Braford resistance, when the
latter originates from selected Hereford parents.

Predictive Ability and Bias
The predictive ability for all 198 Hereford and 766 Braford
animals used in the forward validation is in Figure 2 and
Supplementary Figure S2. Forward validation is a good strategy
to mimic the reality of breeding programs and genetics datasets,
where breeding values of young animals are predicted based
on data from older animals. As expected, the pedigree-based
model had the worse predictive ability (0.051 and 0.126 for
Hereford and Braford, respectively) when compared to ssGBLUP
(0.173 and 0.205) and ssGBLUPm (0.208 and 0.209). With
metafounders, there was an additional gain in predictivity for
both breeds, especially for Herefords. This is because the number
of phenotypes and genotypes available for Herefords is much
smaller compared to Brafords, and any increase in prediction

TABLE 4 | Description of variance components, heritability, and genetic correlation estimates (with respect standard-errors) for Hereford and Braford using multibreed
pedigree and genomic information.

Parametersa Modelb

BLUP ssGBLUP ssGBLUPm

Hereford Braford Hereford Braford Hereford Braford

σ2
a 0.003 (0.000) 0.027 (0.002) 0.009 (0.004) 0.018 (0.003) 0.013 (0.001) 0.018 (0.002)

σ2
d 0.018 (0.002) 0.006 (0.001) 0.013 (0.004) 0.013 (0.002) 0.009 (0.001) 0.013 (0.001)

σ2
e 0.060 (0.000) 0.074 (0.001) 0.060 (0.002) 0.074 (0.002) 0.060 (0.002) 0.074 (0.001)

σ2
p 0.081 (0.004) 0.106 (0.004) 0.082 (0.011) 0.105 (0.006) 0.082 (0.004) 0.105 (0.004)

h2 0.040 (0.003) 0.250 (0.003) 0.110 (0.044) 0.170 (0.015) 0.160 (0.005) 0.180 (0.007)

r 0.260 (0.013) 0.310 (0.012) 0.260 (0.080) 0.300 (0.030) 0.270 (0.008) 0.300 (0.010)

ra 0.670 (0.022) 0.450 (0.015) 0.410 (0.017)

aσ2
a , additive genetic variance; σ2

d, permanent environment variance; σ2
e , residual variance; σ2

p, phenotypic variance; h2, additive heritability; r, repeatability; ra, genetic
correlation.
bBLUP, pedigree-based BLUP; ssGBLUP, single-step genomic BLUP; ssGBLUPm, ssGBLUP with metafounders. Variance components under ssGBLUPm were scaled
following the material and methods description.
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FIGURE 2 | Predictive ability from a forward validation in Hereford and Braford when using pedigree (BLUP), single-step genomic BLUP (ssGBLUP), and ssGBLUP
with metafounders (ssGBLUPm). Error bars represents the standard errors estimated using non-parametric bootstrapping.

accuracy is expected to have a direct and positive impact
under practical conditions when selecting breeding candidates.
However, our results may still be limited by the size of the
dataset, number of genotyped animals, and due to lack of animals
with known parents in the pedigree. Perhaps, all allelic diversity
present in the Hereford population could not be captured;
therefore, further analyses using larger populations with more
complete pedigree information are required to have a better
understanding of the impact of using metafounders for the
estimation of GEBV.

The degree of bias of the prediction methods is indicated
by the coefficient of regression of phenotypes adjusted by fixed
effects on (G)EBVs (Table 5). The optimal method to predict
the genetic merit of animals would have a regression coefficient
close to 1. For Hereford breed, the inclusion of metafounders
provided the smallest bias and standard error. On the other
hand, BLUP was the smallest biased model for Braford, with
ssGBLUPm still showing the smallest standard error. According
to Kennedy et al. (1988) relationships account for selection, drift,
and non-random mating, but do not account for wrong definition
of the base population or finite number of loci (Vitezica et al.,
2011; Junqueira et al., 2017). Under those circumstances, fitting
metafounders would contribute to the estimation of breeding
values due to the addition of genetic relationships for founders
of the populations. However, as the uncertainty of relationship
increases, the variance of estimated breeding values may also
increase. Consequently, the breeding values might show high
bias, as it was observed on Braford ssGBLUP and ssGBLUPm.
More studies are required to evaluate the benefits of the
inclusion of metafounders under different proportions of known

TABLE 5 | Regression coefficients (standard error) of phenotypes adjusted by
fixed effects on (G)EBVs for young Hereford and Braford animals under pedigree
and genomic models.

Breeda Model Bias

Braford BLUP 1.11 (0.22)

ssGBLUP 0.85 (0.10)

ssGBLUPm 0.79 (0.09)

Hereford BLUP 0.76 (0.46)

ssGBLUP 1.28 (0.23)

ssGBLUPm 0.89 (0.19)

aBLUP, pedigree-based BLUP; ssGBLUP, single-step genomic BLUP; ssGBLUPm,
ssGBLUP with metafounders.

relationship information. In a simulation study, Bradford et al.
(2019) observed the addition of metafounders led to less biased
models, especially for traits with moderate to low heritability, as
the case of tick count (h < 0.25).

Our study shows the potential of the use of metafounders
to increase the rate of genetic gain across generations due to
a more acurate estimation of breeding values, in accordance to
Xiang et al. (2017). Perhaps, the challenge for Brazilian breeding
programs would be the availability of a large amount of marker
information to calculate a more reliable and robust 0 since
the matrix is built based solely on SNPs. This study focused
on evaluating the impact of metafounders on the estimation of
breeding values, with 0 being computed based on all genotyped
animals. However, only a fraction (28%) of the population is
genotyped and the number of genotyped animals is limited;
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which is the reality in almost all livestock populations. Therefore,
there is still a lack of knowledge on how large the number of
phenotyped and genotyped animals connected to metafounders
should be needed to obtain accurate 0 estimates. Future studies
should investigate the impact of the number of genotyped
animals from different breeds on the estimates.

CONCLUSION

The inclusion of genomic information in a multibreed
Hereford/Braford population provides greater predictive ability
than pedigree-based models for both breeds because of a better
estimation of genetic relationships. When the level of pedigree
missingness is high, the inclusion of metafounders can help to
further increase the ability to predict future performance in small
multibreed populations.
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